An Introduction to Derived and Triangulated Categories

Rollo Jenkins, Rahbar Virk

May 25, 2010

The Category of Complexes

To construct the derived category of a category \mathscr{A} we need \mathscr{A} to be Abelian.

The Category of Complexes

To construct the derived category of a category \mathscr{A} we need \mathscr{A} to be Abelian.

Definition
Let \mathscr{A} be an Abelian category. The category $\operatorname{Kom}(\mathscr{A})$ has

- objects: chain complexes of objects of \mathscr{A}
- morphisms: chain complex maps.

Quasi-Isomorphisms

Definition

Let f^{\bullet} be a morphism in $\operatorname{Kom}(\mathscr{A})$ between two complexes A^{\bullet} and B^{\bullet}. Then f^{\bullet} is a quasi-isomorphism or quis if $H^{*}\left(f^{\bullet}\right)$ is an isomorphism.

Quasi-Isomorphisms

Definition

Let f^{\bullet} be a morphism in $\operatorname{Kom}(\mathscr{A})$ between two complexes A^{\bullet} and B^{\bullet}. Then f^{\bullet} is a quasi-isomorphism or quis if $H^{*}\left(f^{\bullet}\right)$ is an isomorphism.

The derived category: a universal property definition

The derived catergory of \mathscr{A} is a category $\mathcal{D}(\mathscr{A})$ such that there exists a functor

$$
Q: \operatorname{Kom}(\mathscr{A}) \longrightarrow \mathcal{D}(\mathscr{A})
$$

such that

- Q sends quasi-isomorphisms to isomorphisms
- Q satisfies a universal property with respect to this.

Homotopy Equivalence of chain complex maps

Definition

Let f^{\bullet} and g^{\bullet} be two chain maps between complexes A^{\bullet} and $B^{\boldsymbol{\bullet}}$.
Then there is an equivalence relation \sim called chain homotopy defined by
there exist a collection of morphisms

$$
\begin{gathered}
f^{\bullet} \sim g^{\bullet} \Longleftrightarrow \quad(\text { in } \mathscr{A}) s^{i}: A^{i} \longrightarrow B^{i-1} \text { such that } \\
f-g=s d+d s .
\end{gathered}
$$

Homotopy Equivalence of chain complex maps

Definition

Let f^{\bullet} and g^{\bullet} be two chain maps between complexes A^{\bullet} and B^{\bullet}.
Then there is an equivalence relation \sim called chain homotopy defined by
there exist a collection of morphisms

A chain complex map f^{\bullet} is a null-homotopy if $f^{\bullet} \sim 0$.

An overview of the construction

We construct the derived category in two steps:
$\operatorname{Kom}(\mathscr{A}) \xrightarrow{Q} \mathcal{D}(\mathscr{A})$

An overview of the construction

We construct the derived category in two steps:

- Step 1- Factor out null-homotopies to form the category $\mathcal{K}(\mathscr{A})$

An overview of the construction

We construct the derived category in two steps:

- Step 1- Factor out null-homotopies to form the category $\mathcal{K}(\mathscr{A})$
- Step 2- Localise at the collection of quasi-isomorphisms.

Additive and Abelian Categories

Definition

A category \mathscr{A} is additive if you can 'add and subtract morphisms nicely', that is,

- for any two objects A and B in $\mathscr{A}, \operatorname{Hom}_{\mathscr{A}}(A, B)$ is an Abelian group
- the addition in each such group distributes over the composition of morphisms
- finite products exist.

Additive and Abelian Categories

Definition

A category \mathscr{A} is additive if you can 'add and subtract morphisms nicely', that is,

- for any two objects A and B in $\mathscr{A}, \operatorname{Hom}_{\mathscr{A}}(A, B)$ is an Abelian group
- the addition in each such group distributes over the composition of morphisms
- finite products exist.

A functor $F: \mathscr{A} \longrightarrow \mathscr{B}$ between two additive categories is additive if $F(f)+F(g)=F(f+g)$ for all morphisms f, g in \mathscr{A} wherever $f+g$ is defined.

Additive and Abelian Categories

Definition

A category \mathscr{A} is additive if you can 'add and subtract morphisms nicely', that is,

- for any two objects A and B in $\mathscr{A}, \operatorname{Hom}_{\mathscr{A}}(A, B)$ is an Abelian group
- the addition in each such group distributes over the composition of morphisms
- finite products exist.

A functor $F: \mathscr{A} \longrightarrow \mathscr{B}$ between two additive categories is additive if $F(f)+F(g)=F(f+g)$ for all morphisms f, g in \mathscr{A} wherever $f+g$ is defined.

An additive category is Abelian if it has kernels and cokernels and every mono is some kernel and every epi is some cokernel.

The homotopy category

Definition

Let \mathscr{A} be an Abelian category. The category $\mathcal{K}(\mathscr{A})$ has

- objects: chain complexes of objects of \mathscr{A}
- morphisms: chain complex maps modulo \sim.

