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In this talk I will discuss two applications of parity sheaves, one
topological, and one representation theoretic.
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The p-smooth locus

Throughout, X will denote an irreducible complex algebraic
variety of dimension n equipped with its metric topology.

A point x P X is p-smooth if one has an isomorphism

H�pX ,X ztxu; Fpq � H�pCn; Cnzt0u; Fpq

The p-smooth locus is the largest open subset consisting of
p-smooth points.

Finally, X is p-smooth if it is equal to its p-smooth locus.

One similarly defines Q- and Z-smooth.
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If X is p-smooth then one has Poincaré duality with
Fp-coefficients:

HpX ; Fpq � H2n�
c pX ; Fpq

�.

Equivalently, the p-smooth locus is the largest open locus over
which the dualising sheaf with coefficients in Fp is isomorphic to
the constant sheaf in degree �2n.

In general one has inclusions:

smooth
locus

�
Z-smooth

locus
�

p-smooth
locus

�
rationally smooth

locus
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An example

Following Dragos, Olivier and Peng we...

Consider X � singularity of type A1.
pi.e. given by xy � z2 � A3.q

Then X is p-smooth if and only if p � 2.

Why?

link of X at 0 :� X X small sphere around 0

� S3{ � 1

� RP3

which has 2-torsion in its cohomology.
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An (exceptional) surface singularity

Let X be a surface
singularity of type E8.

That is, X � C2{H,
where H � SL2pCq is the
binary icosahedral group.

Then X is Z-smooth,
and hence p-smooth for all p.
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Schubert varieties

Let G be a reductive algebraic group with Borel subgroup B and
maximal torus T and Weyl group W .

We can consider the flag variety G{B. We will abuse notation
and identify points of W with their images in G{B.

Given w P W we can consider the Schubert variety

Xw :� BwB{B.

A natural question is:

Question

What is the p-smooth locus of Schubert varieties?
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The question of smoothness and rational smoothness have been
addressed by many authors.

For smoothness these include answers in classical types usually
by some form of “pattern avoidance”.

For rational smoothness one has:

x ¤ w belongs
to the rationally

smooth locus
ô Px ,w � 1 ô

for all x ¤ y ¤ w , there are `pwq
closed T -invariant curves in Xw

containing y in their closure

It is known that in simply laced type the rationally smooth locus
and smooth locus agree.
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In the exercises we have seen an example (in SP4{B) where the
2-smooth locus is not equal to the rationally smooth locus. (In
fact we saw that we found an A1 singularity.)

Hence one cannot expect equality of the rationally smooth locus
and p-smooth locus in general.
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In joint work with Peter Fiebig we have shown:

Theorem

Suppose that p is not a bad prime for G , then the rationally
smooth and p-smooth locus of all Schubert varieties in G{B
coincide.

This answers a (stronger version of a) question of Soergel.

Similar results hold for Kac-Moody Schubert varieties X if the
moment graph satisfies the Goresky-Kottwitz-MacPherson (GKM)
condition: for any T -fixed point x P X the characters of T
corresponding to any two one-dimensional orbits L and L1 having x
in their closure do not become linear dependent modulo p.
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The proof uses the techniques which have been developed during
this summer school.

Fix a Schubert variety Xw � G{B and let Epw ,Fpq P Db
T pG{Bq

denote the indecomposable parity sheaf supported on Xw (with
coefficients in Fp).

Using the self-duality of Epw ,Fpq one may show that the
p-smooth locus of Xw is equal to the locus U over which Epw ,Fpq
is isomorphic to (a suitable shift of) the constant sheaf.

In Olaf’s talk we saw that that we can calculate the stalks of the
the indecomposable parity sheaves using the moment graph of the
flag variety.

Hence the determination of the p-smooth locus is reduced to a
problem about the Braden-MacPherson sheaf on the moment
graph.
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To finish off, we use a result of Fiebig:

If the moment graph of Xw is Goresky-Kottwitz-MacPherson for
k , then the stalk of Bpw , kq at x is of rank one if and only if there
are only dim Xw edges at x .
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This begs the questions:

1 What is the p-smooth locus in general? Is it determined by
the moment graph?

2 Is there a more geometrical explanation of these results?

3 What about torsion in general? (Compare results of Braden.)
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Tilting modules and parity sheaves

We now turn to the most amazing of all flag varieties ...

Recall that G denotes a reductive algebraic group over C with
fixed maximal torus and Borel subgroup T � B.

To G one may associate its affine Grassmannian:

GrG :� G pptqq{G rrtss

GrG is a projective ind-variety. That is, it is the direct limit of
finite dimensional projective algebraic varieties under closed
inclusions.
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Basic geometry of the affine Grassmannian

We have a decomposition of GrG into G rrtss-orbits:

GrG �
§

λPX�pT q�

Grλ

(where X�pT q
� denotes the dominant coweights). Each Grλ is an

affine space bundle over a partial flag variety.

(Note that X�pT q also parametrises the simple G_-modules,
where G_ denotes the Langlands dual group of G .)
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Let PG rrtsspGr , kq denote the category of G rrtss-equivariant
perverse sheaves of k-vector spaces on Gr . Then PG rrtsspGr , kq has
a convolution product �.

The convolution � is analogous to the product used to categorify
the Hecke algebra using perverse sheaves on G{B.

In this case, however � makes PG rrtsspGr , kq into a symmetric
tensor category.

Theorem (Mirkovic-Vilonen)

There is an equivalence of tensor categories

pPG rrtsspGr , kq, �q
�
ÝÑ pReppG_

k q,bq

with fiber functor given by the hypercohomology functor.

