Deformed category ${\cal O}$

Simon Goodwin and Maurizio Martino

Tuesday 25 May, 2010 Isle of Skye

S. Goodwin and M. Martino Deformed category \mathcal{O}

 $\mathfrak{g}=\mathsf{finite}$ dimensional semisimple Lie algebra over $\mathbb{C}.$

 $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n} =$ Borel subalgebra.

 $\mathfrak{h}^*\supseteq\Delta=$ root system of \mathfrak{g} with respect to $\mathfrak{h}.$ $\Delta_+=$ positive roots determined by $\mathfrak{b}.$

 $S = S(\mathfrak{h}) = U(\mathfrak{h})$

 $(\cdot\,,\cdot)$ is a nondegenerate invariant symmetric bilinear form on $\mathfrak{g};$ inducing a form on $\mathfrak{h}^*.$

A deformation ring T is a commutative noetherian S-algebra, which is an integral domain.

T is a local deformation ring if it is local as an ring.

Let $\tau : S \to T$ be the structure map.

Let $\lambda \in \mathfrak{h}^*$. Then \mathbb{C} is a local deformation ring with $\tau = \lambda$.

The localization $S_{(h)}$ of S at $0 \in \mathfrak{h}^*$ is a local deformation ring, with τ the inclusion.

The field of fractions Q of $S_{(h)}$ in a local deformation ring.

Given a subalgebra $\mathfrak a$ of $\mathfrak g,$ we define

$$\mathfrak{a}_T = \mathfrak{a} \otimes_{\mathbb{C}} T,$$

and we have

$$U(\mathfrak{a}_T)\cong U(\mathfrak{a})\otimes_{\mathbb{C}} T.$$

Deformed Verma modules

Let $\lambda \in \mathfrak{h}^*$. Define \mathcal{T}_{λ} to be the $\mathfrak{b}_{\mathcal{T}}$ -module, such that

- it is equal to T as a T-module;
- 2 t acts by multiplication by $\lambda(t) + \tau(t)$;
- In acts as zero.

Then

$$M_{\mathcal{T}}(\lambda) = U(\mathfrak{g}_{\mathcal{T}}) \otimes_{U(\mathfrak{b}_{\mathcal{T}})} T_{\lambda}$$

is the deformed Verma module associated to λ .

 $M_T(\lambda)$ is free as a *T*-module.

Let *M* be a $U(\mathfrak{g}_T)$ -module and $\lambda \in \mathfrak{h}^*$. Then

$$M_\lambda = \{m \in M \mid hm = (\lambda + au)(h)m ext{ for all } h \in \mathfrak{h}\}$$

is the λ -weight space of M.

M is a weight module if

$$M = igoplus_{\lambda \in \mathfrak{h}^*} M_{\lambda}.$$

A deformed Verma module $M_T(\lambda)$ is a weight module with set of weights $\lambda - \mathbb{Z}_{\geq 0}\Delta_+$.

Deformed category \mathcal{O}

The *deformed category* \mathcal{O} is the category \mathcal{O}_T of finitely generated $U(\mathfrak{g}_T)$ -modules such that

- M is a weight module
- **2** $U(\mathfrak{n}_T)m$ is finitely generated as a *T*-module for all $m \in M$.

It is an abelian category and contains all deformed Verma modules.

Given a homomorphism $T \to T^\prime$ of deformation rings there is a base change functor

$$? \otimes_T T' : \mathcal{O}_T \to \mathcal{O}_{T'}.$$

Clearly $M_T(\lambda) \otimes_T T' = M_{T'}(\lambda)$.

 $M \in \mathcal{O}_{\mathcal{T}}$ is said to have a *Verma flag* if there is a finite filtration

$$M = M_1 \supseteq \ldots \supseteq M_{r+1} = 0$$

such that $M_i/M_{i+1} \cong M_T(\lambda_i)$ for some $\lambda_i \in \mathfrak{h}^*$ for $i = 1, \ldots, r$.

We define $\mathcal{M}_{\mathcal{T}}$ to be the full subcategory of $\mathcal{O}_{\mathcal{T}}$ consisting of all modules with a Verma flag.

Given $M \in \mathcal{M}_T$ and $\lambda \in \mathfrak{h}^*$, we write $(M : M_T(\lambda))$ for the number of times $M_T(\lambda)$ occurs in a Verma flag for M. This is independent of the choice of Verma flag.

Any $M \in \mathcal{M}_T$ is free as a *T*-module.

From now on T is a local deformation ring, and we write \mathbb{K} for the residue field of T.

We may consider the category $\mathcal{O}_{\mathbb{K}}$ of $\mathfrak{g}_{\mathbb{K}} = \mathfrak{g}_{\mathcal{T}} \otimes_{\mathcal{T}} \mathbb{K}$ -modules. This contains projective modules $P_{\mathbb{K}}(\lambda)$ and simple modules $\mathcal{L}_{\mathbb{K}}(\lambda)$ for each $\lambda \in \mathfrak{h}^*$.

The category $\mathcal{O}_{\mathcal{T}}$ "contains enough projectives". More precisely:

Theorem

For each $\lambda \in \mathfrak{h}^*$, there is a projective module $P_T(\lambda)$ such that $P_T(\lambda) \otimes_T \mathbb{K} \cong P_{\mathbb{K}}(\lambda)$.

Let $\lambda, \mu \in \mathfrak{h}*$. Then:

• $P_T(\lambda)$ is indecomposable;

2 each projective in \mathcal{O}_T is a finite direct sums of $P_T(\lambda)$ s;

(a) $P_T(\lambda) \in \mathcal{M}_T$; and

$$(P_{\mathcal{T}}(\lambda) : M_{\mathcal{T}}(\mu)) = [M_{\mathbb{K}}(\lambda) : L_{\mathbb{K}}(\mu)].$$

Let T' be another local deformation ring with a homomorphism $T \to T'$, and let $P \in \mathcal{O}_T$ be projective. Then there is a isomorphism of functors

$$\operatorname{Hom}_{\mathfrak{g}_{\mathcal{T}}}(P,?)\otimes_{\mathcal{T}} T'\cong \operatorname{Hom}_{\mathfrak{g}_{\mathcal{T}'}}(P_{T'},?):\mathcal{O}_{\mathcal{T}}\to T'$$

The simples in $\mathcal{O}_{\mathcal{T}}$ are indexed by \mathfrak{h}^* , more precisely:

Theorem

The functor $? \otimes_T \mathbb{K}$ gives rise to a bijection between isomorphism classes of simple objects in \mathcal{O}_T and those in $\mathcal{O}_{\mathbb{K}}$.

 $P_T(\lambda)$ is the projective cover of $L_T(\lambda)$.