Proofs of character formulas via sheaves on Bruhat graphs

Peter Fiebig

Emmy–Noether–Zentrum Universität Erlangen–Nürnberg

> Isle of Skye May 2010

> > <ロト <四ト <注入 <注下 <注下 <

1. The Kazhdan-Lusztig conjecture

- 1. The Kazhdan-Lusztig conjecture
- 2. Lusztig's conjecture

- 1. The Kazhdan-Lusztig conjecture
- 2. Lusztig's conjecture
- 3. Why are these conjectures plausible?

- 1. The Kazhdan-Lusztig conjecture
- 2. Lusztig's conjecture
- 3. Why are these conjectures plausible?
- 4. Parity sheaves on flag manifolds

- 1. The Kazhdan-Lusztig conjecture
- 2. Lusztig's conjecture
- 3. Why are these conjectures plausible?
- 4. Parity sheaves on flag manifolds
- 5. From parity sheaves to multiplicities

The Kazhdan–Lusztig conjecture

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 ${\mathfrak g}\,$ a semisimple complex Lie algebra of finite dimension

 $\mathfrak{g}\,$ a semisimple complex Lie algebra of finite dimension $\mathfrak{h}\subset\mathfrak{b}\subset\mathfrak{g}\,$ a Cartan and a Borel subalgebra

 ${\mathfrak g}\,$ a semisimple complex Lie algebra of finite dimension

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}\,$ a Cartan and a Borel subalgebra

To any $\lambda \in \mathfrak{h}^{\star} = \operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$ we associate the simple module $L(\lambda)$ with highest weight λ .

 \mathfrak{g} a semisimple complex Lie algebra of finite dimension $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}$ a Cartan and a Borel subalgebra To any $\lambda \in \mathfrak{h}^* = \operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$ we associate the simple module $L(\lambda)$ with highest weight λ . We want to calculate its *character*

$$\mathsf{char}\,\, {\it L}(\lambda) = \sum_{\mu \in \mathfrak{h}^{\star}} \dim_{\mathbb{C}} {\it L}(\lambda)_{\mu} e^{\mu}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Here, $L(\lambda)_{\mu}$ denotes the μ -eigenspace of the \mathfrak{h} -action.

The Kazhdan–Lusztig conjecture

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We denote by \mathcal{W} the Weyl group of our data. It acts on \mathfrak{h}^* . Let $\rho \in \mathfrak{h}^*$ be the element with $\langle \rho, \alpha^{\vee} \rangle = 1$ for all simple roots α .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We denote by \mathcal{W} the Weyl group of our data. It acts on \mathfrak{h}^* . Let $\rho \in \mathfrak{h}^*$ be the element with $\langle \rho, \alpha^{\vee} \rangle = 1$ for all simple roots α . The ρ -shifted action of \mathcal{W} on \mathfrak{h}^* is given by

$$w.\lambda = w(\lambda + \rho) - \rho$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

for $w \in \mathcal{W}$, $\lambda \in \mathfrak{h}^{\star}$.

We denote by \mathcal{W} the Weyl group of our data. It acts on \mathfrak{h}^* . Let $\rho \in \mathfrak{h}^*$ be the element with $\langle \rho, \alpha^{\vee} \rangle = 1$ for all simple roots α . The ρ -shifted action of \mathcal{W} on \mathfrak{h}^* is given by

$$w.\lambda = w(\lambda + \rho) - \rho$$

for $w \in \mathcal{W}$, $\lambda \in \mathfrak{h}^*$. We denote by $P_{x,y}$ Kazhdan-Lusztig polynomial associated to $x, y \in \mathcal{W}$,

We denote by \mathcal{W} the Weyl group of our data. It acts on \mathfrak{h}^* . Let $\rho \in \mathfrak{h}^*$ be the element with $\langle \rho, \alpha^{\vee} \rangle = 1$ for all simple roots α . The ρ -shifted action of \mathcal{W} on \mathfrak{h}^* is given by

$$w.\lambda = w(\lambda + \rho) - \rho$$

for $w \in W$, $\lambda \in \mathfrak{h}^*$. We denote by $P_{x,y}$ Kazhdan–Lusztig polynomial associated to $x, y \in W$, $w_0 \in W$ the longest element

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The Kazhdan–Lusztig conjecture

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Suppose that $\lambda \in \mathfrak{h}^*$ is integral, regular and dominant. This means that $\langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}_{>0}$ for all positive roots α .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Suppose that $\lambda \in \mathfrak{h}^*$ is integral, regular and dominant. This means that $\langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}_{>0}$ for all positive roots α .

Conjecture

For $w \in \mathcal{W}$ we have

char
$$L(w.\lambda) = \sum_{x \in \mathcal{W}} (-1)^{l(w)-l(x)} P_{w_0x,w_0w}(1)$$
 char $M(x.\lambda)$,

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where $M(\mu)$ is the Verma module with highest weight μ .

Suppose that $\lambda \in \mathfrak{h}^*$ is integral, regular and dominant. This means that $\langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}_{>0}$ for all positive roots α .

Conjecture

For $w \in \mathcal{W}$ we have

char
$$L(w.\lambda) = \sum_{x \in \mathcal{W}} (-1)^{l(w)-l(x)} P_{w_0x,w_0w}(1)$$
 char $M(x.\lambda)$,

where $M(\mu)$ is the Verma module with highest weight μ . As an exercise, check that this gives Weyl's character formula in the case w = e.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

| ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ● 三 ● ○ ○ ○

We now fix the following:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We now fix the following:

k an algebraically closed field of characteristic p

We now fix the following:

k an algebraically closed field of characteristic p

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

G a reductive algebraic group over k,

We now fix the following:

k an algebraically closed field of characteristic p

- G a reductive algebraic group over k,
- $T \subset B \subset G$ a maximal torus and a Borel subgroup.

