A localization of modules with a Verma flag

Johannes Kuebel Narendiran Sivanesan

University of Freiburg

Sheaves in Representation Theory Isle of Skye, Scotland, 23-28 May 2010

・ロン ・回と ・ヨン ・ヨン

- 2 Localization
- 3 F-projective objects
- 4 A functor into sheaves
- 5 Relation to the Kazdhan-Lusztig conjecture

6 Bibliography

・ロン ・回と ・ヨン・

 g ⊃ b ⊃ h a semisimple Lie algebra, a Borel and a Cartan subalgebra.

イロン イロン イヨン イヨン 三日

- g ⊃ b ⊃ h a semisimple Lie algebra, a Borel and a Cartan subalgebra.
- $S := U(\mathfrak{h}) = S(\mathfrak{h}).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- g ⊃ b ⊃ h a semisimple Lie algebra, a Borel and a Cartan subalgebra.
- $S := U(\mathfrak{h}) = S(\mathfrak{h}).$
- A := S_{(0)} the localization of S at the maximal ideal generated by $\mathfrak{h}\subset S.$

イロト (部) (日) (日) (日) (日)

- g ⊃ b ⊃ h a semisimple Lie algebra, a Borel and a Cartan subalgebra.
- $S := U(\mathfrak{h}) = S(\mathfrak{h}).$
- A := S_{(0)} the localization of S at the maximal ideal generated by $\mathfrak{h}\subset S.$
- $R \supset R^+$ the root system of $\mathfrak g$ and the system of positive roots.

イロト (部) (日) (日) (日) (日)

- g ⊃ b ⊃ h a semisimple Lie algebra, a Borel and a Cartan subalgebra.
- $S := U(\mathfrak{h}) = S(\mathfrak{h}).$
- A := S_{(0)} the localization of S at the maximal ideal generated by $\mathfrak{h}\subset S.$
- $R \supset R^+$ the root system of ${\mathfrak g}$ and the system of positive roots.

イロト (部) (日) (日) (日) (日)

• For $\alpha \in \mathsf{R}^+$ we denote its coroot by α^{\vee} .

- g ⊃ b ⊃ h a semisimple Lie algebra, a Borel and a Cartan subalgebra.
- $S := U(\mathfrak{h}) = S(\mathfrak{h}).$
- A := S_{(0)} the localization of S at the maximal ideal generated by $\mathfrak{h}\subset S.$
- $R \supset R^+$ the root system of $\mathfrak g$ and the system of positive roots.

イロト (部) (日) (日) (日) (日)

- For $\alpha \in \mathsf{R}^+$ we denote its coroot by α^{\vee} .
- Let W be the Weyl group.

- g ⊃ b ⊃ h a semisimple Lie algebra, a Borel and a Cartan subalgebra.
- $S := U(\mathfrak{h}) = S(\mathfrak{h}).$
- A := S_{(0)} the localization of S at the maximal ideal generated by $\mathfrak{h}\subset S.$
- $R \supset R^+$ the root system of $\mathfrak g$ and the system of positive roots.
- For $\alpha \in \mathsf{R}^+$ we denote its coroot by α^{\vee} .
- Let W be the Weyl group.

To simplify things, we take $\lambda \in \mathfrak{h}^*$ as antidominant, integral and regular. Hence the Weyl group associated to the block of λ is just W.

イロト (部) (日) (日) (日) (日)

- g ⊃ b ⊃ h a semisimple Lie algebra, a Borel and a Cartan subalgebra.
- $S := U(\mathfrak{h}) = S(\mathfrak{h}).$
- A := S_{(0)} the localization of S at the maximal ideal generated by $\mathfrak{h}\subset S.$
- $R \supset R^+$ the root system of ${\mathfrak g}$ and the system of positive roots.
- For $\alpha \in \mathsf{R}^+$ we denote its coroot by α^{\vee} .
- Let W be the Weyl group.

To simplify things, we take $\lambda \in \mathfrak{h}^*$ as antidominant, integral and regular. Hence the Weyl group associated to the block of λ is just W.

(ロ) (四) (三) (三) (三) (三) (○) (○)

Want to associate a moment graph to the data given by $(\mathsf{R},\mathsf{R}^+,\mathsf{W})$:

•
$$\mathcal{V} := W$$

J.Kuebel - N.Sivanesan

<ロ> (四) (四) (三) (三) (三)

- $\mathcal{V} := W$
- $\mathcal{E} := \{\{x, y\} \in \mathcal{P}(\mathcal{V}) \mid \exists \beta \in \mathsf{R}^+ : x = s_\beta y \}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- $\mathcal{V} := W$
- $\mathcal{E} := \{\{x, y\} \in \mathcal{P}(\mathcal{V}) \mid \exists \beta \in \mathsf{R}^+ : x = s_\beta y \}$
- $\alpha(\{x, s_{\beta}x\}) = \beta^{\vee}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- $\mathcal{V} := \mathsf{W}$
- $\mathcal{E} := \{\{x, y\} \in \mathcal{P}(\mathcal{V}) \mid \exists \beta \in \mathsf{R}^+ : x = s_\beta y \}$
- $\alpha(\{x, s_{\beta}x\}) = \beta^{\vee}$
- We define the order by

$$w \le w' \Leftrightarrow w \cdot \lambda \le w' \cdot \lambda$$

・ロト ・四ト ・ヨト ・ヨト - ヨ

for all $w, w' \in W$.

 O^{VF}_{A,λ} denotes the subcategory of O_{A,λ} which consists of modules with a Verma flag.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- O^{VF}_{A,λ} denotes the subcategory of O_{A,λ} which consists of modules with a Verma flag.
- Subquotients of a Verma flag of $M \in \mathbb{O}_{A,\lambda}^{VF}$ are of the form

 $\Delta_A(w \cdot \lambda)$ for $w \in W$

- O^{VF}_{A,λ} denotes the subcategory of O_{A,λ} which consists of modules with a Verma flag.
- Subquotients of a Verma flag of $M \in \mathbb{O}_{A,\lambda}^{VF}$ are of the form

$$\Delta_{\mathsf{A}}(w \cdot \lambda)$$
 for $w \in \mathsf{W}$

• Z = Z(G) is the structure algebra over A.