The homotopy category

Definition

Let \mathscr{A} be an Abelian category. The category $\mathcal{K}(\mathscr{A})$ has

- objects: chain complexes of objects of \mathscr{A}
- morphisms: chain complex maps modulo \sim.
$\mathcal{K}(\mathscr{A})$ is an additive category and the natural functor which identifies homotopic maps is additive.
$\mathcal{K}(\mathscr{A})$ has some extra structure which we will abstract to define what we call a triangulated category.

Translation and Cones

Definition

In $\operatorname{Kom}(\mathscr{A})$ and $\mathcal{K}(\mathscr{A})$ we have a functor that takes a complex A^{\bullet} and shifts the complex k times by degree.

For example, $A[1]$ denotes the shifted 'to the left' complex A^{\bullet} with $n^{\text {th }}$ degree A^{n+1}. The image of a morphism f is written $f[1]$.

Given any chain map $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ we define Cone (f) the cone of f to be the complex with $n^{\text {th }}$ degree $A^{n+1} \oplus B^{n}$ and differential \tilde{d}, defined by

$$
\begin{gathered}
A^{n+1} \oplus B^{n} \longrightarrow A^{n+2} \oplus B^{n+1} \\
(a, b) \longmapsto(d(a), d(b)-f(a))
\end{gathered}
$$

Triangles

Given any chain map $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ we get a short exact sequence of chain complexes defined by

$$
\begin{aligned}
b \longmapsto & (0, b) \\
& (a, b) \longmapsto-a
\end{aligned}
$$

This is our model for an abstract triangle.

Triangles

Given any chain map $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ we get a short exact sequence of chain complexes defined by

$$
\begin{aligned}
0 \longrightarrow & B^{\bullet \bullet} \stackrel{f}{\hookrightarrow} \\
b \longmapsto & \text { Cone }(f) \xrightarrow{\delta} A[1] \longrightarrow 0 \\
& (0, b) \\
& (a, b) \longmapsto
\end{aligned}
$$

This is our model for an abstract triangle.
The dotted line above is not strictly a map of chain complexes because of the shift of degree.

Abstract triangles

Definition
A standard triangle is a triple (f, ι, δ) of morphisms in $\mathcal{K}(\mathscr{A})$, where ι and δ are defined as above and depend on f.

Abstract triangles

Definition

A standard triangle is a triple (f, ι, δ) of morphisms in $\mathcal{K}(\mathscr{A})$, where ι and δ are defined as above and depend on f.

An distinguished triangle is a triple ($A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$) of morphisms in $\mathcal{K}(\mathscr{A})$ such that there exists a morphism f and isomorphisms a, b, c such that the following diagram commutes in $\mathcal{K}(\mathscr{A})$ (that is, up to chain homotopy)

In the above case we say that the triangle (u, v, w) is isomorphic to the triangle (f, ι, δ).

Triangulated categories

The definition of a triangulated category is modelled on $\mathcal{K}(\mathscr{A})$, so $\mathcal{K}(\mathscr{A})$ is definitely a triangulated category.

Triangulated categories

The definition of a triangulated category is modelled on $\mathcal{K}(\mathscr{A})$, so $\mathcal{K}(\mathscr{A})$ is definitely a triangulated category.
Definition
An additive category \mathscr{K} is called a triangulated category if it has an automorphism $T: \mathscr{K} \longrightarrow \mathscr{K}$ called the translation functor and a distinguished family of triangles
$\{(A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T A)\}$ called distinguished triangles satifying the following four axioms:

Triangulated categories

The definition of a triangulated category is modelled on $\mathcal{K}(\mathscr{A})$, so $\mathcal{K}(\mathscr{A})$ is definitely a triangulated category.

Definition

An additive category \mathscr{K} is called a triangulated category if it has an automorphism $T: \mathscr{K} \longrightarrow \mathscr{K}$ called the translation functor and a distinguished family of triangles $\{(A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T A)\}$ called distinguished triangles satifying the following four axioms:

TR1 Every morphism belongs to some distinguished triangle: Given a morphism $A \xrightarrow{f} B$, there exists a distinguished triangle $(A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} T A)$ and distinguishedness of triangles is preserved by isomorphisms of triangles. Also (id, 0,0) is a distinguished triangle.

The rotation axiom

TR2 Distinguished triangles can be 'rotated', that is, if
$(A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T A)$ is a distinguished triangle then

$$
(B \xrightarrow{v} C \xrightarrow{w} T A \xrightarrow{-T u} T B)
$$

and

$$
\left(T^{-1} C \xrightarrow{-T^{-1} w} A \xrightarrow{u} C\right)
$$

are distinguished.

The morphisms axiom

TR3 Given any two distinguished triangles
$(A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T A)$ and $\left(A^{\prime} \xrightarrow{u^{\prime}} B^{\prime} \xrightarrow{v^{\prime}} C^{\prime} \xrightarrow{w^{\prime}} T A^{\prime}\right)$ and morphisms f and g such that the following diagram commutes

The morphisms axiom

TR3 Given any two distinguished triangles
$(A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T A)$ and $\left(A^{\prime} \xrightarrow{u^{\prime}} B^{\prime} \xrightarrow{v^{\prime}} C^{\prime} \xrightarrow{w^{\prime}} T A^{\prime}\right)$ and morphisms f and g such that the following diagram commutes

then there exists a morphism h which makes the diagram commute. Note that this is not unique.

