As before, let \mathfrak{g} be a complex finite-dimensional semisimple Lie algebra, with $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}$. We fix a nondegenerate invariant symmetric form (-,-) on \mathfrak{h}^* .

Let T be a local deformation ring with residue field \mathbb{K} .

Let $S = S(\mathfrak{h})$ and let $\tau : S \to T \in \mathfrak{h}_T^* = \operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, T)$ be the structure morphism. Extend (-, -) to a bilinear form $(-, -)_T : \mathfrak{h}_T^* \times \mathfrak{h}_T^* \to T$.

We'll be especially concerned with the following special cases.

- Let $R = S_{(\mathfrak{h})}$, $Q = \operatorname{Frac}(R)$ and \mathbb{K} the residue field. The structure morphism $\tau : S \to R$ is just inclusion.
- For any α ∈ Δ, let h_α = (τ, α)_R ∈ h ⊂ R. Then define R_α to be the localisation of R at Rh_α and K_α to be its residue field.

Define an equivalence relation on \mathfrak{h}^* generated by:

 $\lambda \sim_T \mu$ if and only if $(P_T(\lambda) : M_T(\mu)) = [M_{\mathbb{K}}(\lambda) : L_{\mathbb{K}}(\mu)] \neq 0.$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Define an equivalence relation on \mathfrak{h}^* generated by:

 $\lambda \sim_T \mu$ if and only if $(P_T(\lambda) : M_T(\mu)) = [M_{\mathbb{K}}(\lambda) : L_{\mathbb{K}}(\mu)] \neq 0.$

Notation: Let $\lambda \in \mathfrak{h}^*$ be a *regular integral weight*. Denote by Λ the equivalence class of under $\sim_{\mathcal{T}}$.

Define an equivalence relation on \mathfrak{h}^* generated by:

 $\lambda \sim_T \mu$ if and only if $(P_T(\lambda) : M_T(\mu)) = [M_{\mathbb{K}}(\lambda) : L_{\mathbb{K}}(\mu)] \neq 0.$

Notation: Let $\lambda \in \mathfrak{h}^*$ be a *regular integral weight*. Denote by Λ the equivalence class of under $\sim_{\mathcal{T}}$.

Let $\theta \subset \mathfrak{h}^*$ be a union of equivalence classes under $\sim_{\mathcal{T}}$. Then set $\mathcal{O}_{\mathcal{T},\theta}$ to be the full subcategory of all modules M such that every highest weight of a subquotient of M lies in θ .

Theorem The functor $\bigoplus_{\Lambda \in \mathfrak{h}^{*}/\sim \tau} \mathcal{O}_{\mathcal{T},\Lambda} \rightarrow \mathcal{O}_{\mathcal{T}}; \{M_{\Lambda}\} \mapsto \oplus M_{\Lambda},$ is an equivalence of categories.

• • • • • • • • • • • •

Define an equivalence relation on \mathfrak{h}^* generated by:

 $\lambda \sim_T \mu$ if and only if $(P_T(\lambda) : M_T(\mu)) = [M_{\mathbb{K}}(\lambda) : L_{\mathbb{K}}(\mu)] \neq 0.$

Notation: Let $\lambda \in \mathfrak{h}^*$ be a *regular integral weight*. Denote by Λ the equivalence class of under $\sim_{\mathcal{T}}$.

Let $\theta \subset \mathfrak{h}^*$ be a union of equivalence classes under \sim_T . Then set $\mathcal{O}_{T,\theta}$ to be the full subcategory of all modules M such that every highest weight of a subquotient of M lies in θ .

Theorem

The functor

$$\bigoplus_{\in\mathfrak{h}^*/\sim_{\mathcal{T}}} \mathcal{O}_{\mathcal{T},\Lambda} \to \mathcal{O}_{\mathcal{T}}; \{M_{\Lambda}\} \mapsto \oplus M_{\Lambda},$$

is an equivalence of categories.

٨

Remark. If we have a morphism of local deformation rings $T \to T'$, then $\lambda \sim_{T'} \mu \Rightarrow \lambda \sim_{T} \mu$. Thus the block decomposition for T' refines that for T.

