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3. Why are these conjectures plausible?

4. Parity sheaves on flag manifolds
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The Kazhdan–Lusztig conjecture

We fix the following:

g a semisimple complex Lie algebra of finite dimension

h ⊂ b ⊂ g a Cartan and a Borel subalgebra

To any λ ∈ h? = HomC(h,C) we associate the simple module L(λ)
with highest weight λ. We want to calculate its character

char L(λ) =
∑
µ∈h?

dimC L(λ)µeµ.

Here, L(λ)µ denotes the µ-eigenspace of the h-action.
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The Kazhdan–Lusztig conjecture

We denote by W the Weyl group of our data. It acts on h?. Let
ρ ∈ h? be the element with 〈ρ, α∨〉 = 1 for all simple roots α. The
ρ-shifted action of W on h? is given by

w .λ = w(λ+ ρ)− ρ

for w ∈ W, λ ∈ h?. We denote by

Px ,y Kazhdan–Lusztig polynomial associated to x , y ∈ W,

w0 ∈ W the longest element
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The Kazhdan–Lusztig conjecture

Suppose that λ ∈ h? is integral, regular and dominant. This means
that 〈λ+ ρ, α∨〉 ∈ Z>0 for all positive roots α.

Conjecture

For w ∈ W we have

char L(w .λ) =
∑
x∈W

(−1)l(w)−l(x)Pw0x ,w0w (1) char M(x .λ),

where M(µ) is the Verma module with highest weight µ.

As an exercise, check that this gives Weyl’s character formula in
the case w = e.
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Lusztig’s conjecture

We now fix the following:

k an algebraically closed field of characteristic p

G a reductive algebraic group over k ,

T ⊂ B ⊂ G a maximal torus and a Borel subgroup.

To these data we associate

X = Hom(T , k×) the characters of T ,

X+ ⊂ X the set of dominant characters,

Lk(λ) the simple module with highest weight λ ∈ X+.

Again, we want to calculate the character of Lk(λ), i.e.

char Lk(λ) =
∑
µ∈X

dimk Lk(λ)µeµ,

where Lk(λ)µ denotes the µ-eigenspace of the T -action. This is
called a modular character.
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Lusztig’s conjecture

The Weyl group W acts on the parameter set X . To any µ ∈ X
we can associate the translation operator tµ : X → X , ν 7→ ν + µ.
Let L be the subgroup of affine transformations on X generated by
tpα for roots α. The affine Weyl group is Ŵ =W n L.
We denote by h the Coxeter number, i.e. the height of the highest
root in R +1. Set

Ŵ res,+ = {w ∈ Ŵ | 0 ≤ 〈w .0, α∨〉 < p for all simple roots α},

Ŵ res,− = w0Ŵ res,+.

There is a largest element ŵ0 ∈ Ŵ res,− with respect to the Bruhat
order. Set

Ŵ◦ = {w ∈ Ŵ | w ≤ ŵ0},

Ŵ◦,+ = {w ∈ Ŵ◦ | 0 < 〈w .0 + ρ, α∨〉 for all α ∈ Π}.
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There is a largest element ŵ0 ∈ Ŵ res,− with respect to the Bruhat
order. Set
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Ŵ◦ = {w ∈ Ŵ | w ≤ ŵ0},
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Ŵ◦,+ = {w ∈ Ŵ◦ | 0 < 〈w .0 + ρ, α∨〉 for all α ∈ Π}.



Lusztig’s conjecture

The Weyl group W acts on the parameter set X . To any µ ∈ X
we can associate the translation operator tµ : X → X , ν 7→ ν + µ.
Let L be the subgroup of affine transformations on X generated by
tpα for roots α. The affine Weyl group is Ŵ =W n L.
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For any λ ∈ X+ there is a Weyl module H0(λ). Its character is
given by Weyl’s character formula

char H0(λ) = χ(λ) :=

∑
y∈W(−1)l(y)ey(λ+ρ)∑
y∈W(−1)l(y)ey(ρ)

.

Conjecture

Suppose that p > h. Then for w ∈ Ŵ res,+ we have

char L(w .λ) =
∑

x∈Ŵ◦,+
(−1)l(w)−l(x)Pw0x ,w0w (1) char H0(x .λ).
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Multiplicity conjectures - characteristic zero case

We now translate the above character conjectures into multiplicity
conjectures. The Verma module M(λ) has a (finite) Jordan–Hölder
series, and we denote the multiplicities by [M(λ) : L(µ)].

Theorem (Linkage principle)

We have [M(λ) : L(µ)] = 0 unless µ ∈ W.λ.

