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The Category of Complexes

To construct the derived category of a category A we need A to
be Abelian.

Definition
Let A be an Abelian category. The category Kom(A ) has

I objects: chain complexes of objects of A

I morphisms: chain complex maps.
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Quasi-Isomorphisms

Definition
Let f • be a morphism in Kom(A ) between two complexes A• and
B•. Then f • is a quasi-isomorphism or quis if H∗(f •) is an
isomorphism.

· · · // An−1 d
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f n−1

��

An //

f n

��

· · · · · · Hn−1(A•)
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· · ·

H∗
///o/o/o

· · · // Bn−1 d
// Bn // · · · · · · Hn−1(B•) Hn(B•) · · ·
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The derived category: a universal property definition

The derived catergory of A is a category D(A ) such that there
exists a functor

Q : Kom(A ) −→ D(A ),

such that

I Q sends quasi-isomorphisms to isomorphisms

I Q satisfies a universal property with respect to this.



Homotopy Equivalence of chain complex maps

Definition
Let f • and g• be two chain maps between complexes A• and B•.
Then there is an equivalence relation ∼ called chain homotopy
defined by

f • ∼ g• ey %9
there exist a collection of morphisms

(in A ) s i : Ai −→ B i−1 such that

f − g = sd + ds.

· · · d
// An−1 d

//

f n−1

��

gn−1

��

sn−1

}}{{{{{{{{{{{{{{{{{{
An d

//

gn

��

f n

��

sn

}}{{{{{{{{{{{{{{{{{
· · ·

sn+1

~~}}}}}}}}}}}}}}}}}

· · · d
// Bn−1 d

// Bn d
// · · ·

A chain complex map f • is a null-homotopy if f • ∼ 0.
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An overview of the construction

We construct the derived category in two steps:

I Step 1- Factor out null-homotopies to form the category
K(A )

I Step 2- Localise at the collection of quasi-isomorphisms.

Kom(A )
Q

// D(A )
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Additive and Abelian Categories

Definition
A category A is additive if you can ‘add and subtract morphisms
nicely’, that is,

I for any two objects A and B in A , HomA (A,B) is an
Abelian group

I the addition in each such group distributes over the
composition of morphisms

I finite products exist.

A functor F : A −→ B between two additive categories is
additive if F (f ) + F (g) = F (f + g) for all morphisms f , g in A
wherever f + g is defined.

An additive category is Abelian if it has kernels and cokernels and
every mono is some kernel and every epi is some cokernel.
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The homotopy category

Definition
Let A be an Abelian category. The category K(A ) has

I objects: chain complexes of objects of A

I morphisms: chain complex maps modulo ∼.

K(A ) is an additive category and the natural functor which
identifies homotopic maps is additive.

K(A ) has some extra structure which we will abstract to define
what we call a triangulated category.
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Translation and Cones

Definition
In Kom(A ) and K(A ) we have a functor that takes a complex A•

and shifts the complex k times by degree.

For example, A[1] denotes the shifted ‘to the left’ complex A• with
nth degree An+1. The image of a morphism f is written f [1].

Given any chain map f • : A• −→ B• we define Cone(f ) the cone
of f to be the complex with nth degree An+1 ⊕ Bn and differential
d̃ , defined by

An+1 ⊕ Bn d̃
// An+2 ⊕ Bn+1

(a, b) � // (d(a), d(b)− f (a))



Triangles

Given any chain map f • : A• −→ B• we get a short exact sequence
of chain complexes defined by

0 // B• �
� ι

// Cone(f )
δ
// // A[1] // 0

b � // (0, b)

(a, b) � // −a

This is our model for an abstract triangle.

The dotted line above is not strictly a map of chain complexes
because of the shift of degree.
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Abstract triangles

Definition
A standard triangle is a triple (f , ι, δ) of morphisms in K(A ),
where ι and δ are defined as above and depend on f .

An distinguished triangle is a triple (A
u
//B

v
//C

w
//A[1])

of morphisms in K(A ) such that there exists a morphism f and
isomorphisms a,b,c such that the following diagram commutes in
K(A ) (that is, up to chain homotopy)

A
u
//

a∼=
��

B
v

//

b∼=
��

C
w

//

c∼=
��

A[1]

a[1]∼=
��

A′
f
// B ′

ι
// Cone(f )

δ
// A′[1]

In the above case we say that the triangle (u, v ,w) is isomorphic
to the triangle (f , ι, δ).
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Triangulated categories

The definition of a triangulated category is modelled on K(A ), so
K(A ) is definitely a triangulated category.

Definition
An additive category K is called a triangulated category if it has
an automorphism T : K −→ K called the translation functor
and a distinguished family of triangles{

(A
u
//B

v
//C

w
//TA)

}
called distinguished triangles

satifying the following four axioms:

TR1 Every morphism belongs to some distinguished triangle:

Given a morphism A
f
//B , there exists a distinguished triangle(

A
f
//B

g
//C

h
//TA

)
and distinguishedness of triangles is

preserved by isomorphisms of triangles. Also (id, 0, 0) is a
distinguished triangle.
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The rotation axiom

TR2 Distinguished triangles can be ‘rotated ’, that is, if

(A
u
//B

v
//C

w
//TA) is a distinguished triangle then

(B
v
//C

w
//TA

−Tu
//TB )

and

( T−1C
−T−1w

// A
u

// B
v

// C )

are distinguished.



