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Flag Varieties

Throughout, let k be a fixed algebraically closed field and V a
finite-dimensional k-vector space.

A flag in V is a nested sequence of strictly increasing subvector
spaces:

F• := (0 = F0 < F1 < · · · < Fr = V )

If r = dim V we speak of a complete flag, otherwise we call F• a
partial flag.

For d ∈ Nr we set

Fl(V , d) := {F• | dim(Fi/Fi−1) = di , i = 1 . . . r}

the set of d-flags.
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Flag Varieties

When is Fl(V , d) a variety? Some examples:
• d = (1, dim V − 1) we obtain Fl(V ,d) = P(V )
• d = (l , dim V − l) we have Fl(V ,d) = Gr(V , l), the

Grassmannian of l-dimensional subspaces of V
Promising! We could proceed by embedding Fl(V ,d) in a product
of Grassmannians

Fl(V ,d) ↪→ Gr(V , dim F1)× Gr(V , dim F2) . . .× Gr(V , dim Fr ).

(F0 <F1 < . . . < Fr ) 7→ (F1,F2, . . . ,Fr )

But let us give a description that is easier to generalize (of course
the same up to isomorphism):
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Flag Varieties

We clearly have a natural action of GL(V ) on Fl(V , d) by

g · F• = (0 = g(F0) < g(F1) < · · · < g(Fr−1) < g(Fr ) = V )

and this action is transitive. So for any fixed flag F• ∈ Fl(V ,d) we
have

Fl(V ,d) ∼= GL(V )/Stab(F•)

and we define this to be an isomorphism of varieties (well-defined
because two stabilizers are conjugate).
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Flag Varieties

Example

For V = kn and the standard flag

E• = (0 < 〈e1〉 < 〈e1, e2〉 < . . . < 〈e1, e2, . . . , en〉 = kn)

we have

Stab(E•) = B := {upper triangular matrices}
:= standard Borel subgroup

and so
Fl(kn, (1, 1, . . . , 1)) = GLn(k)/B
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Coxeter groups

Let (W ,S) be a Coxeter system with W finite, i.e. W is a finite
group with presentation 〈S | (si sj)

mij = 1〉, where mij ∈ N ∪ {∞}
with mii = 1 and mij = mji ≥ 2 for i 6= j . Here, (si sj)

∞ = 1
denotes the empty relation.

Definition

• ` : W → N, `(w) := min #{l | w = s1 · · · sl with si ∈ S} is
the length function.
• Any expression w = s1 · · · s`(w) with si ∈ S is called a reduced

expression of w .
• R := {wsw−1 | w ∈W , s ∈ S} are the reflections of (W ,S).
• If u−1w ∈ R and `(u) < `(w), one writes u → w and says u

covers w . (Note: u−1w ∈ R if and only if wu−1 ∈ R)
• If there exists a sequence u = u0 → u1 → · · · → ur = w , one

writes u ≤ w .
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Coxeter groups

Theorem

(i) ≤ is a partial order on W (Bruhat order).
(ii) If w = s1 · · · sl is a reduced expression of w , then u ≤ w if

and only if a subexpression of s1 · · · sl is equal to u.
(iii) If u ≤ w , then there exists a sequence

u = u0 → u1 → · · · → ur = w with `(ui+1) = `(ui ) + 1.
(iv) 1 ≤ w for all w ∈W .
(v) ≤ is directed, i.e. if u, v ∈W , then u ≤ w , v ≤ w for some

w ∈W .
(vi) There exists a unique element w0 ∈W of maximal length.

Moreover, w ≤ w0 for all w ∈W .
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Coxeter groups

Our primary example of a Coxeter system:

Theorem

(Sn,S) with S := {si | 1 ≤ i ≤ n − 1} and si := (i , i + 1) is a
Coxeter system.
Some properties:

(i) `(w) = #{(i , j) | i < j ,w(i) > w(j)} for all w ∈ Sn.
(ii) w0 = (n n − 1 · · · 1).
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Coxeter groups

Definition

The Bruhat graph of (W ,S) is the directed graph with vertices W
and arrows given by the covering relation →.

The Bruhat graph of S3 is:
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Schubert varieties in flag varieties

Throughout, we fix G := GLn(k). We denote by B the group of
upper triangular matrices in G and by T the group of diagonal
matrices in G .

Definition

(i) NG (T ) is the group of monomial matrices. Hence,
W := NG (T )/T ∼= Sn canonically. The permutation matrices
in G form a complete set of representatives {ẇ} of W .

(ii) S := {si | 1 ≤ i < n}, where si := (i , i + 1).
(iii) Φ := {χij | 1 ≤ i , j ≤ n, i 6= j},

where χij : T → k×, diag(t1, . . . , tn) 7→ ti t
−1
j .