We now fix the following:

k an algebraically closed field of characteristic p

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- G a reductive algebraic group over k,
- $T \subset B \subset G$ a maximal torus and a Borel subgroup.

To these data we associate

We now fix the following:

k an algebraically closed field of characteristic p

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

G a reductive algebraic group over k,

 $T \subset B \subset G$ a maximal torus and a Borel subgroup.

To these data we associate

 $X = \text{Hom}(T, k^{\times})$ the characters of T,

We now fix the following:

k an algebraically closed field of characteristic p

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

G a reductive algebraic group over k,

 $T \subset B \subset G$ a maximal torus and a Borel subgroup.

To these data we associate

 $X = Hom(T, k^{\times})$ the characters of T,

 $X^+ \subset X$ the set of dominant characters,

We now fix the following:

- k an algebraically closed field of characteristic p
- G a reductive algebraic group over k,

 $T \subset B \subset G$ a maximal torus and a Borel subgroup.

To these data we associate

 $X = Hom(T, k^{\times})$ the characters of T,

 $X^+ \subset X$ the set of dominant characters,

 $L_k(\lambda)$ the simple module with highest weight $\lambda \in X^+$.

We now fix the following:

- k an algebraically closed field of characteristic p
- G a reductive algebraic group over k,

 $T \subset B \subset G$ a maximal torus and a Borel subgroup.

To these data we associate

 $X = \text{Hom}(T, k^{\times})$ the characters of T,

 $X^+ \subset X$ the set of dominant characters,

 $L_k(\lambda)$ the simple module with highest weight $\lambda \in X^+$. Again, we want to calculate the character of $L_k(\lambda)$, i.e.

char
$$L_k(\lambda) = \sum_{\mu \in X} \dim_k L_k(\lambda)_\mu e^\mu$$
,

where $L_k(\lambda)_{\mu}$ denotes the μ -eigenspace of the *T*-action.

We now fix the following:

- k an algebraically closed field of characteristic p
- G a reductive algebraic group over k,

 $T \subset B \subset G$ a maximal torus and a Borel subgroup.

To these data we associate

 $X = \text{Hom}(T, k^{\times})$ the characters of T,

 $X^+ \subset X$ the set of dominant characters,

 $L_k(\lambda)$ the simple module with highest weight $\lambda \in X^+$. Again, we want to calculate the character of $L_k(\lambda)$, i.e.

$$\mathsf{char}\; \mathsf{L}_k(\lambda) = \sum_{\mu \in \mathsf{X}} \mathsf{dim}_k \, \mathsf{L}_k(\lambda)_\mu e^\mu,$$

where $L_k(\lambda)_{\mu}$ denotes the μ -eigenspace of the *T*-action. This is called a *modular character*.

| ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ● 三 ● ○ ○ ○

The Weyl group \mathcal{W} acts on the parameter set X.

The Weyl group W acts on the parameter set X. To any $\mu \in X$ we can associate the translation operator $t_{\mu} \colon X \to X$, $\nu \mapsto \nu + \mu$. Let L be the subgroup of affine transformations on X generated by $t_{p\alpha}$ for roots α .

The Weyl group \mathcal{W} acts on the parameter set X. To any $\mu \in X$ we can associate the translation operator $t_{\mu} \colon X \to X$, $\nu \mapsto \nu + \mu$. Let L be the subgroup of affine transformations on X generated by $t_{p\alpha}$ for roots α . The affine Weyl group is $\widehat{\mathcal{W}} = \mathcal{W} \ltimes L$.

The Weyl group \mathcal{W} acts on the parameter set X. To any $\mu \in X$ we can associate the translation operator $t_{\mu} \colon X \to X$, $\nu \mapsto \nu + \mu$. Let L be the subgroup of affine transformations on X generated by $t_{p\alpha}$ for roots α . The *affine Weyl group* is $\widehat{\mathcal{W}} = \mathcal{W} \ltimes L$. We denote by h the Coxeter number, i.e. the height of the highest root in R +1. Set

$$\begin{aligned} \widehat{\mathcal{W}}^{\mathsf{res},+} &= \{ w \in \widehat{\mathcal{W}} \mid 0 \leq \langle w.0, \alpha^{\vee} \rangle$$

The Weyl group \mathcal{W} acts on the parameter set X. To any $\mu \in X$ we can associate the translation operator $t_{\mu} \colon X \to X$, $\nu \mapsto \nu + \mu$. Let L be the subgroup of affine transformations on X generated by $t_{p\alpha}$ for roots α . The *affine Weyl group* is $\widehat{\mathcal{W}} = \mathcal{W} \ltimes L$. We denote by h the Coxeter number, i.e. the height of the highest root in R +1. Set

$$\begin{aligned} \widehat{\mathcal{W}}^{\text{res},+} &= \{ w \in \widehat{\mathcal{W}} \mid 0 \leq \langle w.0, \alpha^{\vee} \rangle$$

There is a largest element $\widehat{w}_0 \in \widehat{\mathcal{W}}^{res,-}$ with respect to the Bruhat order. Set

