# Geometry of Schubert Varieties 

## RepNet Workshop

Chris Spencer Ulrich Thiel

University of Edinburgh<br>University of Kaiserslautern

24 May 2010

Throughout, let $k$ be a fixed algebraically closed field and $V$ a finite-dimensional $k$-vector space.

A flag in $V$ is a nested sequence of strictly increasing subvector spaces:

$$
F_{\bullet}:=\left(0=F_{0}<F_{1}<\cdots<F_{r}=V\right)
$$

If $r=\operatorname{dim} V$ we speak of a complete flag, otherwise we call $F_{\bullet}$ a partial flag.

For $\underline{d} \in \mathbb{N}^{r}$ we set

$$
\mathrm{FI}(V, \underline{\mathrm{~d}}):=\left\{F_{\bullet} \mid \operatorname{dim}\left(F_{i} / F_{i-1}\right)=d_{i}, i=1 \ldots r\right\}
$$

the set of $\underline{d}$-flags.

## Flag Varieties

When is $\mathrm{Fl}(V, \underline{\mathrm{~d}})$ a variety? Some examples:

- $\underline{\mathrm{d}}=(1, \operatorname{dim} V-1)$ we obtain $\mathrm{FI}(V, \underline{\mathrm{~d}})=\mathbb{P}(V)$
- $\underline{d}=(I, \operatorname{dim} V-I)$ we have $\operatorname{FI}(V, \underline{d})=\operatorname{Gr}(V, I)$, the Grassmannian of $I$-dimensional subspaces of $V$
Promising! We could proceed by embedding $\mathrm{FI}(V, \underline{\mathrm{~d}})$ in a product of Grassmannians

$$
\begin{aligned}
& \mathrm{FI}(V, \underline{\mathrm{~d}}) \hookrightarrow \operatorname{Gr}\left(V, \operatorname{dim} F_{1}\right) \times \operatorname{Gr}\left(V, \operatorname{dim} F_{2}\right) \ldots \times \operatorname{Gr}\left(V, \operatorname{dim} F_{r}\right) . \\
& \quad\left(F_{0}<F_{1}<\ldots<F_{r}\right) \mapsto\left(F_{1}, F_{2}, \ldots, F_{r}\right)
\end{aligned}
$$

But let us give a description that is easier to generalize (of course the same up to isomorphism):

We clearly have a natural action of $\mathrm{GL}(V)$ on $\mathrm{FI}(V, \underline{\mathrm{~d}})$ by

$$
g \cdot F_{\bullet}=\left(0=g\left(F_{0}\right)<g\left(F_{1}\right)<\cdots<g\left(F_{r-1}\right)<g\left(F_{r}\right)=V\right)
$$

and this action is transitive. So for any fixed flag $F_{\bullet} \in \mathrm{FI}(V, \underline{\mathrm{~d}})$ we have

$$
\mathrm{FI}(V, \underline{\mathrm{~d}}) \cong \mathrm{GL}(V) / \operatorname{Stab}\left(F_{\bullet}\right)
$$

and we define this to be an isomorphism of varieties (well-defined because two stabilizers are conjugate).

## EXAMPLE

For $V=k^{n}$ and the standard flag

$$
E_{\bullet}=\left(0<\left\langle e_{1}\right\rangle<\left\langle e_{1}, e_{2}\right\rangle<\ldots<\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle=k^{n}\right)
$$

we have

$$
\begin{aligned}
\operatorname{Stab}\left(E_{0}\right)=B & :=\{\text { upper triangular matrices }\} \\
& :=\text { standard Borel subgroup }
\end{aligned}
$$

and so

$$
\mathrm{FI}\left(k^{n},(1,1, \ldots, 1)\right)=\mathrm{GL}_{n}(k) / B
$$

## Coxeter groups

Let $(W, S)$ be a Coxeter system with $W$ finite, i.e. $W$ is a finite group with presentation $\left\langle S \mid\left(s_{i} s_{j}\right)^{m_{i j}}=1\right\rangle$, where $m_{i j} \in \mathbb{N} \cup\{\infty\}$ with $m_{i i}=1$ and $m_{i j}=m_{j i} \geq 2$ for $i \neq j$. Here, $\left(s_{i} s_{j}\right)^{\infty}=1$ denotes the empty relation.