Conjecture

Suppose that λ is dominant, integral and regular. Then

[M(w .λ) : L(x .λ)] = Pw ,x(1)

for all w , x ∈ W.

This conjecture is equivalent to the Kazhdan–Lusztig conjecture.
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Multiplicity conjectures - characteristic p case

In the characteristic p case, we first have to differentiate. We
denote by

gk the Lie algebra of Gk ,

L′(λ) the simple g-T -module for any λ ∈ X (!).

Z (µ) the baby Verma module associated to µ ∈ X .

Theorem (The modular linkage principle)

We have [Z (λ) : L′(µ)] = 0 unless µ ∈ Ŵ.λ.

Conjecture

Suppose that λ is dominant and regular. Then

[Z (w .λ) : L′(x .λ)] = pw ,x(1),

where pw ,x ∈ Z[v ] denotes the periodic Kazhdan–Lusztig
polynomial.

This is equivalent to Lusztig’s conjecture.
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polynomial.
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Translation combinatorics - characteristic zero case

Let O be the highest weight category associated to our data. We
denote by

P(λ) the projective cover of L(λ) in O.

It has a Verma flag with multiplicities (P : M(µ)).

Theorem (BGG-reciprocity)

For any λ, µ ∈ h? we have

(P(λ) : M(µ)) = [M(µ) : L(λ)].
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Translation combinatorics - characteristic zero case

Let us denote by O[λ] the block of O that contains L(λ). For any
simple reflection s there is a translation functor

ϑs : O[λ] → O[λ].

Observation
If λ is dominant and regular, and if s · · · t is a reduced expression
in W, then

ϑt · · ·ϑsP(λ) = P(s · · · t.λ)⊕
⊕

x<s···t
P(x .λ)⊕a

x
s,...,t

for some numbers axs,...,t .
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Translation combinatorics - characteristic p case

There is a certain category C of g-T -modules that contains Z (λ)
and L(λ) for all λ. For any λ there exists a projective cover Q(λ)
of L(λ) in C. It has a baby Verma flag, i.e. a filtration with
subquotients isomorphic to baby Verma modules. We denote the
multiplicities by (Q : Z (µ)).

Theorem (Humphreys)

For any λ, µ ∈ X we have

(Q(λ) : Z (µ)) = [Z (µ) : L′(λ)].
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Translation combinatorics - characteristic p case

It is now convenient to identify Ŵ with the set A of alcoves via
the map w 7→ w(Ae), where Ae is the unique alcove in the
dominant chamber that contains 0 in its closure. Let A 7→ wA be
the inverse map. We abbreviate

Z (A) := Z (wA.0)

Q(A) := Q(wA.0)

Then Lusztig’s conjecture translates to

(Q(A) : Z (B)) = pB,A(1)

for all A,B ∈ A.
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Translation combinatorics - characteristic p case

For any simple reflection s there is a translation functor θs : C → C.
It is not difficult to show that

(Q(Aw0) : Z (B)) =

{
1, if B ∈ W.Ae

0, if B 6∈ W.Ae

This is in agreement with Lusztig’s conjecture,

Observation
If w0s · · · t is a reduced expression in Ŵ, then

θt · · · θsQ(Aw0) = Q(Aw0s···t)⊕
⊕
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B
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Reminder: The Hecke algebra

Let H =
⊕

w∈W Z[v , v−1]Tw be the Hecke algebra of the Coxeter
system (W,S). There is a duality H 7→ H with Tw = (Tw−1)−1.

Theorem (Kazhdan–Lusztig)

For any w ∈ W there is a unique element C ′w ∈ H with

C ′w = C ′w , Cw ∈ Tw +
∑
x∈W

vZ[v ]Tx .

The coefficients of C ′w are the Kazhdan–Lusztig polynomials Px ,w .

Observation
Let w = s · · · t be a reduced expression. Then

C ′s · · ·C ′t = C ′w +
∑

x≤s···t
ãx(s,...,t)C

′
x

for some numbers ãx(s,...,t).
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Reminder: The Hecke algebra

Let H =
⊕

w∈W Z[v , v−1]Tw be the Hecke algebra of the Coxeter
system (W,S). There is a duality H 7→ H with Tw = (Tw−1)−1.

Theorem (Kazhdan–Lusztig)

For any w ∈ W there is a unique element C ′w ∈ H with

C ′w = C ′w , Cw ∈ Tw +
∑
x∈W

vZ[v ]Tx .

The coefficients of C ′w are the Kazhdan–Lusztig polynomials Px ,w .