The Weyl group \mathcal{W} acts on the parameter set X. To any $\mu \in X$ we can associate the translation operator $t_{\mu} \colon X \to X$, $\nu \mapsto \nu + \mu$. Let L be the subgroup of affine transformations on X generated by $t_{p\alpha}$ for roots α . The *affine Weyl group* is $\widehat{\mathcal{W}} = \mathcal{W} \ltimes L$. We denote by h the Coxeter number, i.e. the height of the highest root in R +1. Set

$$\begin{aligned} \widehat{\mathcal{W}}^{res,+} &= \{ w \in \widehat{\mathcal{W}} \mid 0 \leq \langle w.0, \alpha^{\vee} \rangle$$

There is a largest element $\widehat{w}_0 \in \widehat{\mathcal{W}}^{res,-}$ with respect to the Bruhat order. Set

$$\begin{split} \widehat{\mathcal{W}}^{\circ} &= \{ w \in \widehat{\mathcal{W}} \mid w \leq \widehat{w}_0 \}, \\ \widehat{\mathcal{W}}^{\circ,+} &= \{ w \in \widehat{\mathcal{W}}^{\circ} \mid 0 < \langle w.0 + \rho, \alpha^{\vee} \rangle \text{ for all } \alpha \in \Pi \}. \end{split}$$

For any $\lambda \in X^+$ there is a *Weyl module* $H^0(\lambda)$. Its character is given by Weyl's character formula

$$\mathsf{char} \ \mathsf{H}^{\mathsf{0}}(\lambda) = \chi(\lambda) := \frac{\sum_{y \in \mathcal{W}} (-1)^{l(y)} e^{y(\lambda + \rho)}}{\sum_{y \in \mathcal{W}} (-1)^{l(y)} e^{y(\rho)}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For any $\lambda \in X^+$ there is a *Weyl module* $H^0(\lambda)$. Its character is given by Weyl's character formula

$$\mathsf{char} \ \mathsf{H}^{\mathsf{0}}(\lambda) = \chi(\lambda) := \frac{\sum_{y \in \mathcal{W}} (-1)^{l(y)} e^{y(\lambda + \rho)}}{\sum_{y \in \mathcal{W}} (-1)^{l(y)} e^{y(\rho)}}.$$

Conjecture

Suppose that p > h. Then for $w \in \widehat{\mathcal{W}}^{res,+}$ we have

$$\operatorname{char} L(w.\lambda) = \sum_{x \in \widehat{\mathcal{W}}^{\circ,+}} (-1)^{I(w)-I(x)} P_{w_0 x, w_0 w}(1) \operatorname{char} H^0(x.\lambda).$$

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → りへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Linkage principle)

We have $[M(\lambda) : L(\mu)] = 0$ unless $\mu \in W.\lambda$.

Theorem (Linkage principle) We have $[M(\lambda) : L(\mu)] = 0$ unless $\mu \in W.\lambda$.

Conjecture

Suppose that λ is dominant, integral and regular. Then

$$[M(w.\lambda):L(x.\lambda)]=P_{w,x}(1)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

for all $w, x \in \mathcal{W}$.

Theorem (Linkage principle) We have $[M(\lambda) : L(\mu)] = 0$ unless $\mu \in W.\lambda$.

Conjecture

Suppose that λ is dominant, integral and regular. Then

$$[M(w.\lambda): L(x.\lambda)] = P_{w,x}(1)$$

for all $w, x \in \mathcal{W}$.

This conjecture is equivalent to the Kazhdan-Lusztig conjecture.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

→ □ ▶ → □ ▶ → 三 ▶ → 三 → ○ ○ ○

In the characteristic p case, we first have to differentiate. We denote by

In the characteristic p case, we first have to differentiate. We denote by

 \mathfrak{g}_k the Lie algebra of G_k ,

In the characteristic p case, we first have to differentiate. We denote by

 \mathfrak{g}_k the Lie algebra of G_k , $L'(\lambda)$ the simple g-T-module for any $\lambda \in X$ (!).

In the characteristic p case, we first have to differentiate. We denote by

 \mathfrak{g}_k the Lie algebra of G_k ,

 $L'(\lambda)$ the simple \mathfrak{g} -T-module for any $\lambda \in X$ (!).

 $Z(\mu)$ the baby Verma module associated to $\mu \in X$.

In the characteristic \boldsymbol{p} case, we first have to differentiate. We denote by

 \mathfrak{g}_k the Lie algebra of G_k , $L'(\lambda)$ the simple \mathfrak{g} -T-module for any $\lambda \in X$ (!). $Z(\mu)$ the baby Verma module associated to $\mu \in X$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (The modular linkage principle) We have $[Z(\lambda) : L'(\mu)] = 0$ unless $\mu \in \widehat{\mathcal{W}}.\lambda$.

In the characteristic \boldsymbol{p} case, we first have to differentiate. We denote by

 \mathfrak{g}_k the Lie algebra of G_k , $L'(\lambda)$ the simple \mathfrak{g} -T-module for any $\lambda \in X$ (!). $Z(\mu)$ the baby Verma module associated to $\mu \in X$.

Theorem (The modular linkage principle) We have $[Z(\lambda) : L'(\mu)] = 0$ unless $\mu \in \widehat{\mathcal{W}}.\lambda$.

Conjecture

Suppose that λ is dominant and regular. Then

$$[Z(w.\lambda):L'(x.\lambda)]=p_{w,x}(1),$$

where $p_{w,x} \in \mathbb{Z}[v]$ denotes the periodic Kazhdan–Lusztig polynomial.