- O^{VF}_{A,λ} denotes the subcategory of O_{A,λ} which consists of modules with a Verma flag.
- Subquotients of a Verma flag of $M \in \mathcal{O}_{A,\lambda}^{VF}$ are of the form

$$\Delta_{\mathsf{A}}(w \cdot \lambda)$$
 for $w \in \mathsf{W}$

- Z = Z(G) is the structure algebra over A.
- Z-mod^f is the category of Z-modules which are finitely generated as A-modules and torsion free over A.

We already know:

$$\mathsf{End}_{\mathfrak{g}_{\mathsf{A}}}(\mathsf{P}_{\mathsf{A}}(\lambda)) \cong \{(t_{x}) \in \prod_{x \in \mathsf{W}} \mathsf{A} \mid t_{x} \equiv t_{\mathsf{s}_{\alpha}x} \bmod \alpha^{\vee} \forall x \in \mathsf{W}, \alpha \in \mathsf{R}^{+}\}$$
$$\cong \mathsf{Z}(\mathfrak{G})$$

We already know:

$$\mathsf{End}_{\mathfrak{g}_{\mathsf{A}}}(\mathsf{P}_{\mathsf{A}}(\lambda)) \cong \{(t_{x}) \in \prod_{x \in \mathsf{W}} \mathsf{A} \mid t_{x} \equiv t_{s_{\alpha}x} \bmod \alpha^{\vee} \forall x \in \mathsf{W}, \alpha \in \mathsf{R}^{+}\}$$
$$\cong \mathsf{Z}(\mathfrak{G})$$

イロト イロト イヨト イヨト 二日

Since Z(G) is commutative, we get a functor

We already know:

$$\mathsf{End}_{\mathfrak{g}_{\mathsf{A}}}(\mathsf{P}_{\mathsf{A}}(\lambda)) \cong \{(t_{x}) \in \prod_{x \in \mathsf{W}} \mathsf{A} \mid t_{x} \equiv t_{\mathfrak{s}_{\alpha}x} \bmod \alpha^{\vee} \forall x \in \mathsf{W}, \alpha \in \mathsf{R}^{+}\}$$
$$\cong \mathsf{Z}(\mathfrak{G})$$

Since Z(G) is commutative, we get a functor

<ロ> (四) (四) (三) (三) (三)

• For
$$M \in \mathcal{O}_{\mathsf{A},\lambda}^{\mathsf{VF}}$$
 we know

J.Kuebel - N.Sivanesan

<ロ> (四) (四) (三) (三) (三)

• For
$$M \in \mathcal{O}_{\mathsf{A},\lambda}^{\mathsf{VF}}$$
 we know

 $\operatorname{Hom}_{\mathfrak{g}_{\mathsf{A}}}(\mathsf{P}_{\mathsf{A}}(\lambda), M)$

J.Kuebel - N.Sivanesan

• For
$$M \in \mathfrak{O}_{\mathsf{A},\lambda}^{\mathsf{VF}}$$
 we know

 $\operatorname{Hom}_{\mathfrak{g}_{\mathsf{A}}}(\mathsf{P}_{\mathsf{A}}(\lambda), M)$

is a free A-module of finite rank.

• For
$$M \in \mathfrak{O}_{\mathsf{A},\lambda}^{\mathsf{VF}}$$
 we know

 $\operatorname{Hom}_{\mathfrak{g}_{\mathsf{A}}}(\mathsf{P}_{\mathsf{A}}(\lambda), M)$

イロン イロン イヨン イヨン 三日

is a free A-module of finite rank.

• Goal: Want a functor

• For
$$M \in \mathcal{O}_{\mathsf{A},\lambda}^{\mathsf{VF}}$$
 we know

 $\operatorname{Hom}_{\mathfrak{g}_{\mathsf{A}}}(\mathsf{P}_{\mathsf{A}}(\lambda), M)$

is a free A-module of finite rank.

• Goal: Want a functor

$$\mathcal{L}: \mathsf{Z}\operatorname{-mod}^f \to \mathfrak{SH}_{\mathsf{A}}(\mathfrak{G})$$

イロン イロン イヨン イヨン 三日

Let Q := Quot(A) be the quotient field of A.

J.Kuebel - N.Sivanesan

Let Q := Quot(A) be the quotient field of A. Then all $\alpha(E)$ are invertible and we get a decomposition

Let Q := Quot(A) be the quotient field of A. Then all $\alpha(E)$ are invertible and we get a decomposition

$$Z \otimes_A Q \quad \tilde{\rightarrow} \quad \prod_{x \in \mathcal{V}} Q$$

Let Q := Quot(A) be the quotient field of A. Then all $\alpha(E)$ are invertible and we get a decomposition

$$Z \otimes_A Q \quad \tilde{\rightarrow} \quad \prod_{x \in \mathcal{V}} Q$$

We write

 $1=1\otimes 1\in {\sf Z}\otimes_{\sf A}{\sf Q}$

as

$$1 = \sum_{x \in \mathcal{V}} e_x$$

・ロト ・四ト ・ヨト ・ヨト - ヨ

Let Q := Quot(A) be the quotient field of A. Then all $\alpha(E)$ are invertible and we get a decomposition

$$Z \otimes_A Q \quad \tilde{\rightarrow} \quad \prod_{x \in \mathcal{V}} Q$$

We write

 $1=1\otimes 1\in Z\otimes_{\mathsf{A}}\mathsf{Q}$

as

$$1 = \sum_{x \in \mathcal{V}} e_x$$

・ロト ・四ト ・ヨト ・ヨト - ヨ

where e_x are orthogonal idempotents.

For $M \in \mathsf{Z}\operatorname{-mod}^f$ we set

• $\mathcal{L}(M)^{\times} := e_{\times}M$ for every vertex x

J.Kuebel - N.Sivanesan

イロン イロン イヨン イヨン 三日

For $M \in \mathsf{Z}\operatorname{-mod}^f$ we set

- $\mathcal{L}(M)^{\times} := e_{\times}M$ for every vertex x
- Define

$$\begin{split} \mathcal{M}(E) &:= (e_x + e_y)\mathcal{M} + \alpha^{\vee} e_x \mathcal{M} = (e_x + e_y)\mathcal{M} + \alpha^{\vee} e_y \mathcal{M} \\ &\subset e_x(\mathcal{M} \otimes_{\mathsf{A}} \mathsf{Q}) \oplus e_y(\mathcal{M} \otimes \mathsf{Q}) \end{split}$$

イロン イロン イヨン イヨン 三日

for every edge $E: x - \overset{\alpha^{\vee}}{-} - y$.