The octahedral axiom

TR4 The octahedral axiom.

The octahedral axiom

TR4 The octahedral axiom.

The octahedral axiom

TR4 The octahedral axiom.

What's so good about triangulated categories?

In general, passing from $\operatorname{Kom}(\mathscr{A})$ to $\mathcal{K}(\mathscr{A})$ removes the Abelian structure of the category.

Exact triangles are good substitutes for the short exact sequences that we have lost.

What's so good about triangulated categories?

In general, passing from $\operatorname{Kom}(\mathscr{A})$ to $\mathcal{K}(\mathscr{A})$ removes the Abelian structure of the category.

Exact triangles are good substitutes for the short exact sequences that we have lost. A distinguished triangle
$(A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T A$) in a triangulated category \mathscr{K} induces a long exact sequence on the level of cohomology

$$
\cdots \xrightarrow{w^{*}} H^{i}(A) \xrightarrow{u^{*}} H^{i}(B) \xrightarrow{v^{*}} H^{i}(C) \xrightarrow{w^{*}} H^{i+1}(A) \xrightarrow{u^{*}} \cdots
$$

What's so good about triangulated categories?

In general, passing from $\operatorname{Kom}(\mathscr{A})$ to $\mathcal{K}(\mathscr{A})$ removes the Abelian structure of the category.

Exact triangles are good substitutes for the short exact sequences that we have lost. A distinguished triangle
$(A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T A$) in a triangulated category \mathscr{K} induces a long exact sequence on the level of cohomology

$$
\cdots \xrightarrow{w^{*}} H^{i}(A) \xrightarrow{u^{*}} H^{i}(B) \xrightarrow{v^{*}} H^{i}(C) \xrightarrow{w^{*}} H^{i+1}(A) \xrightarrow{u^{*}} \cdots
$$

Localisation

Definition

Let S be a collection of morphisms in a category \mathscr{C}. We define the localisation of \mathscr{C} with respect to S to be a category $S^{-1} \mathscr{C}$ with a funtor

$$
q: \mathscr{C} \longrightarrow S^{-1} \mathscr{C}
$$

such that

- For all $s \in S, q(s)$ is an isomorphism
- q satisfies a universal property with respect to this.

Examples of Localisations

Examples of Localisations

$\operatorname{Kom}(\mathscr{A}) \longrightarrow \mathcal{K}(\mathscr{A})$ universally makes homotopy equivalences into isomorphisms

$\operatorname{Kom}(\mathscr{A}) \longrightarrow \mathcal{D}(\mathscr{A})$
universally makes
quasi-isomorphisms

$$
\Longleftrightarrow \mathcal{D}(\mathscr{A})=\{\text { quis's }\}^{-1} \operatorname{Kom}(\mathscr{A})
$$

into isomorphisms

However, the following definition is better.

The derived category

Definition

Let Σ be the set of all quasi-isomorphisms in $\mathcal{K}(\mathscr{A})$ (not $\operatorname{Kom}(\mathscr{A})$) then we define the derived category of \mathscr{A} to be the localisation of $\mathcal{K}(\mathscr{A})$ with respect to Σ,

$$
\mathscr{D}(\mathscr{A}):=\Sigma^{-1} \mathcal{K}(\mathscr{A}) .
$$

We still haven't shown that the derived category even exists!

Multiplicative systems

Definition

A collection S of morphisms in a category \mathscr{C} is called a multiplicative system if:

MS1 S is closed under composition and contains all identity morphisms.

MS2 If $X \underset{g}{\stackrel{f}{=}} Y$ are morphisms in \mathscr{C} then

$$
s f=s g \text { for some } s \Longleftrightarrow f t=g t \text { for some } t
$$

The Øre condition

MS3 If $Z \xrightarrow{t} Y$ is in S, then for every $X \xrightarrow{g} Y$ in \mathscr{C} there exists maps making the diagram below commute

In practise, we are 'rewriting' $t^{-1} g$ as $f s^{-1}$.

The Gabriel-Zisman Theorem

If S is a locally small multiplicative system of morphisms in \mathscr{C} then $S^{-1} \mathscr{C}$ exists

The Gabriel-Zisman Theorem

If S is a locally small multiplicative system of morphisms in \mathscr{C} then $S^{-1} \mathscr{C}$ exists

If S is a multiplicative system, then a fraction $s^{-1} f$ written

is a morphism in $S^{-1} \mathscr{C}$ exactly when $s \in S$.

The Gabriel-Zisman Theorem

If S is a locally small multiplicative system of morphisms in \mathscr{C} then $S^{-1} \mathscr{C}$ exists

If S is a multiplicative system, then a fraction $s^{-1} f$ written

is a morphism in $S^{-1} \mathscr{C}$ exactly when $s \in S$.