In the characteristic \boldsymbol{p} case, we first have to differentiate. We denote by

 \mathfrak{g}_k the Lie algebra of G_k , $L'(\lambda)$ the simple \mathfrak{g} -T-module for any $\lambda \in X$ (!). $Z(\mu)$ the baby Verma module associated to $\mu \in X$.

Theorem (The modular linkage principle) We have $[Z(\lambda) : L'(\mu)] = 0$ unless $\mu \in \widehat{\mathcal{W}}.\lambda$.

Conjecture

Suppose that λ is dominant and regular. Then

$$[Z(w.\lambda):L'(x.\lambda)]=p_{w,x}(1),$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

where $p_{w,x} \in \mathbb{Z}[v]$ denotes the periodic Kazhdan–Lusztig polynomial.

This is equivalent to Lusztig's conjecture.

Translation combinatorics - characteristic zero case

Let $\ensuremath{\mathcal{O}}$ be the highest weight category associated to our data. We denote by

Let $\ensuremath{\mathcal{O}}$ be the highest weight category associated to our data. We denote by

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $P(\lambda)$ the projective cover of $L(\lambda)$ in \mathcal{O} .

It has a Verma flag with multiplicities $(P : M(\mu))$.

Let $\ensuremath{\mathcal{O}}$ be the highest weight category associated to our data. We denote by

 $P(\lambda)$ the projective cover of $L(\lambda)$ in O.

It has a Verma flag with multiplicities $(P: M(\mu))$.

Theorem (BGG-reciprocity)

For any $\lambda, \mu \in \mathfrak{h}^{\star}$ we have

 $(P(\lambda): M(\mu)) = [M(\mu): L(\lambda)].$

Translation combinatorics - characteristic zero case

Let us denote by $\mathcal{O}_{[\lambda]}$ the block of \mathcal{O} that contains $L(\lambda)$. For any simple reflection *s* there is a *translation functor*

$$\vartheta_{s} \colon \mathcal{O}_{[\lambda]} \to \mathcal{O}_{[\lambda]}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let us denote by $\mathcal{O}_{[\lambda]}$ the block of \mathcal{O} that contains $L(\lambda)$. For any simple reflection *s* there is a *translation functor*

$$\vartheta_{s} \colon \mathcal{O}_{[\lambda]} \to \mathcal{O}_{[\lambda]}.$$

Observation

If λ is dominant and regular, and if $s \cdots t$ is a reduced expression in W, then

$$\vartheta_t \cdots \vartheta_s P(\lambda) = P(s \cdots t.\lambda) \oplus \bigoplus_{x < s \cdots t} P(x.\lambda)^{\oplus a^x_{s, \dots, t}}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

for some numbers $a_{s,...,t}^{x}$.

Translation combinatorics - characteristic p case

There is a certain category C of \mathfrak{g} -T-modules that contains $Z(\lambda)$ and $L(\lambda)$ for all λ .

There is a certain category C of g-T-modules that contains $Z(\lambda)$ and $L(\lambda)$ for all λ . For any λ there exists a projective cover $Q(\lambda)$ of $L(\lambda)$ in C. It has a *baby Verma flag*, i.e. a filtration with subquotients isomorphic to baby Verma modules. We denote the multiplicities by $(Q : Z(\mu))$.

There is a certain category C of g-T-modules that contains $Z(\lambda)$ and $L(\lambda)$ for all λ . For any λ there exists a projective cover $Q(\lambda)$ of $L(\lambda)$ in C. It has a *baby Verma flag*, i.e. a filtration with subquotients isomorphic to baby Verma modules. We denote the multiplicities by $(Q : Z(\mu))$.

Theorem (Humphreys)

For any $\lambda, \mu \in X$ we have

$$(Q(\lambda):Z(\mu))=[Z(\mu):L'(\lambda)].$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Translation combinatorics - characteristic p case

It is now convenient to identify $\widehat{\mathcal{W}}$ with the set \mathcal{A} of alcoves via the map $w \mapsto w(A_e)$, where A_e is the unique alcove in the dominant chamber that contains 0 in its closure. Let $A \mapsto w_A$ be the inverse map. We abbreviate

$$Z(A) := Z(w_A.0)$$
$$Q(A) := Q(w_A.0)$$

Then Lusztig's conjecture translates to

$$(Q(A):Z(B))=p_{B,A}(1)$$

for all $A, B \in \mathcal{A}$.

It is now convenient to identify $\widehat{\mathcal{W}}$ with the set \mathcal{A} of alcoves via the map $w \mapsto w(A_e)$, where A_e is the unique alcove in the dominant chamber that contains 0 in its closure. Let $A \mapsto w_A$ be the inverse map. We abbreviate

$$Z(A) := Z(w_A.0)$$
$$Q(A) := Q(w_A.0)$$

It is now convenient to identify $\widehat{\mathcal{W}}$ with the set \mathcal{A} of alcoves via the map $w \mapsto w(A_e)$, where A_e is the unique alcove in the dominant chamber that contains 0 in its closure. Let $A \mapsto w_A$ be the inverse map. We abbreviate

$$Z(A) := Z(w_A.0)$$
$$Q(A) := Q(w_A.0)$$

Then Lusztig's conjecture translates to

$$(Q(A):Z(B))=p_{B,A}(1)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

for all $A, B \in \mathcal{A}$.