## Definition

- $\ell: W \rightarrow \mathbb{N}, \ell(w):=\min \#\left\{I \mid w=s_{1} \cdots s_{l}\right.$ with $\left.s_{i} \in S\right\}$ is the length function.
- Any expression $w=s_{1} \cdots s_{\ell(w)}$ with $s_{i} \in S$ is called a reduced expression of $w$.
- $R:=\left\{w s w^{-1} \mid w \in W, s \in S\right\}$ are the reflections of $(W, S)$.
- If $u^{-1} w \in R$ and $\ell(u)<\ell(w)$, one writes $u \rightarrow w$ and says $u$ covers $w$. (Note: $u^{-1} w \in R$ if and only if $w u^{-1} \in R$ )
- If there exists a sequence $u=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{r}=w$, one writes $u \leq w$.


## Coxeter groups

## Theorem

(i) $\leq$ is a partial order on $W$ (Bruhat order).
(ii) If $w=s_{1} \cdots s_{l}$ is a reduced expression of $w$, then $u \leq w$ if and only if a subexpression of $s_{1} \cdots s_{/}$is equal to $u$.
(iii) If $u \leq w$, then there exists a sequence $u=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{r}=w$ with $\ell\left(u_{i+1}\right)=\ell\left(u_{i}\right)+1$.
(iv) $1 \leq w$ for all $w \in W$.
(v) $\leq$ is directed, i.e. if $u, v \in W$, then $u \leq w, v \leq w$ for some $w \in W$.
(vi) There exists a unique element $w_{0} \in W$ of maximal length. Moreover, $w \leq w_{0}$ for all $w \in W$.

## Coxeter groups

Our primary example of a Coxeter system:

## THEOREM

$\left(\mathrm{S}_{n}, S\right)$ with $S:=\left\{s_{i} \mid 1 \leq i \leq n-1\right\}$ and $s_{i}:=(i, i+1)$ is a
Coxeter system.
Some properties:
(i) $\ell(w)=\#\{(i, j) \mid i<j, w(i)>w(j)\}$ for all $w \in \mathrm{~S}_{n}$.
(ii) $w_{0}=\left(\begin{array}{lll}n & n-1 & \cdots\end{array}\right)$.

## Coxeter groups

## Definition

The Bruhat graph of $(W, S)$ is the directed graph with vertices $W$ and arrows given by the covering relation $\rightarrow$.

The Bruhat graph of $\mathrm{S}_{3}$ is:


## Schubert varieties in flag varieties

Throughout, we fix $G:=G L_{n}(k)$. We denote by $B$ the group of upper triangular matrices in $G$ and by $T$ the group of diagonal matrices in $G$.

## Definition

(i) $\mathrm{N}_{G}(T)$ is the group of monomial matrices. Hence, $W:=\mathrm{N}_{G}(T) / T \cong \mathrm{~S}_{n}$ canonically. The permutation matrices in $G$ form a complete set of representatives $\{\dot{w}\}$ of $W$.
(ii) $S:=\left\{s_{i} \mid 1 \leq i<n\right\}$, where $s_{i}:=(i, i+1)$.
(iii) $\Phi:=\left\{\chi_{i j} \mid 1 \leq i, j \leq n, i \neq j\right\}$,
where $\chi_{i j}: T \rightarrow k^{\times}, \operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \mapsto t_{i} t_{j}^{-1}$.
(iv) $\Phi^{+}:=\left\{\chi_{i j} \mid 1 \leq i<j \leq n\right\}$.
(v) $s_{\chi_{i j}}:=s_{i j}:=(i, j)$.
(vi) $W$ acts on $\operatorname{Hom}\left(T, k^{\times}\right)$by $(w \cdot \chi)(t):=\chi\left(t^{w}\right)$.

## Definition

(i) $U:=$ the group of upper unitriangular matrices.
(ii) $B^{-}:=$the group of lower triangular matrices.
(iii) $U^{-}:=$the group of lower unitriangular matrices.
(iv) $U_{w}^{\prime}:=U \cap w U^{-} w^{-1}$ for $w \in W$.
(v) $\Phi_{w}^{-}:=\left\{\alpha \in \Phi^{+} \mid w^{-1} \alpha \in-\Phi^{+}\right\}$
$=\left\{\chi_{i j} \mid i<j, w^{-1}(i)>w^{-1}(j)\right\}$.
(vi) $u_{\chi_{i j}}:=u_{i j}: k \rightarrow G, c \mapsto 1+c E_{i j}$.