(iv) Φ+ := {χij | 1 ≤ i < j ≤ n}.
(v) sχij

:= sij := (i , j).
(vi) W acts on Hom(T , k×) by (w .χ)(t) := χ(tw ).
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Schubert varieties in flag varieties

Definition

(i) U := the group of upper unitriangular matrices.
(ii) B− := the group of lower triangular matrices.
(iii) U− := the group of lower unitriangular matrices.
(iv) U ′w := U ∩ wU−w−1 for w ∈W .
(v) Φ−w := {α ∈ Φ+ | w−1α ∈ −Φ+}

= {χij | i < j ,w−1(i) > w−1(j)}.
(vi) uχij

:= uij : k → G , c 7→ 1 + cEij .
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Schubert varieties in flag varieties

Theorem

(i) G =
∐

w∈W BwB (Bruhat decomposition).
(ii) The map U ′w × B → BwB given by (u, b) 7→ uẇb is an

isomorphism.
(iii) G/B =

∐
w∈W BwB/B. We call Cw := BwB/B a Schubert

cell in G/B.
(iv) The map U ′w → Cw given by u 7→ uẇB is an isomorphism.
(v) Let α1, . . . , αl be the roots of Φ−w (any ordering). Then the

map A`(w) → U ′w , (a1, . . . , al) 7→ uα1(a1) · · · uαl
(al), is an

isomorphism of varieties. Hence, A`(w) ∼= Cw .
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Schubert varieties in flag varieties

Definition

For each w ∈W we set Xw := BwB/B ⊆ G/B and refer to this as
the Schubert variety of w .

Theorem

The following holds:
(i) Xw is a projective variety and dim Xw = `(w).
(ii) Xw =

∐
u≤w Cu, where ≤ denotes the Bruhat order.

(iii) Xw =
⋃

u≤w Xu.
(iv) Xu ⊆ Xw if and only if u ≤ w .
(v) Xw0 = G/B and Xid = pt.
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Let n = 4. For w = (2413) we have

U ′w =




1 ? 0 ?
0 1 0 0
0 0 1 ?
0 0 0 1


∼=A3 =A`(w)⇒Cw =



? ? 1 0
1 0 0 0
0 ? 0 1
0 1 0 0

B

 .

We have Φ−w = {χ12, χ14, χ34} and indeed the map A3 → U ′w
defined above as

(a1, a2, a3) 7→ u12(a1)u14(a2)u34(a3)

= 1 + a3E34 + a2E14 + a1E12

=


1 a1 0 a2

0 1 0 0
0 0 1 a3

0 0 0 1


is an isomorphism.
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Schubert varieties in flag varieties

Let us consider an example now:
6 9 2 −1
1 1 0 1
0 6 2 1
0 3 1 0

 −1·I+II−→
−1·I+IV


6 3 2 −7
1 0 0 0
0 6 2 1
0 3 1 0

 1
3 ·II−→


6 1 2 −7
1 0 0 0
0 2 2 1
0 1 1 0


−1·II+III−→


6 1 1 −7
1 0 0 0
0 2 0 1
0 1 0 0

 7·III+IV−→


6 1 1© 0
1© 0 0 0
0 2 0 1©
0 1© 0 0


So this is in C2413 with coordinates (6, 1, 2).
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Schubert varieties in flag varieties

We can also determine the decomposition M = uẇb with u ∈ U ′w
and b ∈ B:
The column operations give b−1, ẇ can be read off from M and u
computed from M, b, ẇ :

b =


1 1 0 1
0 3 1 0
0 0 1 −7
0 0 0 1

 , ẇ =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 u =


1 6 0 1
0 1 0 0
0 0 1 2
0 0 1 0



Chris Spencer, Ulrich Thiel Geometry of Schubert Varieties RepNet Workshop



The moment graph of G/B

The maximal torus T acts canonically on G/B. The root
morphisms uα and their property tuα(c)t−1 = uα(α(t)c) are the
central ingredients in the proof of the following theorem:

Theorem

(i) The set of T -fixed points is {wB | w ∈W }, i.e. (G/B)T ∼=W .
(ii) The one-dimensional T -orbits are precisely the

Ow ,α := {uα(x)wB | x ∈ k×} = Tuα(1)wB

for w ∈W and α ∈ Φ−w .
(iii) Ow ,α ⊆ Cw for all α ∈ Φ−w .
(iv) If `(w) = 1, then Ow ,α = Xw for the unique α ∈ Φ−w . In

particular, all Schubert curves in G/B are among the closures
of the one-dimensional T -orbits.
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The moment graph of G/B

There is a T -equivariant embedding G/B → P(V ) for some V ,
where the T -action on P(V ) is induced by a linear action of T on
V .