Translation combinatorics - characteristic p case

For any simple reflection s there is a translation functor $\theta_s \colon C \to C$. It is not difficult to show that

$$(Q(A_{w_0}): Z(B)) = \begin{cases} 1, & \text{if } B \in \mathcal{W}.A_e \\ 0, & \text{if } B \notin \mathcal{W}.A_e \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For any simple reflection s there is a translation functor $\theta_s \colon C \to C$. It is not difficult to show that

$$(Q(A_{w_0}): Z(B)) = \begin{cases} 1, & \text{if } B \in \mathcal{W}.A_e \\ 0, & \text{if } B \notin \mathcal{W}.A_e \end{cases}$$

This is in agreement with Lusztig's conjecture,

For any simple reflection s there is a translation functor $\theta_s \colon C \to C$. It is not difficult to show that

$$(Q(A_{w_0}): Z(B)) = \begin{cases} 1, & \text{if } B \in \mathcal{W}.A_e \\ 0, & \text{if } B \notin \mathcal{W}.A_e \end{cases}$$

This is in agreement with Lusztig's conjecture,

Observation If $w_0 s \cdots t$ is a reduced expression in \widehat{W} , then

$$heta_t\cdots heta_s Q(A_{w_0})=Q(A_{w_0s\cdots t})\oplus igoplus_B Q(B)^{\oplus b^B_{s,\dots,t}}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

for some numbers $b_{s,...,t}^B$.

Let $\mathcal{H} = \bigoplus_{w \in \mathcal{W}} \mathbb{Z}[v, v^{-1}] T_w$ be the Hecke algebra of the Coxeter system $(\mathcal{W}, \mathcal{S})$. There is a duality $H \mapsto \overline{H}$ with $\overline{T_w} = (T_{w^{-1}})^{-1}$.

Let $\mathcal{H} = \bigoplus_{w \in \mathcal{W}} \mathbb{Z}[v, v^{-1}] T_w$ be the Hecke algebra of the Coxeter system $(\mathcal{W}, \mathcal{S})$. There is a duality $H \mapsto \overline{H}$ with $\overline{T_w} = (T_{w^{-1}})^{-1}$.

Theorem (Kazhdan-Lusztig)

For any $w \in \mathcal{W}$ there is a unique element $C'_w \in \mathcal{H}$ with

$$\overline{C'_w} = C'_w, \quad C_w \in T_w + \sum_{x \in \mathcal{W}} v\mathbb{Z}[v]T_x.$$

Let $\mathcal{H} = \bigoplus_{w \in \mathcal{W}} \mathbb{Z}[v, v^{-1}] T_w$ be the Hecke algebra of the Coxeter system $(\mathcal{W}, \mathcal{S})$. There is a duality $H \mapsto \overline{H}$ with $\overline{T_w} = (T_{w^{-1}})^{-1}$.

Theorem (Kazhdan–Lusztig)

For any $w \in \mathcal{W}$ there is a unique element $C'_w \in \mathcal{H}$ with

$$\overline{C'_w} = C'_w, \quad C_w \in T_w + \sum_{x \in \mathcal{W}} v\mathbb{Z}[v]T_x.$$

The coefficients of C'_w are the Kazhdan–Lusztig polynomials $P_{x,w}$.

(日) (四) (문) (문) (문)

Let $\mathcal{H} = \bigoplus_{w \in \mathcal{W}} \mathbb{Z}[v, v^{-1}] T_w$ be the Hecke algebra of the Coxeter system $(\mathcal{W}, \mathcal{S})$. There is a duality $H \mapsto \overline{H}$ with $\overline{T_w} = (T_{w^{-1}})^{-1}$.

Theorem (Kazhdan-Lusztig)

For any $w \in \mathcal{W}$ there is a unique element $C'_w \in \mathcal{H}$ with

$$\overline{C'_w} = C'_w, \quad C_w \in T_w + \sum_{x \in \mathcal{W}} v \mathbb{Z}[v] T_x.$$

The coefficients of C'_w are the Kazhdan–Lusztig polynomials $P_{x,w}$. Observation

Let $w = s \cdots t$ be a reduced expression. Then

$$C'_{s}\cdots C'_{t}=C'_{w}+\sum_{x\leq s\cdots t}\tilde{a}^{x}_{(s,\ldots,t)}C'_{x}$$

for some numbers $\tilde{a}_{(s,...,t)}^{x}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

An affine, periodic version

Denote by $\widehat{\mathcal{H}} = \bigoplus_{w \in \widehat{\mathcal{W}}} \mathbb{Z}[v, v^{-1}] T_w$ the *affine* Hecke algebra.

Denote by $\widehat{\mathcal{H}} = \bigoplus_{w \in \widehat{\mathcal{W}}} \mathbb{Z}[v, v^{-1}] T_w$ the affine Hecke algebra. Let $\mathcal{M} = \bigoplus_{A \in \mathcal{A}} \mathbb{Z}[v, v^{-1}] M_A$ be the periodic $\widehat{\mathcal{H}}$ -module. It carries a duality $M \mapsto \overline{M}$ and a remarkable subset of self-dual elements Q_A , indexed by \mathcal{A} .

The coefficients of expansion Q_A are the periodic polynomials $p_{A,B}$.