Blocks and Weyl group orbits

Theorem (Bernstein-Gelfand-Gelfand)

An equivalence class Λ is equal to the dot orbit $\mathcal{W}_{T}(\Lambda)\cdot\lambda,$ where

$$\mathcal{W}_{\mathcal{T}}(\Lambda) = < s_{\beta} : 2(\lambda + \rho + \tau, \beta)_{\mathbb{K}} \in \mathbb{Z}(\beta, \beta)_{\mathbb{K}} > .$$

< □ > < 🗗 > < 🖹

Theorem (Bernstein-Gelfand-Gelfand)

An equivalence class Λ is equal to the dot orbit $W_T(\Lambda) \cdot \lambda$, where

 $\mathcal{W}_{\mathcal{T}}(\Lambda) = \langle s_{\beta} : 2(\lambda + \rho + \tau, \beta)_{\mathbb{K}} \in \mathbb{Z}(\beta, \beta)_{\mathbb{K}} \rangle$

Let's calculate $\mathcal{W}_{\mathcal{T}}(\Lambda) \cdot \lambda$ in two special cases.

- Let T = R: Since $(\tau, \beta)_R \in \mathfrak{h}$ we get $(\tau, \beta)_{\mathbb{K}} = 0$. Thus the orbits $\mathcal{W}_T(\Lambda) \cdot \lambda$ are just the usual Weyl group orbits $\mathcal{W} \cdot \lambda$, and in particular contain a unique antidominant weight.
- Let $T = R_{\alpha}$: Since $(\tau, \beta)_{R_{\alpha}} = \tau(h_{\beta}) = h_{\beta}$, the condition

$$2(\lambda + \rho + \tau, \beta)_{\mathbb{K}_{\alpha}} \in \mathbb{Z}(\beta, \beta)$$

is equivalent to

$$2(\lambda + \rho, \beta) \in \mathbb{Z}(\beta, \beta) \text{ and } h_{\beta} \in Rh_{\alpha}.$$
 (1)

Therefore, only $\beta = \pm \alpha$ can satisfy the conditions of (1), and the possible equivalence classes are $\Lambda = \{\lambda\}$ or $\{\lambda, s_{\alpha} \cdot \lambda\}$.

Let us now consider the deformation ring R_{α} , and let $\Lambda = \{\lambda, s_{\alpha} \cdot \lambda\}$.

Let us now consider the deformation ring R_{α} , and let $\Lambda = \{\lambda, s_{\alpha} \cdot \lambda\}$.

Theorem

Suppose that $\lambda > \mu = s_{\alpha} \cdot \lambda$. Then $P_{R_{\alpha}}(\lambda) \cong M_{R_{\alpha}}(\lambda)$ and there is a short exact sequence

$$0 o M_{R_{\alpha}}(\lambda) o P_{R_{\alpha}}(\mu) o M_{R_{\alpha}}(\mu) o 0.$$

The block $\mathcal{O}_{R_{\alpha},\Lambda}$ is equivalent to to the category of representations (over R_{α}) of the quiver

$$\lambda \xrightarrow{i}_{\leqslant j} \mu$$

with relation $ji = h_{\alpha}$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof.

(Sketch) The isomorphism $P_{R_{\alpha}}(\lambda) \cong M_{R_{\alpha}}(\lambda)$ follows from BGG reciprocity. By using the Jantzen sum formula, one sees that

$$[M_{\mathbb{K}_{\alpha}}(\lambda): L_{\mathbb{K}_{\alpha}}(\mu)] = [P_{R_{\alpha}}(\mu): M_{R_{\alpha}}(\lambda)] = 1.$$

This yields the short exact sequence, and the quiver description follows by calculating $\operatorname{End}(P_{R_{\alpha}}(\lambda) \oplus P_{R_{\alpha}}(\mu))$.

Define $Z_{T,\Lambda}$ to be centre of $\mathcal{O}_{T,\Lambda}$, that is, the ring of endotransformations of the identity functor. One can view the centre as a subring of $\bigoplus \operatorname{End} P_i$ satisfying certain commutation conditions. Here the P_i are projective modules such that $\bigoplus P_i$ is a projective generator in \mathcal{O}_T .

Image: A mathematical states and a mathem

Define $Z_{T,\Lambda}$ to be centre of $\mathcal{O}_{T,\Lambda}$, that is, the ring of endotransformations of the identity functor. One can view the centre as a subring of $\bigoplus \operatorname{End} P_i$ satisfying certain commutation conditions. Here the P_i are projective modules such that $\bigoplus P_i$ is a projective generator in \mathcal{O}_T .