For $M \in \mathsf{Z}\operatorname{-mod}^f$ we set

- $\mathcal{L}(M)^{\times} := e_{\times}M$ for every vertex x
- Define

$$\begin{split} M(E) &:= (e_x + e_y)M + \alpha^{\vee} e_x M = (e_x + e_y)M + \alpha^{\vee} e_y M \\ &\subset e_x (M \otimes_{\mathsf{A}} \mathsf{Q}) \oplus e_y (M \otimes_{\mathsf{Q}} \mathsf{Q}) \end{split}$$

for every edge $E: x - \overset{\alpha^{\vee}}{-} - y$. We get $\mathcal{L}(M)^{E}$ via the pushout

$$M(E) \xrightarrow{\pi_{x}} \mathcal{L}(M)^{x}$$

$$\downarrow^{\pi_{y}} \qquad \qquad \downarrow^{\rho_{x,E}}$$

$$\mathcal{L}(M)^{y} \xrightarrow{\rho_{y,E}} \mathcal{L}(M)^{E}$$

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

We have thus constructed a functor

<ロ> (四) (四) (三) (三) (三)

We have thus constructed a functor

$$\mathcal{L}: \mathsf{Z}\operatorname{-mod}^f \to \mathfrak{SH}_{\mathsf{A}}(\mathfrak{G})$$

<ロ> (四) (四) (三) (三) (三)

We have thus constructed a functor

$$\begin{array}{rcl} \mathcal{L}: \mathsf{Z}\operatorname{-mod}^{f} & \to & \mathbb{SH}_{\mathsf{A}}(\mathcal{G}) \\ M & \mapsto & (\{\mathcal{L}(M)^{\mathsf{x}}\}, \{\mathcal{L}(M)^{\mathsf{E}}\}, \{\rho_{\mathsf{x}, \mathsf{E}}\}) \end{array}$$

We have thus constructed a functor

$$\begin{array}{rcl} \mathcal{L}: \mathsf{Z}\operatorname{-mod}^{f} & \to & \mathbb{SH}_{\mathsf{A}}(\mathfrak{G}) \\ & \mathcal{M} & \mapsto & (\{\mathcal{L}(\mathcal{M})^{x}\}, \{\mathcal{L}(\mathcal{M})^{E}\}, \{\rho_{x, E}\}) \end{array}$$

イロト イロト イヨト イヨト 二日

In [Fie3] the following statements are shown:

We have thus constructed a functor

$$\begin{array}{rcl} \mathcal{L}: \mathsf{Z}\operatorname{-mod}^f & \to & \mathbb{SH}_{\mathsf{A}}(\mathfrak{G}) \\ & \mathcal{M} & \mapsto & (\{\mathcal{L}(\mathcal{M})^x\}, \{\mathcal{L}(\mathcal{M})^E\}, \{\rho_{x, E}\}) \end{array}$$

(日) (同) (E) (E) (E)

In [Fie3] the following statements are shown:

• (\mathcal{L}, Γ) is a pair of adjoint functors

We have thus constructed a functor

$$\begin{array}{rcl} \mathcal{L}: \mathsf{Z}\operatorname{-mod}^{f} & \to & \mathbb{SH}_{\mathsf{A}}(\mathfrak{G}) \\ & \mathcal{M} & \mapsto & (\{\mathcal{L}(\mathcal{M})^{x}\}, \{\mathcal{L}(\mathcal{M})^{E}\}, \{\rho_{x, E}\}) \end{array}$$

In [Fie3] the following statements are shown:

• (\mathcal{L}, Γ) is a pair of adjoint functors

• We have

$$\Gamma(\mathcal{M}) \quad \tilde{\rightarrow} \quad \Gamma(\mathcal{L}(\Gamma(\mathcal{M})))$$

for $\mathcal{M} \in S\mathcal{H}_{A}(\mathcal{G})$, and

We have thus constructed a functor

$$\begin{array}{rcl} \mathcal{L}: \mathsf{Z}\operatorname{-mod}^f & \to & \mathbb{SH}_{\mathsf{A}}(\mathfrak{G}) \\ M & \mapsto & (\{\mathcal{L}(M)^x\}, \{\mathcal{L}(M)^E\}, \{\rho_{x, E}\}) \end{array}$$

In [Fie3] the following statements are shown:

• (\mathcal{L}, Γ) is a pair of adjoint functors

• We have

$$\Gamma(\mathcal{M}) \xrightarrow{\sim} \Gamma(\mathcal{L}(\Gamma(\mathcal{M})))$$

for $\mathcal{M} \in S\mathcal{H}_{A}(\mathcal{G})$, and

$$\mathcal{L}(M) \ \ ilde{
ightarrow} \ \mathcal{L}(\Gamma(\mathcal{L}(M)))$$

(日) (同) (E) (E) (E)

for $M \in \mathbb{Z} \operatorname{-mod}^{f}$.

Conclusion: We get an equivalence of categories

Conclusion: We get an equivalence of categories

$$\Gamma(\mathfrak{SH}_{\mathsf{A}}(\mathfrak{G})) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{L}(\mathsf{Z}\operatorname{-mod}^{f})$$

Definition

A sheaf $\mathcal{P} \in S\mathcal{H}_A(\mathcal{G})$ is called *F-projective*, if it fulfills

Definition

A sheaf $\mathcal{P} \in S\mathcal{H}_A(\mathcal{G})$ is called *F-projective*, if it fulfills

• \mathcal{P} is flabby

Definition

A sheaf $\mathcal{P} \in S\mathcal{H}_A(\mathcal{G})$ is called *F-projective*, if it fulfills

- \mathcal{P} is flabby
- The map

 $\Gamma(\mathcal{P}) \rightarrow \mathcal{P}^{x}$

is surjective for each $x \in \mathcal{V}$

Definition

A sheaf $\mathcal{P} \in S\mathcal{H}_A(\mathcal{G})$ is called *F-projective*, if it fulfills

- \mathcal{P} is flabby
- The map

$$\Gamma(\mathcal{P}) \rightarrow \mathcal{P}^{x}$$

is surjective for each $x \in \mathcal{V}$

• Each \mathcal{P}^{x} is a projective A-module

Definition

A sheaf $\mathcal{P} \in S\mathcal{H}_A(\mathcal{G})$ is called *F-projective*, if it fulfills