## THEOREM

(i) $G=\coprod_{w \in W} B w B$ (Bruhat decomposition).
(ii) The map $U_{w}^{\prime} \times B \rightarrow B w B$ given by $(u, b) \mapsto u \dot{w} b$ is an isomorphism.
(iii) $G / B=\coprod_{w \in W} B w B / B$. We call $C_{w}:=B w B / B$ a Schubert cell in $G / B$.
(iv) The map $U_{w}^{\prime} \rightarrow C_{w}$ given by $u \mapsto u \dot{w} B$ is an isomorphism.
(v) Let $\alpha_{1}, \ldots, \alpha_{l}$ be the roots of $\Phi_{w}^{-}$(any ordering). Then the $\operatorname{map} \mathbb{A}^{l(w)} \rightarrow U_{w}^{\prime},\left(a_{1}, \ldots, a_{l}\right) \mapsto u_{\alpha_{1}}\left(a_{1}\right) \cdots u_{\alpha_{l}}\left(a_{l}\right)$, is an isomorphism of varieties. Hence, $\mathbb{A}^{\ell(w)} \cong C_{w}$.

## Definition

For each $w \in W$ we set $X_{w}:=\overline{B w B / B} \subseteq G / B$ and refer to this as the Schubert variety of $w$.

## Theorem

The following holds:
(i) $X_{w}$ is a projective variety and $\operatorname{dim} X_{w}=\ell(w)$.
(ii) $X_{w}=\coprod_{u \leq w} C_{u}$, where $\leq$ denotes the Bruhat order.
(iii) $X_{w}=\bigcup_{u \leq w} X_{u}$.
(iv) $X_{u} \subseteq X_{w}$ if and only if $u \leq w$.
(v) $X_{w_{0}}=G / B$ and $X_{i d}=p t$.

Let $n=4$. For $w=(2413)$ we have

$$
U_{w}^{\prime}=\left\{\left(\begin{array}{cccc}
1 & \star & 0 & \star \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & \star \\
0 & 0 & 0 & 1
\end{array}\right)\right\} \cong \mathbb{A}^{3}=\mathbb{A}^{l(w)} \Rightarrow C_{w}=\left\{\left(\begin{array}{cccc}
\star & \star & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & \star & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) B\right\}
$$

We have $\Phi_{w}^{-}=\left\{\chi_{12}, \chi_{14}, \chi_{34}\right\}$ and indeed the map $\mathbb{A}^{3} \rightarrow U_{w}^{\prime}$ defined above as

$$
\begin{aligned}
\left(a_{1}, a_{2}, a_{3}\right) \mapsto & u_{12}\left(a_{1}\right) u_{14}\left(a_{2}\right) u_{34}\left(a_{3}\right) \\
& =1+a_{3} E_{34}+a_{2} E_{14}+a_{1} E_{12} \\
& =\left(\begin{array}{cccc}
1 & a_{1} & 0 & a_{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & a_{3} \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

is an isomorphism.

Let us consider an example now:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
6 & 9 & 2 & -1 \\
1 & 1 & 0 & 1 \\
0 & 6 & 2 & 1 \\
0 & 3 & 1 & 0
\end{array}\right) \xrightarrow{-1 \cdot \mathrm{I}+\mathrm{IV}}\left(\begin{array}{cccc}
6 & 3 & 2 & -7 \\
1 & 0 & 0 & 0 \\
0 & 6 & 2 & 1 \\
0 & 3 & 1 & 0
\end{array}\right) \xrightarrow{\frac{1}{3} \cdot \mathrm{II}}\left(\begin{array}{llll}
6 & 1 & 2 & -7 \\
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \\
& \xrightarrow{-1 \cdot \mathrm{II}+\mathrm{III}}\left(\begin{array}{llll}
6 & 1 & 1 & -7 \\
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \xrightarrow{7 \cdot \mathrm{III+IV}}\left(\begin{array}{cccc}
6 & 1 & (1) & 0 \\
(1) & 0 & 0 & 0 \\
0 & 2 & 0 & (1) \\
0 & (1) & 0 & 0
\end{array}\right)
\end{aligned}
$$

So this is in $C_{2413}$ with coordinates $(6,1,2)$.