Corollary

Suppose that we are in the subgeneric situation. The centre $Z_{R_{\alpha},\{\lambda,s_{\alpha}\cdot\lambda\}}$ is isomorphic to $\{(t_{\lambda},t_{\mu})\in R_{\alpha}\oplus R_{\alpha}:t_{\lambda}=t_{\mu} \mod h_{\alpha}\}.$

This follows by evaluating the action of the centre on $M_{R_{\alpha}}(\lambda) \oplus M_{R_{\alpha}}(\mu)$ using the quiver description above.

We can now use the subgeneric case to calculate $Z_{R,\Lambda}$.

Theorem

Evaluation on Verma modules induces an isomorphism of algebras

$$Z_{R,\Lambda} \cong \{(t_{\nu}) \in \prod_{\nu \in \Lambda} R : t_{\nu} = t_{s_{\alpha} \cdot \nu} \mod h_{\alpha} \text{ for all } \alpha \text{ such that } s_{\alpha} \in \mathcal{W} \}.$$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We can now use the subgeneric case to calculate $Z_{R,\Lambda}$.

Theorem

Evaluation on Verma modules induces an isomorphism of algebras

$$Z_{R,\Lambda} \cong \{(t_{\nu}) \in \prod_{\nu \in \Lambda} R : t_{\nu} = t_{s_{\alpha} \cdot \nu} \mod h_{\alpha} \text{ for all } \alpha \text{ such that } s_{\alpha} \in \mathcal{W} \}.$$

Proof

View $Z_{R,\Lambda}$ as a subring of $\bigoplus \operatorname{End} P_i$, where $\bigoplus P_i$ is a projective generator in $\mathcal{O}_{R,\Lambda}$. By basechange, there is an injective map $\bigoplus \operatorname{End} P_i \hookrightarrow \bigoplus \operatorname{End}(P_i \otimes_R Q)$, which in turn induces an injective map $Z_{R,\Lambda} \hookrightarrow Z_{Q,\Lambda}$. Furthermore,

$$Z_{R,\Lambda} = \bigcap_{\mathfrak{p} \subset R, \mathrm{ht}\mathfrak{p} = 1} Z_{R_\mathfrak{p},\Lambda} \subset Z_{Q,\Lambda}.$$

The calculation of $Z_{R,\Lambda}$ (continued)

Proof continued.

Fix a height one prime $\mathfrak{p} \subset R$. There are two cases:

If h_α ∉ p for all α, then Λ decomposes under ~_{R_p} into trivial equivalence classes. Thus

$$Z_{R_{\mathfrak{p}},\Lambda} = \prod_{\nu \in \Lambda} R_{\mathfrak{p}}.$$

• If $h_{\alpha} \in \mathfrak{p}$ for some α , then Λ splits under $\sim_{R_{\alpha}}$ into classes of the form $\{\lambda, s_{\alpha} \cdot \lambda\}$. The subgeneric case implies

$$Z_{R_{\mathfrak{p}},\Lambda} \cong \{ (t_{\nu} \in \prod_{\nu \in \Lambda} R_{\alpha} : t_{\nu} = t_{s_{\alpha} \cdot \nu} \mod h_{\alpha} \}.$$

Taking the intersection of all of these yields the result.

The calculation of $Z_{R,\Lambda}$ (continued)

Proof continued.

Fix a height one prime $\mathfrak{p} \subset R$. There are two cases:

If h_α ∉ p for all α, then Λ decomposes under ~_{R_p} into trivial equivalence classes. Thus

$$Z_{R_{\mathfrak{p}},\Lambda} = \prod_{\nu \in \Lambda} R_{\mathfrak{p}}.$$

• If $h_{\alpha} \in \mathfrak{p}$ for some α , then Λ splits under $\sim_{R_{\alpha}}$ into classes of the form $\{\lambda, s_{\alpha} \cdot \lambda\}$. The subgeneric case implies

$$Z_{R_{\mathfrak{p}},\Lambda} \cong \{(t_{\nu} \in \prod_{\nu \in \Lambda} R_{\alpha} : t_{\nu} = t_{s_{\alpha} \cdot \nu} \mod h_{\alpha}\}.$$

Taking the intersection of all of these yields the result.