The Gabriel-Zisman Theorem

If S is a locally small multiplicative system of morphisms in \mathscr{C} then $S^{-1} \mathscr{C}$ exists

If S is a multiplicative system, then a fraction $s^{-1} f$ written

is a morphism in $S^{-1} \mathscr{C}$ exactly when $s \in S$.
Two fractions are equivalent if there exists a third which maps into both:

The Gabriel-Zisman Theorem

If S is a locally small multiplicative system of morphisms in \mathscr{C} then $S^{-1} \mathscr{C}$ exists

If S is a multiplicative system, then a fraction $s^{-1} f$ written

is a morphism in $S^{-1} \mathscr{C}$ exactly when $s \in S$.
Two fractions are equivalent if there exists a third which maps into both:

Conclusion

The set of quasi-isomorphisms in $\mathcal{K}(\mathscr{A})$ is a multiplicative system.
Thus, by passing to $\mathcal{K}(\mathscr{A})$ we not only get that $\mathcal{D}(\mathscr{A})$ exists, but are able to manipulate morphisms more concretely using the Øre condition.

Derived functors - motivation

- Some of the most important additive functors on abelian categories, such as

$$
\text { Hom, } \otimes, \Gamma,
$$

are not exact.

Derived functors - motivation

- Some of the most important additive functors on abelian categories, such as

$$
\text { Hom, } \otimes, \Gamma,
$$

are not exact.

- To restore their 'exactness' we have to redefine them.

Derived functors - motivation

- Some of the most important additive functors on abelian categories, such as

$$
\text { Hom, } \otimes, \Gamma \text {, }
$$

are not exact.

- To restore their 'exactness' we have to redefine them.
- More explicitly, let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ be a left exact functor between abelian categories (recall that f_{*} being left exact means that if $0 \rightarrow X \rightarrow Y \rightarrow Z$ is exact in \mathscr{A}, then $0 \rightarrow f_{*} X \rightarrow f_{*} Y \rightarrow f_{*} Z$ is exact in $\left.\mathscr{B}\right)$.

Derived functors - motivation

- Some of the most important additive functors on abelian categories, such as

$$
\text { Hom, } \otimes, \Gamma \text {, }
$$

are not exact.

- To restore their 'exactness' we have to redefine them.
- More explicitly, let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ be a left exact functor between abelian categories (recall that f_{*} being left exact means that if $0 \rightarrow X \rightarrow Y \rightarrow Z$ is exact in \mathscr{A}, then $0 \rightarrow f_{*} X \rightarrow f_{*} Y \rightarrow f_{*} Z$ is exact in $\left.\mathscr{B}\right)$.
- We want to define an 'extension' of this functor:

$$
\mathbf{R} f_{*}: D(\mathscr{A}) \rightarrow D(\mathscr{B})
$$

called the right derived functor of f_{*}.

Derived functors - motivation

- Some of the most important additive functors on abelian categories, such as

$$
\text { Hom, } \otimes, \Gamma \text {, }
$$

are not exact.

- To restore their 'exactness' we have to redefine them.
- More explicitly, let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ be a left exact functor between abelian categories (recall that f_{*} being left exact means that if $0 \rightarrow X \rightarrow Y \rightarrow Z$ is exact in \mathscr{A}, then $0 \rightarrow f_{*} X \rightarrow f_{*} Y \rightarrow f_{*} Z$ is exact in $\left.\mathscr{B}\right)$.
- We want to define an 'extension' of this functor:

$$
\mathbf{R} f_{*}: D(\mathscr{A}) \rightarrow D(\mathscr{B})
$$

called the right derived functor of f_{*}.

- The functor $\mathbf{R} f_{*}$ will be exact in the sense that it will map distinguished triangles to distinguished triangles.

Derived functors - the formal definition

Let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ be an additive functor. The derived functor is the data of a triangulated functor $F: D(\mathscr{A}) \rightarrow D(\mathscr{B})$ and a natural transformation

$$
s: \operatorname{loc} \circ f_{*} \rightarrow F \circ \operatorname{loc}
$$

such that the induced morphism

$$
\operatorname{Hom}(F, G) \rightarrow \operatorname{Hom}\left(\operatorname{loc} \circ f_{*}, G \circ \operatorname{loc}\right)
$$

is an isomorphism for any triangulated functor $G: D(\mathscr{A}) \rightarrow D(\mathscr{B})$. Here loc denotes the localization functor.

Adapted classes

Let

$$
f_{*}: \mathscr{A} \rightarrow \mathscr{B}
$$

be a left exact functor between abelian categories.