Observation
Let w = s · · · t be a reduced expression. Then

C ′s · · ·C ′t = C ′w +
∑

x≤s···t
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An affine, periodic version

Denote by Ĥ =
⊕

w∈Ŵ Z[v , v−1]Tw the affine Hecke algebra. Let

M =
⊕

A∈A Z[v , v−1]MA be the periodic Ĥ-module. It carries a
duality M 7→ M and a remarkable subset of self-dual elements QA,
indexed by A.
The coefficients of expansion QA are the periodic polynomials pA,B .

Observation
For a reduced expression w0s · · · t we have

QAw0
· C ′s · · ·C ′t = QAw0 s···t +

∑
B

b̃B
s,...,tQB

for some numbers b̃B
s,...,t .
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Decomposition conjecture

Fact 1
The Kazhdan–Lusztig conjecture is equivalent to

axs,...,t = ãxs,...,t

for all reduced expressions w0s · · · t and x ∈ W.

Fact 2
Lusztig’s conjecture is equivalent to

bB
s,...,t = b̃B

s,...,t

for all reduced expressions s · · · t and B ∈ A.
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The topology of Schubert varieties

Let T∨ ⊂ B∨ ⊂ G∨ be the complex simply connected algebraic
groups associated to the dual root system. We denote by

F l∨ = G∨/B∨, the flag variety,

Xw ⊂ F l∨ the Schubert variety for w ∈ W,

Pk,w ∈ DT∨(F l∨, k) the parity sheaf supported on Xw .

For a simple reflection s denote by πs : F l∨ → F l∨,s = G∨/P∨,s

the canonical map to the partial flag variety.

Observation
Let s · · · t be a reduced expression. Then

π∗t πt∗ · · ·π∗s πs∗Pk,e = Pk,s···t
⊕

x<s···t
P
⊕cxs,...,t
k,x

for some numbers cx
s,...,t .
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Breakthrough: The decomposition theorem
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For any w ∈ W, PC,w is the T∨-equivariant intersection
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Sheaves on moment graphs

Now let G be the Bruhat graph associated to the root system (or
the flag variety). We introduced the category of sheaves on G with
coefficients in a field k .

In the course of this workshop we will
construct

I a functor W from T∨-equivariant sheaves on F l∨ to sheaves
on the Bruhat graph,

I a functor V from a deformed version of category O to sheaves
on the Bruhat graph.
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Sheaves on moment graphs

To w ∈ W we associate

G6w the subgraph of G with vertices 6 w ,

Bk(w) the Braden–MacPherson sheaf supported on G6w

with coefficients in k.

We will prove the following:

Theorem
For any w ∈ W we have V(P(w .λ)) ∼= B(w) ∼= W(PC,w ) and

(P(w .λ) : M(x .λ) = rk B(w)x = rkH•T∨((PC,w )x).

This implies the Kazhdan–Lusztig conjecture.
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The variant in the characteristic p case

We now consider the complex affine flag variety F̂ l
∨

. Denote by
T̂∨ = T∨ × C× the extended (dual) torus. To any w ∈ Ŵ we
associate

Xw ⊂ F̂ l
∨

, the affine Schubert variety,

Pk,w ∈ D
T̂∨

(F̂ l
∨
, k), the T̂∨-equivariant parity sheaf Pk,w

with coefficients in k supported on Xw .

On the representation theoretic side, we have

K the Andersen, Jantzen and Soergel category,

MB the ”stalk” of an object M in K at an alcove B. this
is a finite dimensional Q = Quot (S(hk))-vector
space.

Theorem (AJS)

There is a functor V from the category of deformed gk -T -modules
to K. It satisfies

(Q(A) : Z (B)) = dimQ (VQ(A))B .
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The variant in the characteristic p case

Theorem
Suppose that w ∈ W res,−. There is a functor Φ form sheaves on G
with k-coefficients to K with Φ(B(w)) ∼= V(Q(Aw )) and

rk B(w)x = (Q(Aw ) : Z (Ax))

for any x ∈ Ŵ.

Corollary

For w ∈ Ŵ res,− and char k > p we have

rkH•T∨((Pk,w )x) = (Q(Aw ) : Z (Ax)).
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The status of Lusztig’s conjecture

Using the above results, one can prove the following:

Theorem

I There is a number N, explicitely calculable in terms of the
affine Hecke-algebra, such that Lusztig’s conjecture holds for
char k > N.

I For all k with char k > p the following are equivalent:

[Z (w .λ) : L′(x .λ)] = 1

pw ,x(1) = 1.

Research Problem
Calculate rkH•T∨((Pk,w )x) for char k > 0 and prove Lusztig’s
conjecture.
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