Connection to moment graphs: The algebra $Z_{R,\Lambda}$ is the structure algebra of the Bruhat graph associated to the Weyl group W.

The endomorphism algebra of an antidominant projective

Proposition

Let $\lambda \in \mathfrak{h}^*$ be antidominant, with $\lambda \in \Lambda$. Then the natural map

 $Z_{R,\Lambda} \to \operatorname{End} P_R(\lambda)$

is an isomorphism.

Proof.

There is a commutative diagram

<ロト <回ト < 臣

Let $\lambda \in \mathfrak{h}^*$ be antidominant and let Λ be the equivalence class under \sim_R containing λ .

Definition

The functor $\mathbb{V} = \mathbb{V}_{R,\Lambda}$ is the exact functor

$$\mathcal{O}_{R,\Lambda} \to Z_{R,\Lambda} - \operatorname{mod}; M \mapsto \operatorname{Hom}(P_R(\mu), M).$$

This definition can be made for any deformation ring T.

Let $\lambda \in \mathfrak{h}^*$ be antidominant and let Λ be the equivalence class under \sim_R containing λ .

Definition

The functor $\mathbb{V} = \mathbb{V}_{R,\Lambda}$ is the exact functor

 $\mathcal{O}_{R,\Lambda} \to Z_{R,\Lambda} - \operatorname{mod}; M \mapsto \operatorname{Hom}(P_R(\mu), M).$

This definition can be made for any deformation ring T.

Remark. As noted before, $Z_{R,\Lambda}$ is isomorphic to the structure sheaf \mathcal{Z} of the Bruhat graph associated to \mathcal{W} . So we can think of \mathbb{V} as a functor $\mathcal{O}_{R,\Lambda} \to \mathcal{Z} - \text{mod.}$ By applying the localisation functor \mathcal{L} , one obtains a functor from $\mathcal{O}_{R,\Lambda}$ to sheaves on this moment graph.

(日) (同) (日) (日)

Theorem

Let T be a deformation ring. Then we have:

- (1) For any $w \in W$ there is an isomorphism $\mathbb{V}M_T(w \cdot \lambda) \cong Z_{T,\Lambda}/m_w$, where $m_w \subset Z_{T,\Lambda}$ is the ideal generated by all elements acting trivially on $M_T(w \cdot \lambda)$. In particular, $\mathbb{V}M_T(\lambda)$ is free of rank one over T.
- (2) If $M \in \mathcal{O}_{T,\Lambda}$ has a Verma flag, then $\mathbb{V}M$ is free of finite rank over T.
- (3) \mathbb{V} commutes with basechange $T \rightarrow T'$, that is,

$$\mathbb{V}_{\mathcal{T},\Lambda}(\cdot)\otimes_{\mathcal{T}}\mathcal{T}'\cong\prod_{i}\mathbb{V}_{\mathcal{T}',\Lambda_{i}}(\cdot\otimes_{\mathcal{T}}\mathcal{T}'),$$

where $\Lambda = \bigcup_{i} \Lambda_{i}$ is the splitting of Λ under $\sim_{T'}$. (4) $\mathbb{V} = \mathbb{V}_{R,\Lambda}$ is fully faithful on modules with a Verma flag, that is, if

(4) $\mathbb{V} = \mathbb{V}_{R,\Lambda}$ is fully faithful of modules with a verma hag, that is $M, M' \in \mathcal{O}_{R,\Lambda}$ have a Verma flag, then

 $\operatorname{Hom}(M,M')\cong\operatorname{Hom}(\mathbb{V}M,\mathbb{V}M').$

< ロ > < 同 > < 三 > < 三

Proof.

(Sketch)

(1) By basechange,

$$\mathbb{V}M_{\mathcal{T}}(w \cdot \lambda) \otimes_{\mathcal{T}} \mathbb{K} = \operatorname{Hom}(P_{\mathbb{K}}(\lambda), M_{\mathbb{K}}(w \cdot \lambda)).$$

By BGG reciprocity, this has dimension 1. Thus $\mathbb{V}M_T(w \cdot \lambda)$ is a cyclic *T*-module (Nakayama's Lemma). The result follows since $Z_{T,\Lambda}/m_w \cong T$.

- (2) Follows from (1) and exactness of \mathbb{V} .
- (3) Follows from basechange.
- (4) This is by proved by using (2) and (3) to reduce to the subgeneric case, where it is clear.