- \mathcal{P} is flabby
- The map

$$\Gamma(\mathcal{P}) \rightarrow \mathcal{P}^{x}$$

is surjective for each $x \in \mathcal{V}$

- Each \mathcal{P}^{x} is a projective A-module
- For each $E: y \xrightarrow{\alpha^{\vee}} x$ the map

$$\rho_{y,E}: \mathcal{P}^y \to \mathcal{P}^E$$

induces an isomorphism

 $\mathcal{P}^{y}/\alpha^{\vee}\mathcal{P}^{y} \xrightarrow{\sim} \mathcal{P}^{E}$

 $\mathcal{O} \land \mathcal{O}$

One can show that the sheafs in the image of

$$\mathcal{L}: \mathsf{Z}\operatorname{-mod}^f \to S\mathcal{H}_{\mathsf{A}}(\mathcal{G})$$

fulfill the second property in the preceding definition.

Let $\mathcal{B}(z)$ be the Braden-MacPherson sheaf associated to a vertex $z \in \mathcal{V}$. We denote by $\mathcal{B}_{A}(z) := \mathcal{B}(z) \otimes_{S} A$ the sheaf

 $(\{\mathfrak{B}(z)^{\mathsf{x}}\otimes_{\mathsf{S}}\mathsf{A}\},\{\mathfrak{B}(z)^{\mathsf{E}}\otimes_{\mathsf{S}}\mathsf{A}\},\{\rho_{\mathsf{x},\mathsf{E}}\otimes_{\mathsf{S}}\mathsf{id}_{\mathsf{A}}\})$

イロト (部) (日) (日) (日) (日)

Let $\mathcal{B}(z)$ be the Braden-MacPherson sheaf associated to a vertex $z \in \mathcal{V}$. We denote by $\mathcal{B}_{A}(z) := \mathcal{B}(z) \otimes_{S} A$ the sheaf

 $(\{\mathfrak{B}(z)^{\mathsf{x}}\otimes_{\mathsf{S}}\mathsf{A}\},\{\mathfrak{B}(z)^{\mathsf{E}}\otimes_{\mathsf{S}}\mathsf{A}\},\{\rho_{\mathsf{x},\mathsf{E}}\otimes_{\mathsf{S}}\mathsf{id}_{\mathsf{A}}\})$

・ロト ・四ト ・ヨト ・ヨト - ヨ

Theorem

The sheaf $\mathcal{B}_A(z)$ is F-projective and indecomposable.

Proposition

Let $\ensuremath{\mathfrak{P}}$ be a F-projective sheaf. Then there exists an isomorphism of sheafs

$$\mathcal{P} \quad \tilde{\rightarrow} \quad \mathcal{B}_{\mathsf{A}}(z_1) \oplus \ldots \oplus \mathcal{B}_{\mathsf{A}}(z_n)$$

(日) (同) (E) (E) (E)

for suitable vertices $z_1, ..., z_n$.

Proposition

Let \mathcal{P} be a F-projective sheaf. Then there exists an isomorphism of sheafs

$$\mathcal{P} \xrightarrow{\sim} \mathcal{B}_{\mathsf{A}}(z_1) \oplus ... \oplus \mathcal{B}_{\mathsf{A}}(z_n)$$

(日) (同) (E) (E) (E)

for suitable vertices $z_1, ..., z_n$.

In particular every indecomposable F-projective object is isomorphic to a BMP.

We return to representation theory.

We return to representation theory. Consider sets $D \subset \mathfrak{h}^*$ such that

イロト イロト イヨト イヨト 二日

We return to representation theory. Consider sets $D \subset \mathfrak{h}^*$ such that

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 $\mu \in D, \nu \leq \mu$

We return to representation theory. Consider sets $D \subset \mathfrak{h}^*$ such that

$$\mu \in D, \nu \leq \mu \Rightarrow \nu \in D$$

イロト イロト イヨト イヨト 二日

We return to representation theory. Consider sets $D \subset \mathfrak{h}^*$ such that

$$\mu \in D, \nu \leq \mu \Rightarrow \nu \in D$$

We define endofunctors

$$O^D, [D] : \mathcal{O}_A \rightarrow \mathcal{O}_A$$

We return to representation theory. Consider sets $D \subset \mathfrak{h}^*$ such that

$$\mu \in D, \nu \leq \mu \Rightarrow \nu \in D$$

We define endofunctors

$$O^D, [D] : \mathcal{O}_A \rightarrow \mathcal{O}_A$$

by setting

We return to representation theory. Consider sets $D \subset \mathfrak{h}^*$ such that

$$\mu \in D, \nu \leq \mu \Rightarrow \nu \in D$$

We define endofunctors

$$O^D, [D] : \mathcal{O}_A \rightarrow \mathcal{O}_A$$

by setting

$$O^DM:=\sum_{\mu
ot\in D} {\sf U}({\mathfrak g}_{\sf A})M_\mu$$

(日) (同) (E) (E) (E)

We return to representation theory. Consider sets $D \subset \mathfrak{h}^*$ such that

$$\mu \in D, \nu \leq \mu \Rightarrow \nu \in D$$

We define endofunctors

$$O^D, [D] : \mathcal{O}_A \rightarrow \mathcal{O}_A$$

by setting

$$O^D M := \sum_{\mu
ot\in D} \mathsf{U}(\mathfrak{g}_{\mathsf{A}}) M_{\mu}$$

and

 $M[D] := M/O^D M$

イロン イロン イヨン イヨン 三日

For example consider Verma modules. We get

For example consider Verma modules. We get

$$O^D \Delta_{\mathsf{A}}(\mu) = egin{cases} \Delta_{\mathsf{A}}(\mu) ext{ if } \mu
ot\in D \ 0 ext{ otherwise} \end{cases}$$

For example consider Verma modules. We get

$$O^D \Delta_A(\mu) = egin{cases} \Delta_A(\mu) ext{ if } \mu
ot \in D \ 0 ext{ otherwise} \end{cases}$$

and

$$\Delta_{\mathsf{A}}(\mu)[D] = egin{cases} 0 ext{ if } \mu
ot\in D \ \Delta_{\mathsf{A}}(\mu) ext{ otherwise} \end{cases}$$

Proposition

Consider a short exact sequence

$$0 \to L \stackrel{\varphi}{\to} M \stackrel{\psi}{\to} N \to 0$$

イロト イロト イヨト イヨト 二日

in \mathfrak{O}_A and assume that $N \in \mathfrak{O}_{A,\lambda}^{VF}$.