Hence, if O is a one-dimensional T -orbit, then there exists a
T -equivariant isomorphism ϕ : O → P1, where O is the closure of
O and the T -action on P1 is induced by a linear action on k2.

In particular, O is obtained from O by adding the two T -fixed
points ϕ−1(0) and ϕ−1(∞).

Theorem

The two T -fixed points of the closure of Ow ,α are wB and sαwB.
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The moment graph of G/B

Combining the results above with the following lemma:

Lemma

Let (W ,S) be a Coxeter system with W finite. Let w ∈W and
α ∈ Φ+. Then `(wsα) < `(w) if and only if w(α) ∈ −Φ+.

we arrive at the following amazing result:

Theorem

The moment graph of G/B with respect to the action of T is
precisely the undirected Bruhat graph of (W ,S).

Chris Spencer, Ulrich Thiel Geometry of Schubert Varieties RepNet Workshop



The moment graph of G/B

Let n = 3. Then Φ+ = {χ12, χ13, χ23}, Φ−123 = ∅, Φ−132 = {χ23},
Φ−213 = {χ12}, Φ−231 = {χ12, χ13}, Φ−312 = {χ13, χ23},
Φ−321 = {χ12, χ13, χ23}. We have s23 · (132) = (123),
s12 · (213) = (123), s12 · (231) = (132), s13 · (231) = (213),
s13 · (312) = (132), s23 · (312) = (213), s12 · (321) = (312),
s13 · (321) = (123), s23 · (321) = (231).
Hence, the moment graph of G/B is

•321

•231

~~~~~~~ •312

@@@@@@@

•132

oooooooooooo •213

OOOOOOOOOOOO

•
123

@@@@@@@

~~~~~~~

which is just the (undirected) Bruhat graph of S3.
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Bott-Samelson resolution

Xw need not be smooth, although Cw always is.

Theorem

For G = GLn(k) and y ∈ Sn the dimension of the tangent space
TyBXw is

dim TyBXw = #{(i , j) ∈ Sn | y(i , j) ≤ w}

So for GL4(k) we see that X(1,4) is singular: It has dimension
`((1, 4)) = 5 but TBX(1,4) has dimension 6 corresponding to the
permutations (1, 2), (2, 3), (3, 4), (1, 4), (2, 4), (1, 3).
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Bott-Samelson resolution

It is an important problem in algebraic geometry to find resolutions
of singular spaces. For Schubert varieties this can be done via the
Bott-Samelson varieties.

Definition

A parabolic subgroup P of G is any closed subgroup containing B.
If X is a space with a left B action, the induced P-space is the
quotient

P
B
× X := (P × X )/B := P × X/((g , x) ∼ (gb−1, bx) ∀b ∈ B).

P
B
× X has a canonical B-action via left multiplication and thus for

any P1,P2, . . . ,Pl of parabolics this construction can be iterated:

P1

B
× P2

B
× . . .

B
× Pl

B
× X := P1

B
× (P2

B
× (. . .

B
× (Pl

B
× X ) . . .))
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Bott-Samelson resolution

Definition

Ps is the subgroup of G generated by B and s ∈ S . This will be
referred to as a minimal parabolic. We have Ps = B ∪ BsB.

Consider w ∈W with reduced expression w = sα1sα2 . . . sαl
.

We then define the Bott-Samelson variety Zw as

Zw := Psα1

B
× Psα2

B
× . . .

B
× (Psαl

/B).

Theorem

Zw is a smooth projective variety of dimension `(w).

The proof uses the inductive construction of the Zw as

Zw = Ps

B
× Zw ′ for some w ′ < w as well as the following lemma:
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Bott-Samelson resolution

Lemma

(i) The induced P-space gives a fiber bundle over P/B with fiber

X and total space P
B
× X :

X → P
B
× X → P/B

(ii) For any minimal parabolic Ps the space Ps/B is isomorphic to
P1 as a variety.

The last line gives us the first step in the induction. Note that
Psi/B corresponds to the flags

(0 = E0 < E1 < . . .Ei−1 < L < Ei+1 < . . .En = kn)

and L is uniquely determined by the choice of a line in
Ei+1/Ei−1 giving the isomorphism with P1 = P(Ei+1/Ei−1).
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Bott-Samelson resolution

As the name suggests, the Zw will give us the Bott-Samelson
resolution. We can organize the key results into one theorem:

Theorem

Consider a Schubert variety Xw ⊆ G/B. Then the following holds:
(i) The morphism

Zw → Xw

(p1, . . . , p`(w))B 7→ p1p2 . . . p`(w)B

is a resolution of singularities.
(ii) Xw is normal.
(iii) Xw has at most rational singularities.

Corollary

The singular locus of a Schubert variety has codimension ≥ 2.
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