Adapted classes

Let

$$
f_{*}: \mathscr{A} \rightarrow \mathscr{B}
$$

be a left exact functor between abelian categories.
A full additive subcategory $\mathscr{I} \subset \mathscr{A}$ is f_{*}-injective or an adapted class for f_{*} if:

Adapted classes

Let

$$
f_{*}: \mathscr{A} \rightarrow \mathscr{B}
$$

be a left exact functor between abelian categories.
A full additive subcategory $\mathscr{I} \subset \mathscr{A}$ is f_{*}-injective or an adapted class for f_{*} if:

- for every object $X \in \mathscr{A}$ there is a monomorphism $X \hookrightarrow I$ with $I \in \mathscr{I}$;

Adapted classes

Let

$$
f_{*}: \mathscr{A} \rightarrow \mathscr{B}
$$

be a left exact functor between abelian categories.
A full additive subcategory $\mathscr{I} \subset \mathscr{A}$ is f_{*}-injective or an adapted class for f_{*} if:

- for every object $X \in \mathscr{A}$ there is a monomorphism $X \hookrightarrow I$ with $I \in \mathscr{I}$;
- if $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ is an exact sequence in \mathscr{A}, and if X, Y are in \mathscr{I}, then Z is also in \mathscr{I};

Adapted classes

Let

$$
f_{*}: \mathscr{A} \rightarrow \mathscr{B}
$$

be a left exact functor between abelian categories.
A full additive subcategory $\mathscr{I} \subset \mathscr{A}$ is f_{*}-injective or an adapted class for f_{*} if:

- for every object $X \in \mathscr{A}$ there is a monomorphism $X \hookrightarrow I$ with $I \in \mathscr{I}$;
- if $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ is an exact sequence in \mathscr{A}, and if X, Y are in \mathscr{I}, then Z is also in \mathscr{I};
- if $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ is an exact sequence in \mathscr{A} with $X, Y, Z \in \mathscr{I}$, then $0 \rightarrow f_{*} X \rightarrow f_{*} Y \rightarrow f_{*} Z \rightarrow 0$ is exact in \mathscr{B}.

What's the point?

- The first axiom allows us to replace an object $X \in \mathscr{A}$ with a 'resolution' of X by f_{*}-injective objects: embed X into I, take the cokernel and embed this into another f_{*}-injective object, wash, rinse, repeat.

What's the point?

- The first axiom allows us to replace an object $X \in \mathscr{A}$ with a 'resolution' of X by f_{*}-injective objects: embed X into I, take the cokernel and embed this into another f_{*}-injective object, wash, rinse, repeat.
- The second axiom (along with the first) ensures that any (bounded below) complex of objects in \mathscr{A} is quasi-isomorphic to a complex of f_{*}-injective objects.

What's the point?

- The first axiom allows us to replace an object $X \in \mathscr{A}$ with a 'resolution' of X by f_{*}-injective objects: embed X into I, take the cokernel and embed this into another f_{*}-injective object, wash, rinse, repeat.
- The second axiom (along with the first) ensures that any (bounded below) complex of objects in \mathscr{A} is quasi-isomorphic to a complex of f_{*}-injective objects.
- The third axiom ensures that f_{*} preserves quasi-isomorphisms between f_{*}-injective objects.

What's the point?

- The first axiom allows us to replace an object $X \in \mathscr{A}$ with a 'resolution' of X by f_{*}-injective objects: embed X into I, take the cokernel and embed this into another f_{*}-injective object, wash, rinse, repeat.
- The second axiom (along with the first) ensures that any (bounded below) complex of objects in \mathscr{A} is quasi-isomorphic to a complex of f_{*}-injective objects.
- The third axiom ensures that f_{*} preserves quasi-isomorphisms between f_{*}-injective objects.

For $X \in D(\mathscr{A})$, replace X by a resolution of f_{*}-injective objects and apply f_{*} to this resolution. This gives the right derived functor of f_{*}.

What's the point?

- The first axiom allows us to replace an object $X \in \mathscr{A}$ with a 'resolution' of X by f_{*}-injective objects: embed X into I, take the cokernel and embed this into another f_{*}-injective object, wash, rinse, repeat.
- The second axiom (along with the first) ensures that any (bounded below) complex of objects in \mathscr{A} is quasi-isomorphic to a complex of f_{*}-injective objects.
- The third axiom ensures that f_{*} preserves quasi-isomorphisms between f_{*}-injective objects.

For $X \in D(\mathscr{A})$, replace X by a resolution of f_{*}-injective objects and apply f_{*} to this resolution. This gives the right derived functor of f_{*}.
More precisely:

The formal construction

Let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ be a left exact functor. Let $\mathscr{I} \subseteq \mathscr{A}$ be a f_{*}-injective category. Let S (resp. S^{\prime}) be quasi-isomorphisms in $\operatorname{Kom}(\mathscr{A})($ resp. $\operatorname{Kom}(\mathscr{I}))$.

The formal construction

Let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ be a left exact functor. Let $\mathscr{I} \subseteq \mathscr{A}$ be a f_{*}-injective category. Let S (resp. S^{\prime}) be quasi-isomorphisms in $\operatorname{Kom}(\mathscr{A})($ resp. $\operatorname{Kom}(\mathscr{I}))$.
Fact: The evident functor

$$
S^{\prime-1} \mathcal{K}^{+}(\mathscr{I}) \rightarrow D^{+}(\mathscr{A})
$$

is an equivalence. Here the ' + ' superscript denotes complexes that are bounded below.