J.Kuebel - N.Sivanesan

Proposition

Consider a short exact sequence

$$0 \to L \stackrel{\varphi}{\to} M \stackrel{\psi}{\to} N \to 0$$

in \mathcal{O}_A and assume that $N \in \mathcal{O}_{A,\lambda}^{VF}$. Then the sequence

$$0 \to L[D] \to M[D] \to N[D] \to 0$$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

is exact.

Sketch of proof:

Sketch of proof:

• Since A is a local ring, \mathcal{O}_A contains enough projectives.

イロン イボン イヨン イヨン 三日

Sketch of proof:

- Since A is a local ring, \mathbb{O}_{A} contains enough projectives.
- The functor

$$M \mapsto M[D]$$

is right exact.

Sketch of proof:

- Since A is a local ring, \mathcal{O}_A contains enough projectives.
- The functor

$$M \mapsto M[D]$$

(日) (同) (E) (E) (E)

is right exact.

• Compute left derived functors and show that the higher derived functors vanish on Verma modules.

Sketch of proof:

- Since A is a local ring, \mathbb{O}_{A} contains enough projectives.
- The functor

$$M \mapsto M[D]$$

(ロ) (同) (E) (E) (E)

is right exact.

- Compute left derived functors and show that the higher derived functors vanish on Verma modules.
- Induction on the length of Verma flag yields the claim.

Subgraphs

Let $\mathcal{H} = (\mathcal{V}', \mathcal{E}', \alpha', \leq')$ be an open subgraph of \mathcal{G} .

イロン イロン イヨン イヨン 三日

Let $\mathcal{H}=(\mathcal{V}',\mathcal{E}',\alpha',\leq')$ be an open subgraph of $\mathcal{G}.$ Set

$$D_{\mathcal{H}} := \{ \nu \in \mathfrak{h}^* \, | \, \exists x \in \mathcal{V}' : \, \nu \leq x \cdot \lambda \, \}$$

Let $\mathcal{H} = (\mathcal{V}', \mathcal{E}', \alpha', \leq')$ be an open subgraph of \mathcal{G} . Set

$$\mathcal{D}_{\mathcal{H}} := \{
u \in \mathfrak{h}^* \, | \, \exists x \in \mathcal{V}' : \,
u \leq x \cdot \lambda \, \}$$

Since \mathcal{H} is open, we get for any $w \in W$ that $w \cdot \lambda \in D$ if and only if $w \in \mathcal{V}'$.

Let $\mathcal{H} = (\mathcal{V}', \mathcal{E}', \alpha', \leq')$ be an open subgraph of \mathcal{G} . Set

$$\mathcal{D}_{\mathcal{H}} := \{
u \in \mathfrak{h}^* \, | \, \exists x \in \mathcal{V}' : \,
u \leq x \cdot \lambda \, \}$$

Since \mathcal{H} is open, we get for any $w \in W$ that $w \cdot \lambda \in D$ if and only if $w \in \mathcal{V}'$. For any $M \in \mathcal{O}_{A,\lambda}^{VF}$ we set

$$O^{\mathcal{H}}M := O^{D_{\mathcal{H}}}M$$

Let $\mathcal{H} = (\mathcal{V}', \mathcal{E}', \alpha', \leq')$ be an open subgraph of \mathcal{G} . Set

$$\mathcal{D}_{\mathcal{H}} := \{
u \in \mathfrak{h}^* \, | \, \exists x \in \mathcal{V}' : \,
u \leq x \cdot \lambda \, \}$$

Since \mathcal{H} is open, we get for any $w \in W$ that $w \cdot \lambda \in D$ if and only if $w \in \mathcal{V}'$. For any $M \in \mathcal{O}_{A,\lambda}^{VF}$ we set

$$O^{\mathcal{H}}M := O^{D_{\mathcal{H}}}M$$

and

$$M[\mathcal{H}] := M[D_{\mathcal{H}}]$$

Proposition

Let $M \in \mathcal{O}_{A,\lambda}^{VF}$. Then $\mathcal{L}(\mathbb{V}(M))$ is flabby and for each open subgraph $\mathcal{H} \subset \mathcal{G}$ we get an isomorphism

$\Gamma(\mathcal{H},\mathcal{L}(\mathbb{V}(M))) \xrightarrow{\sim} \mathbb{V}(M[\mathcal{H}])$

イロト (部) (日) (日) (日) (日)

Lemma

Let
$$P \in \mathcal{O}_{A,\lambda}^{VF}$$
 be projective and $w \in W$. Then

 $\mathcal{L}(\mathbb{V}P)^w$

イロン イロン イヨン イヨン 三日

is a free A-module of rank $(P : \Delta_A(w \cdot \lambda))$.

Lemma

Let
$$P \in \mathfrak{O}_{A,\lambda}^{VF}$$
 be projective and $w \in W$. Then

 $\mathcal{L}(\mathbb{V}P)^w$

is a free A-module of rank $(P : \Delta_A(w \cdot \lambda))$.

Proposition

Let
$$P \in \mathcal{O}_{A,\lambda}^{VF}$$
 be projective. Then

 $\mathcal{L}(\mathbb{V} P)$

イロト (部) (日) (日) (日) (日)

is F-projective .

We already know

(日) (回) (E) (E) (E)

We already know

• $\mathcal{L}(\mathbb{V}P)$ is flabby

<ロ> (四) (四) (三) (三) (三)

We already know

• $\mathcal{L}(\mathbb{V}P)$ is flabby

•

$\Gamma(\mathcal{L}(\mathbb{V}P)) \twoheadrightarrow \mathcal{L}(\mathbb{V}P)^w \qquad \forall w \in \mathbb{W}$

We already know

•

• $\mathcal{L}(\mathbb{V}P)$ is flabby

$$\Gamma(\mathcal{L}(\mathbb{V}P)) \twoheadrightarrow \mathcal{L}(\mathbb{V}P)^w \qquad \forall w \in \mathbb{W}$$

イロン イロン イヨン イヨン 三日

• $\mathcal{L}(\mathbb{V}P)^w$ is a free (projective) A-module for each $w \in \mathbb{W}$.