Here G_
k denotes the Langlands dual group scheme over k .
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Parity sheaves on the afffine Grassmannian

Because the affine Grassmannian is an example of a Kac-Moody
flag variety, similar arguments to the finite dimensional case
guarantee that, given λ P X�pλq there is a unique (up to
isomorphism) indecomposable parity sheaf Epλ, kq on GrG with
support Grλ.

It is interesting to ask if Epλ, kq is perverse and, if so, what is
corresponds to under the geometric Satake correspondence.
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Assume from now on that k is the algebraic closure of a finite
field Fq.

Recall that G_
k denotes a reductive algebraic group over k . Let

T_ denote a maximal torus dual to T � G .

The simple G_-modules are classified by their highest weight
λ P X �pT_q�. Given λ P X �pT_q� let Lpλq denote the
corresponding simple module.

Given λ P X �pT_q one also has standard and costandard
modules ∆pλq and ∇pλq.
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Tiltings modules

Definition

A tilting module is a G_
k -module which has both a ∆ and a ∇

filtration.

General arguments show indecomposable tilting modules are also
classified by highest weight. Given any λ P X �pT_q we denote by
T pλq the corresponding indecomposable tilting module.

It is an open problem to determine the characters of
indecomposable tilting modules, and a solution to this problem
would have many consequences in representation theory (e.g.
formulas for dimensions of simple kSn-modules).

Geordie Williamson Two applications of parity sheaves



Tiltings modules

Definition

A tilting module is a G_
k -module which has both a ∆ and a ∇

filtration.

General arguments show indecomposable tilting modules are also
classified by highest weight. Given any λ P X �pT_q we denote by
T pλq the corresponding indecomposable tilting module.

It is an open problem to determine the characters of
indecomposable tilting modules, and a solution to this problem
would have many consequences in representation theory (e.g.
formulas for dimensions of simple kSn-modules).

Geordie Williamson Two applications of parity sheaves



Parity sheaves and tilting modules

Recall the geometric Satake isomorphism:

pPG rrtsspGr , kq, �q
�
ÝÑ pReppG_

k q,bq

and let h denote the Coxeter number of G :

Theorem (with Daniel Juteau and Carl Mautner)

If the characteristic of k is larger than h � 1 (actually much better
bounds in most types!) then the parity sheaves on Gr are perverse
and correspond under geometric Satake to tilting modules.

This gives a local characterisation of tilting sheaves on Gr
(compare Tilting Sheaves, Beilinson–Bezrukavnikov–Mirkovic).

It follows that the Braden-MacPherson algorithm may be used
to calculate the characters of tilting modules.
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In all types other than type A there are examples of parity
sheaves that are not perverse for some primes. (All such examples
involve bad primes.)

In general we conjecture:

Conjecture

Under the equivalence of Mirkovic and Vilonen, the 0th perverse
cohomology of an indecomposable parity sheaf corresponds to an
indecomposable tilting module:

pH0pEpλ, kqq Ø T pλq.

Because parity sheaves are preserved under convolution, and
convolution is p-exact, this would give a geometric explanation of
the algebraic fact (proved by Donkin and Matthieu) that a tensor
product of two tilting modules is tilting.
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q-characters of spherical perverse sheaves

Let H denote the spherical Hecke algebra of G :

H �
à

λPX�pT q�
Zrv�1srHλ

Specialisation v ÞÑ 1 yields a ring homomorphism

HÑ K 0pRep G_
k q

Under this homomorphism the Kazhdan-Lusztig basis Cλ maps to
the character of the standard module ∆pλq.
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One can define a character map

ch : PG rrtsspGrG q Ñ H

by
chpFq �

¸
λPX�pT q�

v� dim Grλ dimv HpFλqrHλ

where dimv H �
°

dim H iv i P Zrv�1s.

For example, in characteristic zero Lusztig showed that

chpICpλqq � Cλ.
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... and now the twist

If we fix an Fp-rational structure on our algebraic group G_ we
get a Frobenius morphism

F : G_
k Ñ G_

k

(For example, if G is embedded in some GLn with the standard
rational structure, then F is just elevation of each matrix entry to
the pth power.)

Precomposing by F yields a functor of “Frobenius twist”:

F � : Rep G_
k Ñ Rep G_

k

On characters F � induces the “dilation by p” map.
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rational structure, then F is just elevation of each matrix entry to
the pth power.)
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Because the categories Rep G_
k and PG rrtsspGrG q are equivalent,

Frobenius twist “should” have a natural geometric counterpart.

But is seems to be a good way to go mad to try to work out
what it is.

We can however conjecture what it should do to the
q-characters of parity sheaves.
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Tilting tensor product formula

To motivate this we recall the tilting tensor product formula.
Suppose that we can express λ as a sum

λ � µ� pξ

such that p � 1 ¤ xµ, α_y   2p � 1 for all simple roots α.

A result of Donkin says that if p ¡ 2h � 1 then we have an
isomorphism

T pλq � T pµq b T pξqF

where p�qF denotes Frobenius twist. (It is conjectured by Donkin
that the restrictions on p can be dropped.)
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Consider the “p-stretch” map:

F : H Ñ H
v ÞÑ vp

rHλ ÞÑ rHpλ

We conjecture that the tilting tensor product formula lifts to
q-characters as follows:

Conjecture (Tilting, stretching and twisting)

ch Epλq � ch Epµq � F ch Epξq.

Hence whatever p�qF is, it is certainly a strange one!
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