The formal construction

Let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ be a left exact functor. Let $\mathscr{I} \subseteq \mathscr{A}$ be a f_{*}-injective category. Let S (resp. S^{\prime}) be quasi-isomorphisms in $\operatorname{Kom}(\mathscr{A})($ resp. $\operatorname{Kom}(\mathscr{I}))$.
Fact: The evident functor

$$
S^{\prime-1} \mathcal{K}^{+}(\mathscr{I}) \rightarrow D^{+}(\mathscr{A})
$$

is an equivalence. Here the ' + ' superscript denotes complexes that are bounded below.
Let \mathbf{i} be the inverse to this functor. That is, if $X \in D(\mathscr{A})$, then $\mathbf{i} X$ is a resolution of X by f_{*}-injective objects.

The formal construction

Let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ be a left exact functor. Let $\mathscr{I} \subseteq \mathscr{A}$ be a f_{*}-injective category. Let S (resp. S^{\prime}) be quasi-isomorphisms in $\operatorname{Kom}(\mathscr{A})($ resp. $\operatorname{Kom}(\mathscr{I}))$.
Fact: The evident functor

$$
S^{\prime-1} \mathcal{K}^{+}(\mathscr{I}) \rightarrow D^{+}(\mathscr{A})
$$

is an equivalence. Here the ' + ' superscript denotes complexes that are bounded below.
Let \mathbf{i} be the inverse to this functor. That is, if $X \in D(\mathscr{A})$, then $\mathbf{i} X$ is a resolution of X by f_{*}-injective objects.
The right derived functor $\mathbf{R} f_{*}: D^{+}(\mathscr{A}) \rightarrow D^{+}(\mathscr{B})$ is given by the composition

$$
D^{+}(\mathscr{A}) \xrightarrow{\mathbf{i}} S^{\prime-1} \mathcal{K}^{+}(\mathscr{I}) \xrightarrow{f_{*}} S^{\prime-1} \mathcal{K}^{+}(\mathscr{B}) \rightarrow D^{+}(\mathscr{B}) .
$$

A universal adapted class

Let \mathscr{A} be an abelian category.

- An object $I \in \mathscr{A}$ is injective if $\operatorname{Hom}_{\mathscr{A}}(-, I)$ is exact.

A universal adapted class

Let \mathscr{A} be an abelian category.

- An object $I \in \mathscr{A}$ is injective if $\operatorname{Hom}_{\mathscr{A}}(-, I)$ is exact.
- The category \mathscr{A} has enough injectives if for any $A \in \mathscr{A}$ there exists a monomorphism

$$
A \hookrightarrow I
$$

with I injective.

A universal adapted class

Let \mathscr{A} be an abelian category.

- An object $I \in \mathscr{A}$ is injective if $\operatorname{Hom}_{\mathscr{A}}(-, I)$ is exact.
- The category \mathscr{A} has enough injectives if for any $A \in \mathscr{A}$ there exists a monomorphism

$$
A \hookrightarrow I
$$

with I injective.

- If \mathscr{A} has enough injectives, then the injectives form an adapted class for $\operatorname{Hom}_{\mathscr{A}}(X,-)$.

A universal adapted class (contd.)

- In fact, if \mathscr{A} has enough injectives, then the injectives are f_{*}-injective for any left exact functor f_{*}.

A universal adapted class (contd.)

- In fact, if \mathscr{A} has enough injectives, then the injectives are f_{*}-injective for any left exact functor f_{*}.
- Key point: If I^{\bullet} is a complex of injectives and X^{\bullet} is a complex of objects in \mathscr{A} such that the cohomology of X^{\bullet} is zero in every degree, then every chain map $X^{\bullet} \rightarrow I^{\bullet}$ is homotopic to zero.

A universal adapted class (contd.)

- In fact, if \mathscr{A} has enough injectives, then the injectives are f_{*}-injective for any left exact functor f_{*}.
- Key point: If I^{\bullet} is a complex of injectives and X^{\bullet} is a complex of objects in \mathscr{A} such that the cohomology of X^{\bullet} is zero in every degree, then every chain map $X^{\bullet} \rightarrow I^{\bullet}$ is homotopic to zero.
- Sidenote: The above also implies that the evident functor

$$
\mathcal{K}^{+}(\mathscr{I}) \rightarrow D^{+}(\mathscr{A})
$$

is an equivalence (here $\mathscr{I} \subseteq \mathscr{A}$ is the full subcategory consisting of injectives and we are assuming that \mathscr{A} has enough injectives).

So why talk about adapted classes at all?

So why talk about adapted classes at all?