The morphisms axiom

TR3 Given any two distinguished triangles

(A
u
//B

v
//C

w
//TA) and (A′

u′
//B ′

v ′
//C ′

w ′
//TA′ ) and

morphisms f and g such that the following diagram commutes

A
u
//

f
��

B
v
//

g
��

C
w
// TA

Tf
��

A′
u′
// B ′

v ′
// C ′

w ′
// TA′

then there exists a morphism h which makes the diagram commute.
Note that this is not unique.
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The octahedral axiom

TR4 The octahedral axiom.

C

x
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B

v
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j

##
GGGGGGGGGGGGGG B ′
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u
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The octahedral axiom
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The octahedral axiom

TR4 The octahedral axiom.

C

x
zztttttttttt

y

##
GGGGGGGGGGGGGG

A′
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Tj◦i

��

B

v
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j

##
GGGGGGGGGGGGGG B ′δ

ssgggggggggggg
∃g
mmZ Z Z Z Z Z Z Z Z Z Z

A

u
mmZZZZZZZZZZZZZZZZZZZZZZZ

v◦u

OO

C ′

ε

::tttttttttt
∃f

66mmmmmmmmmmmm



What’s so good about triangulated categories?

In general, passing from Kom(A ) to K(A ) removes the Abelian
structure of the category.

Exact triangles are good substitutes for the short exact sequences
that we have lost.

A distinguished triangle

(A
u
//B

v
//C

w
//TA) in a triangulated category K induces

a long exact sequence on the level of cohomology

· · · w∗
//H i (A)

u∗
//H i (B)

v∗
//H i (C )

w∗
//H i+1(A)

u∗
// · · ·
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Localisation

Definition
Let S be a collection of morphisms in a category C . We define the
localisation of C with respect to S to be a category S−1C with
a funtor

q : C −→ S−1C

such that

I For all s ∈ S, q(s) is an isomorphism

I q satisfies a universal property with respect to this.



Examples of Localisations

Kom(A ) −→ K(A )
universally makes

homotopy equivalences
into isomorphisms

ey %9 K(A ) =

 homotopy
equivalences


−1

Kom(A )

Kom(A ) −→ D(A )
universally makes

quasi-isomorphisms
into isomorphisms

ey %9 D(A ) = {quis’s }−1Kom(A )

However, the following definition is better.
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The derived category

Definition
Let Σ be the set of all quasi-isomorphisms in K(A ) (not
Kom(A )) then we define the derived category of A to be the
localisation of K(A ) with respect to Σ,

D(A ) := Σ−1K(A ).

We still haven’t shown that the derived category even exists!



Multiplicative systems

Definition
A collection S of morphisms in a category C is called a
multiplicative system if:

MS1 S is closed under composition and contains all identity
morphisms.

MS2 If X
f
((

g
66Y are morphisms in C then

sf = sg for some s ey %9 ft = gt for some t



The Øre condition

MS3 If Z
t
//Y is in S , then for every X

g
//Y in C there

exists maps making the diagram below commute

W
f
//

s
��

Z

t
��

X
g
// Y

In practise, we are ‘rewriting’ t−1g as fs−1.



The Gabriel-Zisman Theorem
If S is a locally small multiplicative system of morphisms in C then
S−1C exists

If S is a multiplicative system, then a fraction s−1f written

Z
s
��~~~~ f

  
@@@@

X Y

is a morphism in S−1C exactly when s ∈ S .

Two fractions are equivalent if there exists a third which maps into
both:

Z1

s1

~~~~~~~~~

f
**TTTTTTTTTTTTTTTTTTTTT Z2

s2
uujjjjjjjjjjjjjjjjjjjjj

g

  
AAAAAAA

X Y
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∃
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A

A
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Conclusion

The set of quasi-isomorphisms in K(A ) is a multiplicative system.

Thus, by passing to K(A ) we not only get that D(A ) exists, but
are able to manipulate morphisms more concretely using the Øre
condition.



Derived functors - motivation

I Some of the most important additive functors on abelian
categories, such as

Hom,⊗, Γ,

are not exact.

I To restore their ‘exactness’ we have to redefine them.

I More explicitly, let f∗ : A → B be a left exact functor
between abelian categories (recall that f∗ being left exact
means that if 0→ X → Y → Z is exact in A , then
0→ f∗X → f∗Y → f∗Z is exact in B).

I We want to define an ‘extension’ of this functor:

Rf∗ : D(A )→ D(B)

called the right derived functor of f∗.

I The functor Rf∗ will be exact in the sense that it will map
distinguished triangles to distinguished triangles.
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Derived functors - the formal definition

Let f∗ : A → B be an additive functor. The derived functor is the
data of a triangulated functor F : D(A )→ D(B) and a natural
transformation

s : loc ◦ f∗ → F ◦ loc

such that the induced morphism

Hom(F ,G )→ Hom(loc ◦ f∗,G ◦ loc)

is an isomorphism for any triangulated functor G : D(A )→ D(B).
Here loc denotes the localization functor.



Adapted classes

Let
f∗ : A → B

be a left exact functor between abelian categories.

A full additive subcategory I ⊂ A is f∗-injective or an adapted
class for f∗ if:

I for every object X ∈ A there is a monomorphism X ↪→ I with
I ∈ I ;

I if 0→ X → Y → Z → 0 is an exact sequence in A , and if
X ,Y are in I , then Z is also in I ;

I if 0→ X → Y → Z → 0 is an exact sequence in A with
X ,Y ,Z ∈ I , then 0→ f∗X → f∗Y → f∗Z → 0 is exact in B.
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What’s the point?

I The first axiom allows us to replace an object X ∈ A with a
‘resolution’ of X by f∗-injective objects: embed X into I , take
the cokernel and embed this into another f∗-injective object,
wash, rinse, repeat.

I The second axiom (along with the first) ensures that any
(bounded below) complex of objects in A is quasi-isomorphic
to a complex of f∗-injective objects.

I The third axiom ensures that f∗ preserves quasi-isomorphisms
between f∗-injective objects.

For X ∈ D(A ), replace X by a resolution of f∗-injective objects
and apply f∗ to this resolution. This gives the right derived functor
of f∗.
More precisely:
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The formal construction

Let f∗ : A → B be a left exact functor. Let I ⊆ A be a
f∗-injective category. Let S (resp. S ′) be quasi-isomorphisms in
Kom(A ) (resp. Kom(I )).

Fact: The evident functor

S ′−1K+(I )→ D+(A )

is an equivalence. Here the ‘+’ superscript denotes complexes that
are bounded below.
Let i be the inverse to this functor. That is, if X ∈ D(A ), then iX
is a resolution of X by f∗-injective objects.
The right derived functor Rf∗ : D+(A )→ D+(B) is given by the
composition

D+(A )
i−→ S ′−1K+(I )

f∗−→ S ′−1K+(B)→ D+(B).
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A universal adapted class

Let A be an abelian category.

I An object I ∈ A is injective if HomA (−, I ) is exact.

I The category A has enough injectives if for any A ∈ A there
exists a monomorphism

A ↪→ I

with I injective.

I If A has enough injectives, then the injectives form an
adapted class for HomA (X ,−).
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A universal adapted class (contd.)

I In fact, if A has enough injectives, then the injectives are
f∗-injective for any left exact functor f∗.

I Key point: If I • is a complex of injectives and X • is a
complex of objects in A such that the cohomology of X • is
zero in every degree, then every chain map X • → I • is
homotopic to zero.

I Sidenote: The above also implies that the evident functor

K+(I )→ D+(A )

is an equivalence (here I ⊆ A is the full subcategory
consisting of injectives and we are assuming that A has
enough injectives).
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So why talk about adapted classes at all?

I Let f∗ : A → B and g∗ : B → C be left exact functors
between abelian categories. Assume that there exists a
f∗-injective category I ⊆ A and a g∗-injective category
I ′ ⊆ B such that f∗I ⊆ I ′. Then

R(g∗f∗) ' Rg∗Rf∗.

Favorite examples of the importance of this are composition
of derived pushforwards, derived versions of the projection
formula, base change etc.
(In general, under some milder conditions, there is a spectral
sequence Ep,q

r = Rpg∗Rqf∗ converging to Rn(g∗f∗), here Ri?
denotes H i (R?)).

I There may not be enough injectives (or rather, as in real life,
there may not be enough projectives in the dual setting of left
derived functors).
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What about left derived functors?

The situation is completely dual. Replace the word injective with
projective and make all the ‘morally obvious’ changes.
Or, if you are so inclined, systematically work with opposite
categories.
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Toy example
Let A be the algebra of 2× 2 matrices over C.

A =

{(
a b
0 c

)
| a, b, c ∈ C

}
.

Work with finite dimensional A-modules.

V1 = C− span{v1},
(

a b
0 c

)
· v1 = av1

V2 = C− span{v2},
(

a b
0 c

)
· v2 = cv2

Both V1 and V2 are simple modules. In fact, they are all the
simple A-modules.

P = C−span{v1, v2}
(

a b
0 c

)
·v1 = av1

(
a b
0 c

)
·v2 = bv1+cv2

As an A-module, A decomposes as

A ' V1 ⊕ P
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Toy example contd.

In particular V1 and P are projective.

So

0→ V1 → P → V2 → 0

is a projective resolution of V2. If X is any A-module, then, by
definition, RHom(V2,X ) is the complex

0→ Hom(P,X )→ Hom(V1,X )→ 0

Take X = V1 to get that RHom(V2,V1) is the complex

0→ Hom(P,V1)→ Hom(V1,V1)→ 0

which is
0→ 0→ C→ 0
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