## Notation

As before, let $\mathfrak{g}$ be a complex finite-dimensional semisimple Lie algebra, with $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}$. We fix a nondegenerate invariant symmetric form $(-,-)$ on $\mathfrak{h}^{*}$.

Let $T$ be a local deformation ring with residue field $\mathbb{K}$.
Let $S=S(\mathfrak{h})$ and let $\tau: S \rightarrow T \in \mathfrak{h}_{T}^{*}=\operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, T)$ be the structure morphism. Extend $(-,-)$ to a bilinear form $(-,-)_{T}: \mathfrak{h}_{T}^{*} \times \mathfrak{h}_{T}^{*} \rightarrow T$.

We'll be especially concerned with the following special cases.

- Let $R=S_{(\mathfrak{h})}, Q=\operatorname{Frac}(R)$ and $\mathbb{K}$ the residue field. The structure morphism $\tau: S \rightarrow R$ is just inclusion.
- For any $\alpha \in \Delta$, let $h_{\alpha}=(\tau, \alpha)_{R} \in \mathfrak{h} \subset R$. Then define $R_{\alpha}$ to be the localisation of $R$ at $R h_{\alpha}$ and $\mathbb{K}_{\alpha}$ to be its residue field.


## Decomposition of $\mathcal{O}_{T}$ into blocks

Define an equivalence relation on $\mathfrak{h}^{*}$ generated by:
$\lambda \sim_{T} \mu$ if and only if $\left(P_{T}(\lambda): M_{T}(\mu)\right)=\left[M_{\mathbb{K}}(\lambda): L_{\mathbb{K}}(\mu)\right] \neq 0$.

## Decomposition of $\mathcal{O}_{T}$ into blocks

Define an equivalence relation on $\mathfrak{h}^{*}$ generated by:

$$
\lambda \sim_{T} \mu \text { if and only if }\left(P_{T}(\lambda): M_{T}(\mu)\right)=\left[M_{\mathbb{K}}(\lambda): L_{\mathbb{K}}(\mu)\right] \neq 0 .
$$

Notation: Let $\lambda \in \mathfrak{h}^{*}$ be a regular integral weight. Denote by $\Lambda$ the equivalence class of under $\sim_{T}$.

## Decomposition of $\mathcal{O}_{T}$ into blocks

Define an equivalence relation on $\mathfrak{h}^{*}$ generated by:

$$
\lambda \sim_{T} \mu \text { if and only if }\left(P_{T}(\lambda): M_{T}(\mu)\right)=\left[M_{\mathbb{K}}(\lambda): L_{\mathbb{K}}(\mu)\right] \neq 0 .
$$

Notation: Let $\lambda \in \mathfrak{h}^{*}$ be a regular integral weight. Denote by $\Lambda$ the equivalence class of under $\sim_{T}$.
Let $\theta \subset \mathfrak{h}^{*}$ be a union of equivalence classes under $\sim_{T}$. Then set $\mathcal{O}_{T, \theta}$ to be the full subcategory of all modules $M$ such that every highest weight of a subquotient of $M$ lies in $\theta$.

## Theorem

The functor

$$
\bigoplus_{\Lambda \in \mathfrak{h}^{*} / \sim_{T}} \mathcal{O}_{T, \Lambda} \rightarrow \mathcal{O}_{T} ;\left\{M_{\Lambda}\right\} \mapsto \oplus M_{\Lambda}
$$

is an equivalence of categories.

## Decomposition of $\mathcal{O}_{T}$ into blocks

Define an equivalence relation on $\mathfrak{h}^{*}$ generated by:

$$
\lambda \sim_{T} \mu \text { if and only if }\left(P_{T}(\lambda): M_{T}(\mu)\right)=\left[M_{\mathbb{K}}(\lambda): L_{\mathbb{K}}(\mu)\right] \neq 0 .
$$

Notation: Let $\lambda \in \mathfrak{h}^{*}$ be a regular integral weight. Denote by $\Lambda$ the equivalence class of under $\sim_{T}$.
Let $\theta \subset \mathfrak{h}^{*}$ be a union of equivalence classes under $\sim_{T}$. Then set $\mathcal{O}_{T, \theta}$ to be the full subcategory of all modules $M$ such that every highest weight of a subquotient of $M$ lies in $\theta$.