- Let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ and $g_{*}: \mathscr{B} \rightarrow \mathscr{C}$ be left exact functors between abelian categories. Assume that there exists a f_{*}-injective category $\mathscr{I} \subseteq \mathscr{A}$ and a g_{*}-injective category $\mathscr{I}^{\prime} \subseteq \mathscr{B}$ such that $f_{*} \mathscr{I} \subseteq \mathscr{I}^{\prime}$.

So why talk about adapted classes at all?

- Let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ and $g_{*}: \mathscr{B} \rightarrow \mathscr{C}$ be left exact functors between abelian categories. Assume that there exists a f_{*}-injective category $\mathscr{I} \subseteq \mathscr{A}$ and a g_{*}-injective category $\mathscr{I}^{\prime} \subseteq \mathscr{B}$ such that $f_{*} \mathscr{I} \subseteq \mathscr{I}^{\prime}$. Then

$$
\mathbf{R}\left(g_{*} f_{*}\right) \simeq \mathbf{R} g_{*} \mathbf{R} f_{*}
$$

So why talk about adapted classes at all?

- Let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ and $g_{*}: \mathscr{B} \rightarrow \mathscr{C}$ be left exact functors between abelian categories. Assume that there exists a f_{*}-injective category $\mathscr{I} \subseteq \mathscr{A}$ and a g_{*}-injective category $\mathscr{I}^{\prime} \subseteq \mathscr{B}$ such that $f_{*} \mathscr{I} \subseteq \mathscr{I}^{\prime}$. Then

$$
\mathbf{R}\left(g_{*} f_{*}\right) \simeq \mathbf{R} g_{*} \mathbf{R} f_{*}
$$

Favorite examples of the importance of this are composition of derived pushforwards, derived versions of the projection formula, base change etc.

So why talk about adapted classes at all?

- Let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ and $g_{*}: \mathscr{B} \rightarrow \mathscr{C}$ be left exact functors between abelian categories. Assume that there exists a f_{*}-injective category $\mathscr{I} \subseteq \mathscr{A}$ and a g_{*}-injective category $\mathscr{I}^{\prime} \subseteq \mathscr{B}$ such that $f_{*} \mathscr{I} \subseteq \mathscr{I}^{\prime}$. Then

$$
\mathbf{R}\left(g_{*} f_{*}\right) \simeq \mathbf{R} g_{*} \mathbf{R} f_{*} .
$$

Favorite examples of the importance of this are composition of derived pushforwards, derived versions of the projection formula, base change etc.
(In general, under some milder conditions, there is a spectral sequence $E_{r}^{p, q}=\mathbf{R}^{p} g_{*} \mathbf{R}^{q} f_{*}$ converging to $\mathbf{R}^{n}\left(g_{*} f_{*}\right)$, here \mathbf{R}^{i} ? denotes $H^{i}(\mathbf{R}$?)).

So why talk about adapted classes at all?

- Let $f_{*}: \mathscr{A} \rightarrow \mathscr{B}$ and $g_{*}: \mathscr{B} \rightarrow \mathscr{C}$ be left exact functors between abelian categories. Assume that there exists a f_{*}-injective category $\mathscr{I} \subseteq \mathscr{A}$ and a g_{*}-injective category $\mathscr{I}^{\prime} \subseteq \mathscr{B}$ such that $f_{*} \mathscr{I} \subseteq \mathscr{I}^{\prime}$. Then

$$
\mathbf{R}\left(g_{*} f_{*}\right) \simeq \mathbf{R} g_{*} \mathbf{R} f_{*} .
$$

Favorite examples of the importance of this are composition of derived pushforwards, derived versions of the projection formula, base change etc.
(In general, under some milder conditions, there is a spectral sequence $E_{r}^{p, q}=\mathbf{R}^{p} g_{*} \mathbf{R}^{q} f_{*}$ converging to $\mathbf{R}^{n}\left(g_{*} f_{*}\right)$, here \mathbf{R}^{i} ? denotes $H^{i}(\mathbf{R}$?)).

- There may not be enough injectives (or rather, as in real life, there may not be enough projectives in the dual setting of left derived functors).

What about left derived functors?

What about left derived functors?

The situation is completely dual. Replace the word injective with projective and make all the 'morally obvious' changes.

What about left derived functors?

The situation is completely dual. Replace the word injective with projective and make all the 'morally obvious' changes.
Or, if you are so inclined, systematically work with opposite categories.

Toy example

Let A be the algebra of 2×2 matrices over \mathbb{C}.

$$
A=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\} .
$$

Toy example

Let A be the algebra of 2×2 matrices over \mathbb{C}.

$$
A=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\} .
$$

Work with finite dimensional A-modules.