Denote by $\widehat{\mathcal{H}} = \bigoplus_{w \in \widehat{\mathcal{W}}} \mathbb{Z}[v, v^{-1}] T_w$ the affine Hecke algebra. Let $\mathcal{M} = \bigoplus_{A \in \mathcal{A}} \mathbb{Z}[v, v^{-1}] M_A$ be the periodic $\widehat{\mathcal{H}}$ -module. It carries a duality $M \mapsto \overline{M}$ and a remarkable subset of self-dual elements Q_A , indexed by \mathcal{A} .

The coefficients of expansion Q_A are the periodic polynomials $p_{A,B}$.

Observation

For a reduced expression $w_0 s \cdots t$ we have

$$Q_{A_{w_0}} \cdot C'_s \cdots C'_t = Q_{A_{w_0}s \cdots t} + \sum_B \tilde{b}^B_{s,\dots,t} Q_B$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

for some numbers $\tilde{b}_{s,...,t}^{B}$.

Decomposition conjecture

Fact 1 The Kazhdan–Lusztig conjecture is equivalent to

$$a_{s,\ldots,t}^{x} = \tilde{a}_{s,\ldots,t}^{x}$$

for all reduced expressions $w_0 s \cdots t$ and $x \in \mathcal{W}$.

Fact 1 The Kazhdan–Lusztig conjecture is equivalent to

$$a_{s,\ldots,t}^{x} = \tilde{a}_{s,\ldots,t}^{x}$$

for all reduced expressions $w_0 s \cdots t$ and $x \in \mathcal{W}$.

Fact 2

Lusztig's conjecture is equivalent to

$$b^B_{s,...,t} = \tilde{b}^B_{s,...,t}$$

(中) (종) (종) (종) (종) (종)

for all reduced expressions $s \cdots t$ and $B \in A$.

The topology of Schubert varieties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The topology of Schubert varieties

Let $T^{\vee} \subset B^{\vee} \subset G^{\vee}$ be the *complex* simply connected algebraic groups associated to the dual root system. We denote by

The topology of Schubert varieties

Let $T^{\vee} \subset B^{\vee} \subset G^{\vee}$ be the *complex* simply connected algebraic groups associated to the dual root system. We denote by

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\mathcal{F}I^{\vee} = G^{\vee}/B^{\vee}$, the flag variety,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\mathcal{F}I^{\vee} = G^{\vee}/B^{\vee}$$
, the flag variety,
 $X_w \subset \mathcal{F}I^{\vee}$ the *Schubert variety* for $w \in \mathcal{W}$,

 $\mathcal{F}I^{\vee} = G^{\vee}/B^{\vee}$, the flag variety, $X_w \subset \mathcal{F}I^{\vee}$ the *Schubert variety* for $w \in \mathcal{W}$, $P_{k,w} \in D_{T^{\vee}}(\mathcal{F}I^{\vee}, k)$ the *parity sheaf* supported on X_w .

 $\mathcal{F}I^{\vee} = G^{\vee}/B^{\vee}$, the flag variety,

 $X_w \subset \mathcal{F}I^{\vee}$ the *Schubert variety* for $w \in \mathcal{W}$,

 $P_{k,w} \in D_{T^{\vee}}(\mathcal{F}l^{\vee}, k)$ the *parity sheaf* supported on X_w .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

For a simple reflection s denote by $\pi_s \colon \mathcal{F}\mathsf{I}^{\vee} \to \mathcal{F}\mathsf{I}^{\vee,s} = \mathcal{G}^{\vee}/\mathcal{P}^{\vee,s}$ the canonical map to the *partial* flag variety.

 $\mathcal{F}I^{\vee} = G^{\vee}/B^{\vee}$, the flag variety,

 $X_w \subset \mathcal{F}I^{\vee}$ the *Schubert variety* for $w \in \mathcal{W}$,

 $P_{k,w} \in D_{T^{\vee}}(\mathcal{F}l^{\vee}, k)$ the *parity sheaf* supported on X_w .

For a simple reflection s denote by $\pi_s \colon \mathcal{F}\mathsf{I}^{\vee} \to \mathcal{F}\mathsf{I}^{\vee,s} = \mathcal{G}^{\vee}/\mathcal{P}^{\vee,s}$ the canonical map to the *partial* flag variety.

Observation

Let $s \cdots t$ be a reduced expression. Then

$$\pi_t^* \pi_{t*} \cdots \pi_s^* \pi_{s*} P_{k,e} = P_{k,s \cdots t} \bigoplus_{x < s \cdots t} P_{k,x}^{\oplus c_{s,\dots,t}^x}$$

for some numbers $c_{s,...,t}^{x}$.

Breakthrough: The decomposition theorem

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A corollary of the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber is the following:

A corollary of the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber is the following:

Theorem

For any $w \in W$, $P_{\mathbb{C},w}$ is the T^{\vee} -equivariant intersection cohomology complex on X_w . Moreover, if $s \cdots t$ is a reduced expression, then

$$c_{s,\ldots,t}^{x}=\tilde{a}_{s,\ldots,t}^{x}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

A corollary of the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber is the following:

Theorem

For any $w \in W$, $P_{\mathbb{C},w}$ is the T^{\vee} -equivariant intersection cohomology complex on X_w . Moreover, if $s \cdots t$ is a reduced expression, then

$$c_{s,\ldots,t}^{x}=\tilde{a}_{s,\ldots,t}^{x}.$$

Hence, in order to prove the Kazhdan–Lusztig conjecture one has to look for a connection between parity sheaves and representation theory.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Now let \mathcal{G} be the Bruhat graph associated to the root system (or the flag variety). We introduced the category of *sheaves on* \mathcal{G} with coefficients in a field k.