## Theorem

The functor

$$
\bigoplus_{\Lambda \in \mathfrak{h}^{*} / \sim_{T}} \mathcal{O}_{T, \Lambda} \rightarrow \mathcal{O}_{T} ;\left\{M_{\Lambda}\right\} \mapsto \oplus M_{\Lambda},
$$

is an equivalence of categories.

Remark. If we have a morphism of local deformation rings $T \rightarrow T^{\prime}$, then $\lambda \sim_{T^{\prime}} \mu \Rightarrow \lambda \sim_{T} \mu$. Thus the block decomposition for $T^{\prime}$ refines that for $T$.

## Blocks and Weyl group orbits

## Theorem (Bernstein-Gelfand-Gelfand)

An equivalence class $\Lambda$ is equal to the dot orbit $\mathcal{W}_{T}(\Lambda) \cdot \lambda$, where

$$
\mathcal{W}_{T}(\Lambda)=<s_{\beta}: 2(\lambda+\rho+\tau, \beta)_{\mathbb{K}} \in \mathbb{Z}(\beta, \beta)_{\mathbb{K}}>.
$$

## Blocks and Weyl group orbits

## Theorem (Bernstein-Gelfand-Gelfand)

An equivalence class $\Lambda$ is equal to the dot orbit $\mathcal{W}_{T}(\Lambda) \cdot \lambda$, where

$$
\mathcal{W}_{T}(\Lambda)=<s_{\beta}: 2(\lambda+\rho+\tau, \beta)_{\mathbb{K}} \in \mathbb{Z}(\beta, \beta)_{\mathbb{K}}>.
$$

Let's calculate $\mathcal{W}_{T}(\Lambda) \cdot \lambda$ in two special cases.

- Let $T=R$ : Since $(\tau, \beta)_{R} \in \mathfrak{h}$ we get $(\tau, \beta)_{\mathbb{K}}=0$. Thus the orbits $\mathcal{W}_{T}(\Lambda) \cdot \lambda$ are just the usual Weyl group orbits $\mathcal{W} \cdot \lambda$, and in particular contain a unique antidominant weight.
- Let $T=R_{\alpha}$ : Since $(\tau, \beta)_{R_{\alpha}}=\tau\left(h_{\beta}\right)=h_{\beta}$, the condition

$$
2(\lambda+\rho+\tau, \beta)_{\mathbb{K}_{\alpha}} \in \mathbb{Z}(\beta, \beta)
$$

is equivalent to

$$
\begin{equation*}
2(\lambda+\rho, \beta) \in \mathbb{Z}(\beta, \beta) \text { and } h_{\beta} \in R h_{\alpha} . \tag{1}
\end{equation*}
$$

Therefore, only $\beta= \pm \alpha$ can satisfy the conditions of (1), and the possible equivalence classes are $\Lambda=\{\lambda\}$ or $\left\{\lambda, s_{\alpha} \cdot \lambda\right\}$.

## $\mathcal{O}_{T, \Lambda}$ in the subgeneric cases

Let us now consider the deformation ring $R_{\alpha}$, and let $\Lambda=\left\{\lambda, s_{\alpha} \cdot \lambda\right\}$.

## $\mathcal{O}_{T, \wedge}$ in the subgeneric cases

Let us now consider the deformation ring $R_{\alpha}$, and let $\Lambda=\left\{\lambda, s_{\alpha} \cdot \lambda\right\}$.