We can also determine the decomposition $M=u \dot{w} b$ with $u \in U_{w}^{\prime}$ and $b \in B$ :
The column operations give $b^{-1}, \dot{w}$ can be read off from $M$ and $u$ computed from $M, b, \dot{w}$ :

$$
b=\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 3 & 1 & 0 \\
0 & 0 & 1 & -7 \\
0 & 0 & 0 & 1
\end{array}\right), \dot{w}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \quad u=\left(\begin{array}{llll}
1 & 6 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

## The moment graph of $G / B$

The maximal torus $T$ acts canonically on $G / B$. The root morphisms $u_{\alpha}$ and their property $t u_{\alpha}(c) t^{-1}=u_{\alpha}(\alpha(t) c)$ are the central ingredients in the proof of the following theorem:

## Theorem

(i) The set of $T$-fixed points is $\{w B \mid w \in W\}$, i.e. $(G / B)^{T} \cong W$.
(ii) The one-dimensional $T$-orbits are precisely the

$$
\mathcal{O}_{w, \alpha}:=\left\{u_{\alpha}(x) w B \mid x \in k^{\times}\right\}=T u_{\alpha}(1) w B
$$

for $w \in W$ and $\alpha \in \Phi_{w}^{-}$.
(iii) $\mathcal{O}_{w, \alpha} \subseteq C_{w}$ for all $\alpha \in \Phi_{w}^{-}$.
(iv) If $\ell(w)=1$, then $\overline{\mathcal{O}}_{w, \alpha}=X_{w}$ for the unique $\alpha \in \Phi_{w}^{-}$. In particular, all Schubert curves in $G / B$ are among the closures of the one-dimensional $T$-orbits.

## The moment graph of $G / B$

There is a $T$-equivariant embedding $G / B \rightarrow \mathbb{P}(V)$ for some $V$, where the $T$-action on $\mathbb{P}(V)$ is induced by a linear action of $T$ on $V$.

Hence, if $\mathcal{O}$ is a one-dimensional $T$-orbit, then there exists a $T$-equivariant isomorphism $\varphi: \overline{\mathcal{O}} \rightarrow \mathbb{P}^{1}$, where $\overline{\mathcal{O}}$ is the closure of $\mathcal{O}$ and the $T$-action on $\mathbb{P}^{1}$ is induced by a linear action on $k^{2}$.

In particular, $\overline{\mathcal{O}}$ is obtained from $\mathcal{O}$ by adding the two $T$-fixed points $\varphi^{-1}(0)$ and $\varphi^{-1}(\infty)$.

## Theorem

The two $T$-fixed points of the closure of $\mathcal{O}_{w, \alpha}$ are $w B$ and $s_{\alpha} w B$.

## The moment graph of $G / B$

Combining the results above with the following lemma:

## LEMMA

Let $(W, S)$ be a Coxeter system with $W$ finite. Let $w \in W$ and $\alpha \in \Phi^{+}$. Then $\ell\left(w s_{\alpha}\right)<\ell(w)$ if and only if $w(\alpha) \in-\Phi^{+}$.
we arrive at the following amazing result:

## Theorem

The moment graph of $G / B$ with respect to the action of $T$ is precisely the undirected Bruhat graph of $(W, S)$.

## The moment graph of $G / B$

Let $n=3$. Then $\Phi^{+}=\left\{\chi_{12}, \chi_{13}, \chi_{23}\right\}, \Phi_{123}^{-}=\emptyset, \Phi_{132}^{-}=\left\{\chi_{23}\right\}$, $\Phi_{213}^{-}=\left\{\chi_{12}\right\}, \Phi_{231}^{-}=\left\{\chi_{12}, \chi_{13}\right\}, \Phi_{312}^{-}=\left\{\chi_{13}, \chi_{23}\right\}$, $\Phi_{321}^{-}=\left\{\chi_{12}, \chi_{13}, \chi_{23}\right\}$. We have $s_{23} \cdot(132)=(123)$,
$s_{12} \cdot(213)=(123), s_{12} \cdot(231)=(132), s_{13} \cdot(231)=(213)$, $s_{13} \cdot(312)=(132), s_{23} \cdot(312)=(213), s_{12} \cdot(321)=(312)$, $s_{13} \cdot(321)=(123), s_{23} \cdot(321)=(231)$.
Hence, the moment graph of $G / B$ is

which is just the (undirected) Bruhat graph of $\mathrm{S}_{3}$.

## Bott-Samelson resolution

$X_{w}$ need not be smooth, although $C_{w}$ always is.