Now let \mathcal{G} be the Bruhat graph associated to the root system (or the flag variety). We introduced the category of *sheaves on* \mathcal{G} with coefficients in a field k. In the course of this workshop we will construct

Now let \mathcal{G} be the Bruhat graph associated to the root system (or the flag variety). We introduced the category of *sheaves on* \mathcal{G} with coefficients in a field k. In the course of this workshop we will construct

► a functor W from T[∨]-equivariant sheaves on FI[∨] to sheaves on the Bruhat graph,

Now let \mathcal{G} be the Bruhat graph associated to the root system (or the flag variety). We introduced the category of *sheaves on* \mathcal{G} with coefficients in a field k. In the course of this workshop we will construct

- ► a functor W from T[∨]-equivariant sheaves on FI[∨] to sheaves on the Bruhat graph,
- ► a functor V from a *deformed* version of category O to sheaves on the Bruhat graph.

 $\mathcal{G}_{\leqslant w}$ the subgraph of \mathcal{G} with vertices $\leqslant w$,


```
\mathcal{G}_{\leqslant w} the subgraph of \mathcal{G} with vertices \leqslant w,
```

$\mathscr{B}_k(w)$ the Braden–MacPherson sheaf supported on $\mathcal{G}_{\leq w}$ with coefficients in k.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\mathcal{G}_{\leqslant w}$ the subgraph of \mathcal{G} with vertices $\leqslant w$,

 $\mathscr{B}_k(w)$ the Braden–MacPherson sheaf supported on $\mathcal{G}_{\leq w}$ with coefficients in k.

We will prove the following:

Theorem

For any $w \in W$ we have $\mathbb{V}(P(w.\lambda)) \cong \mathscr{B}(w) \cong \mathbb{W}(P_{\mathbb{C},w})$ and

$$(P(w.\lambda): M(x.\lambda) = \mathsf{rk}\,\mathscr{B}(w)^{\mathsf{x}} = \mathsf{rk}\,\mathbb{H}^{\bullet}_{T^{\vee}}((P_{\mathbb{C},w})_{\mathsf{x}}).$$

 $\mathcal{G}_{\leqslant w}$ the subgraph of \mathcal{G} with vertices $\leqslant w$,

 $\mathscr{B}_k(w)$ the Braden–MacPherson sheaf supported on $\mathcal{G}_{\leq w}$ with coefficients in k.

We will prove the following:

Theorem

For any $w \in W$ we have $\mathbb{V}(P(w.\lambda)) \cong \mathscr{B}(w) \cong \mathbb{W}(P_{\mathbb{C},w})$ and

$$(P(w.\lambda): M(x.\lambda) = \mathsf{rk}\,\mathscr{B}(w)^{\mathsf{x}} = \mathsf{rk}\,\mathbb{H}^{\bullet}_{\mathcal{T}^{\vee}}((P_{\mathbb{C},w})_{\mathsf{x}}).$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

This implies the Kazhdan-Lusztig conjecture.

The variant in the characteristic p case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We now consider the complex affine flag variety $\widehat{\mathcal{F}I}^{\vee}$. Denote by $\widehat{\mathcal{T}}^{\vee} = \mathcal{T}^{\vee} \times \mathbb{C}^{\times}$ the extended (dual) torus. To any $w \in \widehat{\mathcal{W}}$ we associate

We now consider the complex affine flag variety $\widehat{\mathcal{F}I}^{\vee}$. Denote by $\widehat{\mathcal{T}}^{\vee} = \mathcal{T}^{\vee} \times \mathbb{C}^{\times}$ the extended (dual) torus. To any $w \in \widehat{\mathcal{W}}$ we associate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $X_{w} \subset \widehat{\mathcal{F}I}^{\vee}$, the affine Schubert variety,

We now consider the complex affine flag variety $\widehat{\mathcal{F}I}^{\vee}$. Denote by $\widehat{\mathcal{T}}^{\vee} = \mathcal{T}^{\vee} \times \mathbb{C}^{\times}$ the extended (dual) torus. To any $w \in \widehat{\mathcal{W}}$ we associate

 $X_w \subset \widehat{\mathcal{F}l}^{\vee}$, the affine Schubert variety, $P_{k,w} \in D_{\widehat{\mathcal{T}}^{\vee}}(\widehat{\mathcal{F}l}^{\vee}, k)$, the $\widehat{\mathcal{T}}^{\vee}$ -equivariant parity sheaf $P_{k,w}$ with coefficients in k supported on X_w .

We now consider the complex affine flag variety $\widehat{\mathcal{F}I}^{\vee}$. Denote by $\widehat{\mathcal{T}}^{\vee} = \mathcal{T}^{\vee} \times \mathbb{C}^{\times}$ the extended (dual) torus. To any $w \in \widehat{\mathcal{W}}$ we associate

 $X_w \subset \widehat{\mathcal{Fl}}^{\vee}$, the affine Schubert variety, $P_{k,w} \in D_{\widehat{\mathcal{T}}^{\vee}}(\widehat{\mathcal{Fl}}^{\vee}, k)$, the $\widehat{\mathcal{T}}^{\vee}$ -equivariant parity sheaf $P_{k,w}$ with coefficients in k supported on X_w .