## Theorem

Suppose that $\lambda>\mu=s_{\alpha} \cdot \lambda$. Then $P_{R_{\alpha}}(\lambda) \cong M_{R_{\alpha}}(\lambda)$ and there is a short exact sequence

$$
0 \rightarrow M_{R_{\alpha}}(\lambda) \rightarrow P_{R_{\alpha}}(\mu) \rightarrow M_{R_{\alpha}}(\mu) \rightarrow 0 .
$$

The block $\mathcal{O}_{R_{\alpha}, \Lambda}$ is equivalent to to the category of representations (over $R_{\alpha}$ ) of the quiver

$$
\lambda \underset{{ }_{j}}{\stackrel{i}{\rightleftarrows}} \mu,
$$

with relation $j i=h_{\alpha}$.

## Proof of subgeneric case

## Proof.

(Sketch) The isomorphism $P_{R_{\alpha}}(\lambda) \cong M_{R_{\alpha}}(\lambda)$ follows from BGG reciprocity. By using the Jantzen sum formula, one sees that

$$
\left[M_{\mathbb{K}_{\alpha}}(\lambda): L_{\mathbb{K}_{\alpha}}(\mu)\right]=\left[P_{R_{\alpha}}(\mu): M_{R_{\alpha}}(\lambda)\right]=1 .
$$

This yields the short exact sequence, and the quiver description follows by calculating $\operatorname{End}\left(P_{R_{\alpha}}(\lambda) \oplus P_{R_{\alpha}}(\mu)\right)$.

## The centre of $\mathcal{O}_{R_{\alpha}, \wedge}$

Define $Z_{T, \Lambda}$ to be centre of $\mathcal{O}_{T, \Lambda}$, that is, the ring of endotransformations of the identity functor. One can view the centre as a subring of $\bigoplus \operatorname{End} P_{i}$ satisfying certain commutation conditions. Here the $P_{i}$ are projective modules such that $\bigoplus P_{i}$ is a projective generator in $\mathcal{O}_{T}$.

## The centre of $\mathcal{O}_{R_{a}, \wedge}$

Define $Z_{T, \Lambda}$ to be centre of $\mathcal{O}_{T, \Lambda,}$, that is, the ring of endotransformations of the identity functor. One can view the centre as a subring of $\bigoplus \operatorname{End} P_{i}$ satisfying certain commutation conditions. Here the $P_{i}$ are projective modules such that $\bigoplus P_{i}$ is a projective generator in $\mathcal{O}_{T}$.

## Corollary

Suppose that we are in the subgeneric situation. The centre $Z_{R_{\alpha},\left\{\lambda, s_{\alpha} \cdot \lambda\right\}}$ is isomorphic to $\left\{\left(t_{\lambda}, t_{\mu}\right) \in R_{\alpha} \oplus R_{\alpha}: t_{\lambda}=t_{\mu} \bmod h_{\alpha}\right\}$.

This follows by evaluating the action of the centre on $M_{R_{\alpha}}(\lambda) \oplus M_{R_{\alpha}}(\mu)$ using the quiver description above.

## The calculation of $Z_{R, \wedge}$

We can now use the subgeneric case to calculate $Z_{R, \Lambda}$.

## Theorem

Evaluation on Verma modules induces an isomorphism of algebras

$$
Z_{R, \Lambda} \cong\left\{\left(t_{\nu}\right) \in \prod_{\mathcal{A}} R: t_{\nu}=t_{s_{\alpha} \cdot \nu} \bmod h_{\alpha} \text { for all } \alpha \text { such that } s_{\alpha} \in \mathcal{W}\right\}
$$

## The calculation of $Z_{R, \Lambda}$

We can now use the subgeneric case to calculate $Z_{R, \Lambda}$.

## Theorem

Evaluation on Verma modules induces an isomorphism of algebras

$$
Z_{R, \Lambda} \cong\left\{\left(t_{\nu}\right) \in \prod_{\nu \in \Lambda} R: t_{\nu}=t_{s_{\alpha} \cdot \nu} \bmod h_{\alpha} \text { for all } \alpha \text { such that } s_{\alpha} \in \mathcal{W}\right\}
$$