We already know

• $\mathcal{L}(\mathbb{V}P)$ is flabby

•

$$\Gamma(\mathcal{L}(\mathbb{V}P)) \twoheadrightarrow \mathcal{L}(\mathbb{V}P)^w \qquad \forall w \in \mathbb{W}$$

• $\mathcal{L}(\mathbb{V}P)^w$ is a free (projective) A-module for each $w \in W$. Left to show: For each $x \in W$ and $\alpha \in \mathbb{R}^+$ with $x \cdot \lambda \leq s_{\alpha}x \cdot \lambda$ and $E: x - -s_{\alpha}x$ that

$$\mathcal{L}(\mathbb{V}P)^{\times}/\alpha^{\vee}\mathcal{L}(\mathbb{V}P)^{\times} \quad \tilde{\rightarrow} \quad \mathcal{L}(\mathbb{V}P)^{E}$$

イロト (部) (日) (日) (日) (日)

We use

• $\rho_{x,E} : \mathcal{L}(\mathbb{V}P)^x \to \mathcal{L}(\mathbb{V}P)^E$ is surjective

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

We use

- $\rho_{x,E} : \mathcal{L}(\mathbb{V}P)^x \to \mathcal{L}(\mathbb{V}P)^E$ is surjective
- $\alpha^{\vee} \mathcal{L}(\mathbb{V}P)^{\mathsf{x}} \subset \ker \rho_{\mathsf{x},\mathsf{E}}$

It remains to proof

(日) (同) (E) (E) (E)

We use

- $\rho_{x,E} : \mathcal{L}(\mathbb{V}P)^x \to \mathcal{L}(\mathbb{V}P)^E$ is surjective
- $\alpha^{\vee} \mathcal{L}(\mathbb{V}P)^{\mathsf{x}} \subset \ker \rho_{\mathsf{x},\mathsf{E}}$

It remains to proof

$$\ker \rho_{\mathsf{x},\mathsf{E}} \subset \alpha^{\vee} \mathcal{L}(\mathbb{V}\mathsf{P})^{\mathsf{x}}$$

< □ > < @ > < 注 > < 注 > ... 注

Idea:

We use

- $\rho_{x,E} : \mathcal{L}(\mathbb{V}P)^x \to \mathcal{L}(\mathbb{V}P)^E$ is surjective
- $\alpha^{\vee} \mathcal{L}(\mathbb{V}P)^{\times} \subset \ker \rho_{\times,E}$

It remains to proof

$$\ker \rho_{\mathsf{x},\mathsf{E}} \subset \alpha^{\vee} \mathcal{L}(\mathbb{V}\mathsf{P})^{\mathsf{x}}$$

Idea:

- Denote by $\mathsf{A}_\mathfrak{p}$ the localization of A at a prime ideal $\mathfrak{p}\subset\mathsf{A}.$

・ロト ・四ト ・ヨト ・ヨト - ヨ

We use

- $\rho_{x,E} : \mathcal{L}(\mathbb{V}P)^x \to \mathcal{L}(\mathbb{V}P)^E$ is surjective
- $\alpha^{\vee} \mathcal{L}(\mathbb{V}P)^{\times} \subset \ker \rho_{\times,E}$

It remains to proof

$$\ker \rho_{\mathsf{x},\mathsf{E}} \subset \alpha^{\vee} \mathcal{L}(\mathbb{V}\mathsf{P})^{\mathsf{x}}$$

Idea:

• Denote by $A_{\mathfrak{p}}$ the localization of A at a prime ideal $\mathfrak{p} \subset A$.

$$A = \bigcap_{\mathfrak{p} \subset A \text{ prime} \atop \mathfrak{h} \mathfrak{p} = 1} A_{\mathfrak{p}}$$

・ロト ・四ト ・ヨト ・ヨト - ヨ

Hence we get

(日) (回) (E) (E) (E)

Hence we get

$$\mathcal{L}(\mathbb{V}P)^{x} = \bigcap_{\substack{\mathfrak{p} \subset A \\ \mathsf{ht } \mathfrak{p} = 1}} \mathcal{L}(\mathbb{V}P)^{x} \otimes_{A} \mathsf{A}_{\mathfrak{p}} \subset \mathcal{L}(\mathbb{V}P)^{x} \otimes_{A} \mathsf{Q}$$

(日) (回) (E) (E) (E)

Hence we get

$$\mathcal{L}(\mathbb{V}P)^{x} = \bigcap_{\substack{\mathfrak{p} \subset A \\ \mathsf{ht } \mathfrak{p} = 1}} \mathcal{L}(\mathbb{V}P)^{x} \otimes_{A} \mathsf{A}_{\mathfrak{p}} \subset \mathcal{L}(\mathbb{V}P)^{x} \otimes_{A} \mathsf{Q}$$

イロン イボン イヨン イヨン 三日

• and similarly for $\alpha^{\vee} \mathcal{L}(\mathbb{V}P)^{x}$.

Hence we get

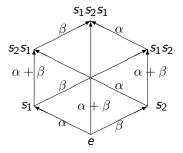
$$\mathcal{L}(\mathbb{V}P)^{x} = \bigcap_{\substack{\mathfrak{p} \subset A \\ ht \\ \mathfrak{p}=1}} \mathcal{L}(\mathbb{V}P)^{x} \otimes_{A} A_{\mathfrak{p}} \subset \mathcal{L}(\mathbb{V}P)^{x} \otimes_{A} Q$$

- and similarly for $\alpha^{\vee} \mathcal{L}(\mathbb{V}P)^{x}$.
- It suffices to show

 $\ker \rho_{\mathsf{x},\mathsf{E}} \subset \alpha^{\vee}(\mathcal{L}(\mathbb{V}\mathsf{P})^{\mathsf{x}} \otimes_{\mathsf{A}} \mathsf{A}_{\mathfrak{p}}) \quad \text{ for all } \mathfrak{p} \subset \mathsf{A} \text{ with } \mathsf{ht } \mathfrak{p} = 1$

Example:

If $\mathcal{L}(\mathbb{V}P)$ is a sheaf on



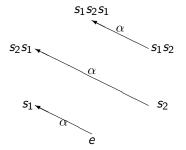
(日) (回) (E) (E) (E)