On the representation theoretic side, we have

We now consider the complex affine flag variety $\widehat{\mathcal{F}I}^{\vee}$. Denote by $\widehat{\mathcal{T}}^{\vee} = \mathcal{T}^{\vee} \times \mathbb{C}^{\times}$ the extended (dual) torus. To any $w \in \widehat{\mathcal{W}}$ we associate

 $X_w \subset \widehat{\mathcal{F}l}^{\vee}$, the affine Schubert variety, $P_{k,w} \in D_{\widehat{\mathcal{T}}^{\vee}}(\widehat{\mathcal{F}l}^{\vee}, k)$, the $\widehat{\mathcal{T}}^{\vee}$ -equivariant parity sheaf $P_{k,w}$ with coefficients in k supported on X_w .

◆□> <圖> <필> <필> < Ξ</p>

On the representation theoretic side, we have

 ${\cal K}\,$ the Andersen, Jantzen and Soergel category,

We now consider the complex affine flag variety $\widehat{\mathcal{F}I}^{\vee}$. Denote by $\widehat{\mathcal{T}}^{\vee} = \mathcal{T}^{\vee} \times \mathbb{C}^{\times}$ the extended (dual) torus. To any $w \in \widehat{\mathcal{W}}$ we associate

 $X_w \subset \widehat{\mathcal{Fl}}^{\vee}$, the affine Schubert variety, $P_{k,w} \in D_{\widehat{\mathcal{T}}^{\vee}}(\widehat{\mathcal{Fl}}^{\vee}, k)$, the $\widehat{\mathcal{T}}^{\vee}$ -equivariant parity sheaf $P_{k,w}$ with coefficients in k supported on X_w .

On the representation theoretic side, we have

 \mathcal{K} the Andersen, Jantzen and Soergel category, M^B the "stalk" of an object M in \mathcal{K} at an alcove B. this is a finite dimensional $Q = \text{Quot}(S(\mathfrak{h}_k))$ -vector space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We now consider the complex affine flag variety $\widehat{\mathcal{F}I}^{\vee}$. Denote by $\widehat{\mathcal{T}}^{\vee} = \mathcal{T}^{\vee} \times \mathbb{C}^{\times}$ the extended (dual) torus. To any $w \in \widehat{\mathcal{W}}$ we associate

 $X_w \subset \widehat{\mathcal{Fl}}^{\vee}$, the affine Schubert variety, $P_{k,w} \in D_{\widehat{\mathcal{T}}^{\vee}}(\widehat{\mathcal{Fl}}^{\vee}, k)$, the $\widehat{\mathcal{T}}^{\vee}$ -equivariant parity sheaf $P_{k,w}$ with coefficients in k supported on X_w .

On the representation theoretic side, we have

 \mathcal{K} the Andersen, Jantzen and Soergel category, M^B the "stalk" of an object M in \mathcal{K} at an alcove B. this is a finite dimensional $Q = \text{Quot}(S(\mathfrak{h}_k))$ -vector space.

Theorem (AJS)

There is a functor \mathbb{V} from the category of deformed \mathfrak{g}_k -T-modules to \mathcal{K} . It satisfies

$$(Q(A): Z(B)) = \dim_Q (\mathbb{V}Q(A))^B$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Suppose that $w \in W^{\text{res},-}$. There is a functor Φ form sheaves on \mathcal{G} with k-coefficients to \mathcal{K} with $\Phi(\mathscr{B}(w)) \cong \mathbb{V}(Q(A_w))$ and

$$\operatorname{rk} \mathscr{B}(w)^{\times} = (Q(A_w) : Z(A_{\times}))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

for any $x \in \widehat{\mathcal{W}}$.

Theorem

Suppose that $w \in W^{\text{res},-}$. There is a functor Φ form sheaves on \mathcal{G} with k-coefficients to \mathcal{K} with $\Phi(\mathscr{B}(w)) \cong \mathbb{V}(Q(A_w))$ and

$$\mathsf{rk}\,\mathscr{B}(w)^{\mathsf{x}} = (Q(A_w):Z(A_{\mathsf{x}}))$$

for any $x \in \widehat{\mathcal{W}}$.

Corollary For $w \in \widehat{W}^{res,-}$ and char k > p we have

 $\mathsf{rk} \mathbb{H}^{\bullet}_{T^{\vee}}((P_{k,w})_{X}) = (Q(A_{w}) : Z(A_{X})).$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The status of Lusztig's conjecture

Using the above results, one can prove the following: Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Using the above results, one can prove the following:

Theorem

► There is a number N, explicitly calculable in terms of the affine Hecke-algebra, such that Lusztig's conjecture holds for char k > N.

(日) (四) (문) (문) (문)

Using the above results, one can prove the following:

Theorem

- ► There is a number N, explicitly calculable in terms of the affine Hecke-algebra, such that Lusztig's conjecture holds for char k > N.
- For all k with char k > p the following are equivalent:

$$egin{aligned} &[Z(w.\lambda):L'(x.\lambda)]=1\ &p_{w,x}(1)=1 \end{aligned}$$

(日) (四) (코) (코) (코) (코)

Using the above results, one can prove the following:

Theorem

- ► There is a number N, explicitly calculable in terms of the affine Hecke-algebra, such that Lusztig's conjecture holds for char k > N.
- For all k with char k > p the following are equivalent:

$$egin{aligned} &[Z(w.\lambda):L'(x.\lambda)]=1\ &p_{w,x}(1)=1 \end{aligned}$$

Research Problem

Calculate rk $\mathbb{H}^{\bullet}_{T^{\vee}}((P_{k,w})_x)$ for char k > 0 and prove Lusztig's conjecture.