## Proof

View $Z_{R, \Lambda}$ as a subring of $\bigoplus \operatorname{End} P_{i}$, where $\bigoplus P_{i}$ is a projective generator in $\mathcal{O}_{R, \wedge}$. By basechange, there is an injective map $\bigoplus \operatorname{End} P_{i} \hookrightarrow \bigoplus \operatorname{End}\left(P_{i} \otimes_{R} Q\right)$, which in turn induces an injective map $Z_{R, \wedge} \hookrightarrow Z_{Q, \wedge}$. Furthermore,

$$
Z_{R, \Lambda}=\bigcap_{\mathfrak{p} \subset R, \mathrm{htp}=1} Z_{R_{\mathfrak{p}}, \Lambda} \subset Z_{Q, \wedge}
$$

## The calculation of $Z_{R, \wedge}$ (continued)

## Proof continued.

Fix a height one prime $\mathfrak{p} \subset R$. There are two cases:

- If $h_{\alpha} \notin \mathfrak{p}$ for all $\alpha$, then $\Lambda$ decomposes under $\sim_{R_{\mathfrak{p}}}$ into trivial equivalence classes. Thus

$$
Z_{R_{\mathfrak{p}}, \Lambda}=\prod_{\nu \in \Lambda} R_{\mathfrak{p}}
$$

- If $h_{\alpha} \in \mathfrak{p}$ for some $\alpha$, then $\Lambda$ splits under $\sim_{R_{\alpha}}$ into classes of the form $\left\{\lambda, s_{\alpha} \cdot \lambda\right\}$. The subgeneric case implies

$$
Z_{R_{\mathfrak{p}}, \Lambda} \cong\left\{\left(t_{\nu} \in \prod_{\nu \in \Lambda} R_{\alpha}: t_{\nu}=t_{s_{\alpha} \cdot \nu} \bmod h_{\alpha}\right\}\right.
$$

Taking the intersection of all of these yields the result.

## The calculation of $Z_{R, \Lambda}$ (continued)

## Proof continued.

Fix a height one prime $\mathfrak{p} \subset R$. There are two cases:

- If $h_{\alpha} \notin \mathfrak{p}$ for all $\alpha$, then $\Lambda$ decomposes under $\sim_{R_{\mathfrak{p}}}$ into trivial equivalence classes. Thus

$$
Z_{R_{\mathfrak{p}}, \Lambda}=\prod_{\nu \in \Lambda} R_{\mathfrak{p}}
$$

- If $h_{\alpha} \in \mathfrak{p}$ for some $\alpha$, then $\Lambda$ splits under $\sim_{R_{\alpha}}$ into classes of the form $\left\{\lambda, s_{\alpha} \cdot \lambda\right\}$. The subgeneric case implies

$$
Z_{R_{p}, \Lambda} \cong\left\{\left(t_{\nu} \in \prod_{\nu \in \Lambda} R_{\alpha}: t_{\nu}=t_{s_{\alpha} \cdot \nu} \bmod h_{\alpha}\right\}\right.
$$

Taking the intersection of all of these yields the result.

Connection to moment graphs: The algebra $Z_{R, \Lambda}$ is the structure algebra of the Bruhat graph associated to the Weyl group $\mathcal{W}$.

## The endomorphism algebra of an antidominant projective

## Proposition

Let $\lambda \in \mathfrak{h}^{*}$ be antidominant, with $\lambda \in \Lambda$. Then the natural map

$$
Z_{R, \wedge} \rightarrow \operatorname{End} P_{R}(\lambda)
$$

is an isomorphism.

## Proof.

There is a commutative diagram

$$
\begin{gathered}
\operatorname{End} P_{R}(\lambda)=\bigcap_{\mathfrak{p} \subset R, \text { ht } \mathfrak{p}=1} \operatorname{End}\left(P_{R}(\lambda) \otimes_{R} R_{\mathfrak{p}}\right) \\
\quad Z_{R, \Lambda}= \\
\bigcap_{\mathfrak{p} \subset R, \text { htp }=1} Z_{R_{\mathfrak{p}}, \Lambda} .
\end{gathered}
$$

## The functor $\mathbb{V}$

Let $\lambda \in \mathfrak{h}^{*}$ be antidominant and let $\Lambda$ be the equivalence class under $\sim_{R}$ containing $\lambda$.