Toy example

Let A be the algebra of 2×2 matrices over \mathbb{C}.

$$
A=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\} .
$$

Work with finite dimensional A-modules.

$$
V_{1}=\mathbb{C}-\operatorname{span}\left\{v_{1}\right\}, \quad\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{1}=a v_{1}
$$

Toy example

Let A be the algebra of 2×2 matrices over \mathbb{C}.

$$
A=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\} .
$$

Work with finite dimensional A-modules.

$$
\begin{array}{ll}
V_{1}=\mathbb{C}-\operatorname{span}\left\{v_{1}\right\}, & \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{1}=a v_{1} \\
V_{2}=\mathbb{C}-\operatorname{span}\left\{v_{2}\right\}, & \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{2}=c v_{2}
\end{array}
$$

Toy example

Let A be the algebra of 2×2 matrices over \mathbb{C}.

$$
A=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\} .
$$

Work with finite dimensional A-modules.

$$
\begin{array}{ll}
V_{1}=\mathbb{C}-\operatorname{span}\left\{v_{1}\right\}, & \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{1}=a v_{1} \\
V_{2}=\mathbb{C}-\operatorname{span}\left\{v_{2}\right\}, & \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{2}=c v_{2}
\end{array}
$$

Both V_{1} and V_{2} are simple modules. In fact, they are all the simple A-modules.

Toy example

Let A be the algebra of 2×2 matrices over \mathbb{C}.

$$
A=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\} .
$$

Work with finite dimensional A-modules.

$$
\begin{array}{ll}
V_{1}=\mathbb{C}-\operatorname{span}\left\{v_{1}\right\}, & \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{1}=a v_{1} \\
V_{2}=\mathbb{C}-\operatorname{span}\left\{v_{2}\right\}, & \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{2}=c v_{2}
\end{array}
$$

Both V_{1} and V_{2} are simple modules. In fact, they are all the simple A-modules.

$$
P=\mathbb{C}-\operatorname{span}\left\{v_{1}, v_{2}\right\} \quad\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{1}=a v_{1} \quad\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{2}=b v_{1}+c v_{2}
$$

Toy example

Let A be the algebra of 2×2 matrices over \mathbb{C}.

$$
A=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\} .
$$

Work with finite dimensional A-modules.

$$
\begin{array}{ll}
V_{1}=\mathbb{C}-\operatorname{span}\left\{v_{1}\right\}, & \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{1}=a v_{1} \\
V_{2}=\mathbb{C}-\operatorname{span}\left\{v_{2}\right\}, & \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{2}=c v_{2}
\end{array}
$$

Both V_{1} and V_{2} are simple modules. In fact, they are all the simple A-modules.

$$
P=\mathbb{C}-\operatorname{span}\left\{v_{1}, v_{2}\right\} \quad\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{1}=a v_{1} \quad\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot v_{2}=b v_{1}+c v_{2}
$$

As an A-module, A decomposes as

$$
A \simeq V_{1} \oplus P
$$

Toy example contd.

In particular V_{1} and P are projective.

Toy example contd.

In particular V_{1} and P are projective. So

$$
0 \rightarrow V_{1} \rightarrow P \rightarrow V_{2} \rightarrow 0
$$

is a projective resolution of V_{2}.

Toy example contd.

In particular V_{1} and P are projective. So

$$
0 \rightarrow V_{1} \rightarrow P \rightarrow V_{2} \rightarrow 0
$$

is a projective resolution of V_{2}. If X is any A-module, then, by definition, $\mathrm{RHom}\left(V_{2}, X\right)$ is the complex

$$
0 \rightarrow \operatorname{Hom}(P, X) \rightarrow \operatorname{Hom}\left(V_{1}, X\right) \rightarrow 0
$$

Toy example contd.

In particular V_{1} and P are projective. So

$$
0 \rightarrow V_{1} \rightarrow P \rightarrow V_{2} \rightarrow 0
$$

is a projective resolution of V_{2}. If X is any A-module, then, by definition, $\mathrm{RHom}\left(V_{2}, X\right)$ is the complex

$$
0 \rightarrow \operatorname{Hom}(P, X) \rightarrow \operatorname{Hom}\left(V_{1}, X\right) \rightarrow 0
$$

Take $X=V_{1}$ to get that $\mathbf{R H o m}\left(V_{2}, V_{1}\right)$ is the complex

$$
0 \rightarrow \operatorname{Hom}\left(P, V_{1}\right) \rightarrow \operatorname{Hom}\left(V_{1}, V_{1}\right) \rightarrow 0
$$

Toy example contd.

In particular V_{1} and P are projective. So

$$
0 \rightarrow V_{1} \rightarrow P \rightarrow V_{2} \rightarrow 0
$$

is a projective resolution of V_{2}. If X is any A-module, then, by definition, $\mathbf{R H o m}\left(V_{2}, X\right)$ is the complex

$$
0 \rightarrow \operatorname{Hom}(P, X) \rightarrow \operatorname{Hom}\left(V_{1}, X\right) \rightarrow 0
$$

Take $X=V_{1}$ to get that $\mathbf{R H o m}\left(V_{2}, V_{1}\right)$ is the complex

$$
0 \rightarrow \operatorname{Hom}\left(P, V_{1}\right) \rightarrow \operatorname{Hom}\left(V_{1}, V_{1}\right) \rightarrow 0
$$

which is

$$
0 \rightarrow 0 \rightarrow \mathbb{C} \rightarrow 0
$$