Example.

then $\mathcal{L}(\mathbb{V}P) \otimes_A A_p$ for $\mathfrak{p} = A\alpha^{\vee}$ decomposes into A_1 -cases and can be interpreted as a sheaf on

Example.

then $\mathcal{L}(\mathbb{V}P) \otimes_A A_p$ for $\mathfrak{p} = A\alpha^{\vee}$ decomposes into A_1 -cases and can be interpreted as a sheaf on



・ロト ・回ト ・ヨト ・ヨト

3

Proposition

The functors $\mathbb V$ and $\mathcal L$ induce natural isomorphisms

J.Kuebel - N.Sivanesan

Proposition

The functors $\mathbb V$ and $\mathcal L$ induce natural isomorphisms

 $\operatorname{Hom}_{\mathfrak{g}_{\mathsf{A}}}(M,N) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{Z}}(\mathbb{V}M,\mathbb{V}N) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{SH}_{\mathsf{A}}(\mathcal{G})}(\mathcal{L}(\mathbb{V}M),\mathcal{L}(\mathbb{V}N))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Proposition

The functors $\mathbb V$ and $\mathcal L$ induce natural isomorphisms

 $\operatorname{Hom}_{\mathfrak{g}_{\mathsf{A}}}(M,N) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{Z}}(\mathbb{V}M,\mathbb{V}N) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{SH}_{\mathsf{A}}(\mathcal{G})}(\mathcal{L}(\mathbb{V}M),\mathcal{L}(\mathbb{V}N))$

for any M and N in $\mathcal{O}_{A,\lambda}^{VF}$.

Proposition

The functors $\mathbb V$ and $\mathcal L$ induce natural isomorphisms

 $\operatorname{Hom}_{\mathfrak{g}_{\mathsf{A}}}(M,N) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{Z}}(\mathbb{V}M,\mathbb{V}N) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{SH}_{\mathsf{A}}(\mathcal{G})}(\mathcal{L}(\mathbb{V}M),\mathcal{L}(\mathbb{V}N))$

for any M and N in $\mathcal{O}_{A,\lambda}^{VF}$.

Corollary

 $(\mathcal{L} \circ \mathbb{V})$ induces an algebra isomorphism

Proposition

The functors $\mathbb V$ and $\mathcal L$ induce natural isomorphisms

 $\operatorname{Hom}_{\mathfrak{g}_{\mathsf{A}}}(M,N) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{Z}}(\mathbb{V}M,\mathbb{V}N) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{SH}_{\mathsf{A}}(\mathcal{G})}(\mathcal{L}(\mathbb{V}M),\mathcal{L}(\mathbb{V}N))$

for any M and N in $\mathcal{O}_{A,\lambda}^{VF}$.

Corollary

 $(\mathcal{L} \circ \mathbb{V})$ induces an algebra isomorphism

 $\operatorname{End}_{\mathfrak{g}_{\mathsf{A}}}(M) \xrightarrow{\sim} \operatorname{End}_{\operatorname{SH}_{\mathsf{A}}(\mathfrak{G})}(\mathcal{L}(\mathbb{V}M))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Proposition

The functors $\mathbb V$ and $\mathcal L$ induce natural isomorphisms

 $\operatorname{Hom}_{\mathfrak{g}_{\mathsf{A}}}(M,N) \xrightarrow{\sim} \operatorname{Hom}_{\mathsf{Z}}(\mathbb{V}M,\mathbb{V}N) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{SH}_{\mathsf{A}}(\mathcal{G})}(\mathcal{L}(\mathbb{V}M),\mathcal{L}(\mathbb{V}N))$

for any M and N in $\mathcal{O}_{A,\lambda}^{VF}$.

Corollary

 $(\mathcal{L} \circ \mathbb{V})$ induces an algebra isomorphism

 $\operatorname{End}_{\mathfrak{g}_{\mathsf{A}}}(M) \xrightarrow{\sim} \operatorname{End}_{\operatorname{SH}_{\mathsf{A}}(\mathfrak{G})}(\mathcal{L}(\mathbb{V}M))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

for any $M \in \mathcal{O}_{A,\lambda}^{VF}$.

Theorem

We have

$$\mathcal{L}(\mathbb{V}\mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathcal{B}_{\mathsf{A}}(w) \quad \text{for all } w \in \mathsf{W}$$

(ロ) (四) (E) (E) (E)

J.Kuebel - N.Sivanesan

Theorem

We have

$$\mathcal{L}(\mathbb{V}\mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathcal{B}_{\mathsf{A}}(w) \quad \text{for all } w \in \mathsf{W}$$

Proof:

L(V P_A(w · λ)) is F-projective, hence isomorphic to a direct sum of suitable B_A(z_i) for suitable z_i ∈ W.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Theorem

We have

$$\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathfrak{B}_{\mathsf{A}}(w) \quad \text{for all } w \in \mathsf{W}$$

Proof:

L(V P_A(w · λ)) is F-projective, hence isomorphic to a direct sum of suitable B_A(z_i) for suitable z_i ∈ W.

・ロト ・四ト ・ヨト ・ヨト - ヨ

• $P_A(w \cdot \lambda)$ indecomposable

Theorem

We have

$$\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathcal{B}_{\mathsf{A}}(w) \quad \text{for all } w \in \mathsf{W}$$

Proof:

- *L*(V P_A(w · λ)) is F-projective, hence isomorphic to a direct sum of suitable B_A(z_i) for suitable z_i ∈ W.
- $P_A(w \cdot \lambda)$ indecomposable
- So 0 and 1 are the only idempotents in $End_{g_A}(P_A(w \cdot \lambda))$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem

We have

$$\mathcal{L}(\mathbb{V}\mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathcal{B}_{\mathsf{A}}(w) \quad \text{for all } w \in \mathsf{W}$$

Proof:

- *L*(V P_A(w · λ)) is F-projective, hence isomorphic to a direct sum of suitable B_A(z_i) for suitable z_i ∈ W.
- $P_A(w \cdot \lambda)$ indecomposable
- So 0 and 1 are the only idempotents in $End_{g_A}(P_A(w \cdot \lambda))$
- Corollary yields that 1 and 0 are the only idempotents in $End_{SH(S)}(\mathcal{L}(\mathbb{V} P_A(w \cdot \lambda))$