## Theorem

For $G=G L_{n}(k)$ and $y \in S_{n}$ the dimension of the tangent space $T_{y B} X_{w}$ is

$$
\operatorname{dim} T_{y B} X_{w}=\#\left\{(i, j) \in S_{n} \mid y(i, j) \leq w\right\}
$$

So for $\mathrm{GL}_{4}(k)$ we see that $X_{(1,4)}$ is singular: It has dimension $\ell((1,4))=5$ but $T_{B} X_{(1,4)}$ has dimension 6 corresponding to the permutations $(1,2),(2,3),(3,4),(1,4),(2,4),(1,3)$.

## Bott-Samelson Resolution

It is an important problem in algebraic geometry to find resolutions of singular spaces. For Schubert varieties this can be done via the Bott-Samelson varieties.

## Definition

A parabolic subgroup $P$ of $G$ is any closed subgroup containing $B$. If $X$ is a space with a left $B$ action, the induced $P$-space is the quotient

$$
P \stackrel{B}{\times} X:=(P \times X) / B:=P \times X /\left((g, x) \sim\left(g b^{-1}, b x\right) \forall b \in B\right) .
$$

$P \stackrel{B}{\times} X$ has a canonical $B$-action via left multiplication and thus for any $P_{1}, P_{2}, \ldots, P_{l}$ of parabolics this construction can be iterated:

$$
P_{1} \stackrel{B}{\times} P_{2} \stackrel{B}{\times} \ldots \stackrel{B}{\times} P_{l} \stackrel{B}{\times} X:=P_{1} \stackrel{B}{\times}\left(P_{2} \stackrel{B}{\times}\left(\ldots \stackrel{B}{\times}\left(P_{l} \stackrel{B}{\times} X\right) \ldots\right)\right)
$$

## Bott-Samelson resolution

## Definition

$P_{s}$ is the subgroup of $G$ generated by $B$ and $s \in S$. This will be referred to as a minimal parabolic. We have $P_{s}=B \cup B s B$.

Consider $w \in W$ with reduced expression $w=s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{1}}$. We then define the Bott-Samelson variety $Z_{w}$ as

$$
Z_{w}:=P_{s_{\alpha_{1}}} \stackrel{B}{\times} P_{s_{\alpha_{2}}} \stackrel{B}{\times} \ldots \stackrel{B}{\times}\left(P_{s_{\alpha_{1}}} / B\right) .
$$

## Theorem

$Z_{w}$ is a smooth projective variety of dimension $\ell(w)$.
The proof uses the inductive construction of the $Z_{w}$ as
$Z_{w}=P_{s} \stackrel{B}{\times} Z_{w^{\prime}}$ for some $w^{\prime}<w$ as well as the following lemma:

## Bott-Samelson resolution

## LEMMA

(i) The induced $P$-space gives a fiber bundle over $P / B$ with fiber $X$ and total space $P \stackrel{B}{\times} X$ :

$$
X \rightarrow P \stackrel{B}{\times} X \rightarrow P / B
$$

(ii) For any minimal parabolic $P_{s}$ the space $P_{s} / B$ is isomorphic to $\mathbb{P}^{1}$ as a variety.

The last line gives us the first step in the induction. Note that $P_{s_{i}} / B$ corresponds to the flags

$$
\left(0=E_{0}<E_{1}<\ldots E_{i-1}<L<E_{i+1}<\ldots E_{n}=k^{n}\right)
$$

and $L$ is uniquely determined by the choice of a line in $E_{i+1} / E_{i-1}$ giving the isomorphism with $\mathbb{P}^{1}=\mathbb{P}\left(E_{i+1} / E_{i-1}\right)$.

## Bott-Samelson resolution

As the name suggests, the $Z_{w}$ will give us the Bott-Samelson resolution. We can organize the key results into one theorem:

## Theorem

Consider a Schubert variety $X_{w} \subseteq G / B$. Then the following holds:
(i) The morphism

$$
\begin{aligned}
Z_{w} & \rightarrow X_{w} \\
\left(p_{1}, \ldots, p_{\ell(w)}\right) B & \mapsto p_{1} p_{2} \ldots p_{\ell(w)} B
\end{aligned}
$$

is a resolution of singularities.
(ii) $X_{w}$ is normal.
(iii) $X_{w}$ has at most rational singularities.

## Corollary

The singular locus of a Schubert variety has codimension $\geq 2$.