## Definition

The functor $\mathbb{V}=\mathbb{V}_{R, \Lambda}$ is the exact functor

$$
\mathcal{O}_{R, \Lambda} \rightarrow Z_{R, \Lambda}-\bmod ; M \mapsto \operatorname{Hom}\left(P_{R}(\mu), M\right)
$$

This definition can be made for any deformation ring $T$.

## The functor $\mathbb{V}$

Let $\lambda \in \mathfrak{h}^{*}$ be antidominant and let $\Lambda$ be the equivalence class under $\sim_{R}$ containing $\lambda$.

## Definition

The functor $\mathbb{V}=\mathbb{V}_{R, \Lambda}$ is the exact functor

$$
\mathcal{O}_{R, \Lambda} \rightarrow Z_{R, \Lambda}-\bmod ; M \mapsto \operatorname{Hom}\left(P_{R}(\mu), M\right)
$$

This definition can be made for any deformation ring $T$.
Remark. As noted before, $Z_{R, \wedge}$ is isomorphic to the structure sheaf $\mathcal{Z}$ of the Bruhat graph associated to $\mathcal{W}$. So we can think of $\mathbb{V}$ as a functor $\mathcal{O}_{R, \Lambda} \rightarrow \mathcal{Z}-\bmod$. By applying the localisation functor $\mathcal{L}$, one obtains a functor from $\mathcal{O}_{R, \Lambda}$ to sheaves on this moment graph.

## Properties of $\mathbb{V}$ :

## Theorem

Let $T$ be a deformation ring. Then we have:
(1) For any $w \in \mathcal{W}$ there is an isomorphism $\mathbb{V} M_{T}(w \cdot \lambda) \cong Z_{T, \Lambda} / m_{w}$, where $m_{w} \subset Z_{T, \wedge}$ is the ideal generated by all elements acting trivially on $M_{T}(w \cdot \lambda)$. In particular, $\mathbb{V} M_{T}(\lambda)$ is free of rank one over $T$.
(2) If $M \in \mathcal{O}_{T, \Lambda}$ has a Verma flag, then $\mathbb{V} M$ is free of finite rank over $T$.
(3) $\mathbb{V}$ commutes with basechange $T \rightarrow T^{\prime}$, that is,

$$
\mathbb{V}_{T, \Lambda}(\cdot) \otimes_{T} T^{\prime} \cong \prod_{i} \mathbb{V}_{T^{\prime}, \Lambda_{i}}\left(\cdot \otimes_{T} T^{\prime}\right)
$$

where $\Lambda=\bigcup_{i} \Lambda_{i}$ is the splitting of $\Lambda$ under $\sim_{T^{\prime}}$.
(4) $\mathbb{V}=\mathbb{V}_{R, \Lambda}$ is fully faithful on modules with a Verma flag, that is, if $M, M^{\prime} \in \mathcal{O}_{R, \Lambda}$ have a Verma flag, then

$$
\operatorname{Hom}\left(M, M^{\prime}\right) \cong \operatorname{Hom}\left(\mathbb{V} M, \mathbb{V} M^{\prime}\right)
$$

## Sketch of proof

## Proof.

(Sketch)
(1) By basechange,

$$
\mathbb{V} M_{T}(w \cdot \lambda) \otimes_{T} \mathbb{K}=\operatorname{Hom}\left(P_{\mathbb{K}}(\lambda), M_{\mathbb{K}}(w \cdot \lambda)\right) .
$$

By BGG reciprocity, this has dimension 1 . Thus $\mathbb{V} M_{T}(w \cdot \lambda)$ is a cyclic $T$-module (Nakayama's Lemma). The result follows since $Z_{T, \Lambda} / m_{w} \cong T$.
(2) Follows from (1) and exactness of $\mathbb{V}$.
(3) Follows from basechange.
(4) This is by proved by using (2) and (3) to reduce to the subgeneric case, where it is clear.