Theorem

We have

$$\mathcal{L}(\mathbb{V}\mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathcal{B}_{\mathsf{A}}(w) \quad \text{for all } w \in \mathsf{W}$$

Proof:

- *L*(𝔅 P_A(w · λ)) is F-projective, hence isomorphic to a direct sum of suitable 𝔅_A(z_i) for suitable z_i ∈ W.
- $P_A(w \cdot \lambda)$ indecomposable
- So 0 and 1 are the only idempotents in $End_{g_A}(P_A(w \cdot \lambda))$
- Corollary yields that 1 and 0 are the only idempotents in $End_{SH(S)}(\mathcal{L}(\mathbb{V} P_A(w \cdot \lambda)))$

イロト (部) (日) (日) (日) (日)

• Hence $\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda))$ is indecomposable

• So there exists $z \in W$ with

$$\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathcal{B}_{\mathsf{A}}(z)$$

• So there exists $z \in W$ with

$$\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathcal{B}_{\mathsf{A}}(z)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• Now z is the smallest element $x \in W$ such that $\mathcal{B}(z)^x \neq 0$

So there exists *z* ∈ W with

$$\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathcal{B}_{\mathsf{A}}(z)$$

- Now z is the smallest element $x \in W$ such that $\mathcal{B}(z)^x \neq 0$
- Hence it is the smallest $x \in W$ such that $\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda))^{x} \neq 0$

So there exists *z* ∈ W with

$$\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathcal{B}_{\mathsf{A}}(z)$$

- Now z is the smallest element $x \in W$ such that $\mathcal{B}(z)^x \neq 0$
- Hence it is the smallest $x \in W$ such that $\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda))^{x} \neq 0$
- But we have seen that z is the smallest $x \in W$ such that

$$\mathsf{D} \neq (\mathsf{P}_\mathsf{A}(w \cdot \lambda) : \Delta_\mathsf{A}(x \cdot \lambda)) = [\Delta_\mathsf{A}(x \cdot \lambda) : \mathsf{L}_\mathsf{A}(w \cdot \lambda)]$$

So there exists *z* ∈ W with

$$\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda)) \cong \mathcal{B}_{\mathsf{A}}(z)$$

- Now z is the smallest element $x \in W$ such that $\mathcal{B}(z)^x \neq 0$
- Hence it is the smallest $x \in W$ such that $\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda))^{x} \neq 0$
- But we have seen that z is the smallest $x \in W$ such that

$$\mathsf{0} \neq (\mathsf{P}_{\mathsf{A}}(w \cdot \lambda) : \Delta_{\mathsf{A}}(x \cdot \lambda)) = [\Delta_{\mathsf{A}}(x \cdot \lambda) : \mathsf{L}_{\mathsf{A}}(w \cdot \lambda)]$$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Hence *z* = *w*

Corollary

$$[\Delta_A(x \cdot \lambda) : L_A(w \cdot \lambda)] = \mathsf{rk}_S \mathfrak{B}_A(w)^x$$
 for all $w, x \in W$

Corollary

$$[\Delta_A(x \cdot \lambda) : L_A(w \cdot \lambda)] = \mathsf{rk}_S \mathcal{B}_A(w)^{\times}$$
 for all $w, x \in W$

Proof:

• We have

J.Kuebel - N.Sivanesan

Corollary

$$[\Delta_A(x \cdot \lambda) : L_A(w \cdot \lambda)] = \mathsf{rk}_S \mathfrak{B}_A(w)^x$$
 for all $w, x \in W$

Proof:

• We have

$$[\Delta_{\mathsf{A}}(x \cdot \lambda) : \mathsf{L}_{\mathsf{A}}(w \cdot \lambda)] = (\mathsf{P}_{\mathsf{A}}(w \cdot \lambda) : \Delta_{\mathsf{A}}(x \cdot \lambda))$$

<ロ> (四) (四) (三) (三) (三)

by BGG-reciprocity.

Corollary

$$[\Delta_A(x \cdot \lambda) : L_A(w \cdot \lambda)] = \mathsf{rk}_S \, \mathcal{B}_A(w)^{\mathsf{x}} \qquad \textit{for all } w, x \in \mathsf{W}$$

Proof:

• We have

$$[\Delta_{\mathsf{A}}(x \cdot \lambda) : \mathsf{L}_{\mathsf{A}}(w \cdot \lambda)] = (\mathsf{P}_{\mathsf{A}}(w \cdot \lambda) : \Delta_{\mathsf{A}}(x \cdot \lambda))$$

イロト イロト イヨト イヨト 二日

by BGG-reciprocity.

• We have seen that this number is equal to the rank of the A-module $\mathcal{L}(\mathbb{V} \mathsf{P}_{\mathsf{A}}(w \cdot \lambda))^{\times}$.

Corollary

$$[\Delta_A(x \cdot \lambda) : L_A(w \cdot \lambda)] = \mathsf{rk}_S \, \mathcal{B}_A(w)^{\mathsf{x}} \qquad \textit{for all } w, x \in \mathsf{W}$$

Proof:

• We have

$$[\Delta_{\mathsf{A}}(x \cdot \lambda) : \mathsf{L}_{\mathsf{A}}(w \cdot \lambda)] = (\mathsf{P}_{\mathsf{A}}(w \cdot \lambda) : \Delta_{\mathsf{A}}(x \cdot \lambda))$$

by BGG-reciprocity.

- We have seen that this number is equal to the rank of the A-module L(VP_A(w · λ))^x.
- Applying the Theorem yields the claim.

Relation to the Kazdhan-Lusztig conjecture

We can reformulate our results in the following

Relation to the Kazdhan-Lusztig conjecture

We can reformulate our results in the following

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Bibliography

- [Fie03] Peter Fiebig, Centers and translation functors for category O over Kac-Moody algebras, Math. Z. 243 (2003), no. 4, 689–717.
- [Fie06] _____, The combinatorics of category O over symmetrizable Kac-Moody algebras, Transform. Groups **11** (2006), no. 1, 29–49.
- [Fie08] _____, Sheaves on moment graphs and a localization of Verma flags, Adv. Math. **217** (2008), 683–712.
- [Jan08] Jens Carsten Jantzen, Moment graphs and representations, Summer school on geometric methods in representation theory, Grenoble, France (2008).

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・