Moment graphs

Martina Lanini An Hoa Nguyen

FAU Erlangen-Nürnberg - Università di Roma Tre Universität zu Köln

Sheaves in Representation Theory Isle of Skye, Scotland, 23-28 May 2010

1 Moment graphs

- 2 Sheaves on moment graphs
- 3 Sections of sheaves
- The Alexandrov topology
- 5 Flabby sheaves
- 6 The Braden-MacPherson Sheaf

A ■

A short history

1998. Moment graphs were introduced by Goresky, Kottwitz and MacPherson as a combinatorial model for the topology of a complex equivariantly formal variety.

2001. Braden and MacPherson gave a description of the intersection cohomologies on suitably stratified complex projective varieties with an equivariantly formal torus action in terms of a canonical sheaf on the associated moment graph.

1998-2001. Guillemin and Zara considered similar structures (in the case of smooth varieties).

A short history

2006-2008. Fiebig used moment graphs and corresponding canonical sheaves to give a new approach to Kazhdan-Lusztig's and Lusztig's conjectures.

2009. Fiebig and Williamson obtained the Braden-MacPherson sheaves by localizing parity sheaves.

- 4 同 ト - 4 三 ト

Basic definition

Let $Y = \mathbb{Z}^r$ be a lattice.

Definition

A moment graph \mathcal{G} over Y is a directed graph $(\mathcal{V}, \mathcal{E})$ with the set of vertices \mathcal{V} and the set of edges \mathcal{E} together with a map $\alpha : \mathcal{E} \to Y \setminus \{0\}$ (called the labelling). We assume moreover that a moment graph has neither cycles nor multiple edges.

To a complex variety with a torus action that has finitely many 0and 1-dimensional orbits and carries a suitable stratification one associates a moment graph over the character lattice of the torus.

It encodes the structure of the orbits of dimension zero and one. In a later talk we will see a more particular example of a flag variety.

Bruhat graphs

The most important examples of moment graphs for us are the ones associated to a finite or affine root system, we call them **Bruhat graphs**.

Let V be a finite dimensional rational vector space, V^* its dual and $R \subset V$ be a root system.

Let $R^+ \subset R$ the set of positive roots and $W \subset Gl(V)$ the Weyl group corresponding to R.

We denote by

$$X := \{ \gamma \in V \, | \, \langle \gamma, \alpha^{\vee} \rangle \in \mathbb{Z} \, \forall \alpha \in R \}$$

the weight lattice.

Bruhat graphs

Definition

The moment graph \mathcal{G}_R over the lattice X is given by

- The set of vertices is W.
- Two vertices $x, y \in W$ are connected by an edge E if there is a positive root β such that $x = s_{\beta}y$. We set $\alpha(E) := \beta$.
- An edge connecting x and y is directed towards y if l(y) > l(x), where l is the length function.

イロト イヨト イヨト イヨト

Example.

Let us look at the A_2 root system. There are two simple roots α , β . The Weyl group is generated by the two simple reflections $s_1 = s_{\alpha}$ and $s_2 = s_{\beta}$. The Bruhat graph looks like this:

<ロ> <同> <同> <三>

∢ ≣ ≯

Bruhat graphs

The construction for the affine case is very similar:

- The set of vertices is \widehat{W} .
- Two vertices $x, y \in \widehat{W}$ are connected by an edge E if there is a positive affine root β_n such that $x = s_{\beta_n} y$. We set $\alpha(E) := \beta_n$.
- An edge connecting x and y is directed towards y if l(y) > l(x), where l is the length function.

イロン イヨン イヨン イヨン

Example

Let's consider now the affine case $\tilde{A_1}$. The positive affine roots are $R^+ = \{\alpha + n\delta \mid n \ge 0\} \cup \{-\alpha + n\delta \mid n > 0\}$, where α is the positive simple root for A_1 . The Bruhat graph looks like this:

GKM-property

Let \mathcal{G} be a moment graph over Y and k a field. Denote by $Y_k = Y \otimes_{\mathbb{Z}} k$ the vector space over k spanned by Y.

Definition

The pair (\mathfrak{G}, k) is a *GKM-pair* if $char(k) \neq 2$ and for any vertex x of \mathfrak{G} and any two distinct edges E, E' that contain x, the labels $\alpha(E)$, $\alpha(E')$ are linearly independent in Y_k .

Exercise. Let \mathcal{G} be the moment graph associated to A_n root system. Then the pair (\mathcal{G}, k) is a GKM-pair for any field k with $char(k) \neq 2$.

・ロト ・回ト ・ヨト ・ヨト

Sheaves on moment graphs

Let \mathcal{G} be a moment graph over a lattice Y.

Let $S = S_k(Y_k)$ be the symmetric algebra of Y_k . This is a polynomial algebra of rank= $dim_k(Y_k)$.

Definition

A k-sheaf $\mathcal{F} = (\{\mathcal{F}^x\}, \{\mathcal{F}^E\}, \{\rho_{x,E}\})$ on \mathcal{G} is given by the following data:

- an S-module \mathcal{F}^x for any vertex x.
- an S-module \mathcal{F}^{E} such that $\alpha(E)\mathcal{F}^{E} = 0$ for each edge E.
- for each edge E with vertex x a homomorphism $\rho_{x,E} : \mathcal{F}^x \to \mathcal{F}^E$ of *S*-modules.

イロト イヨト イヨト イヨト

The structure sheaf

The most natural sheaf on a moment graph ${\mathcal G}$ is its structure sheaf ${\mathcal Z}.$ It is defined in the following way:

- $\mathcal{Z}^{x} = S$ for any vertex x,
- $\mathcal{Z}^{E} = S/\alpha(E)S$ for each edge E,
- for each edge E with vertex x, ρ_{x,E} : Z^x → Z^E is just the canonical projection.

Example

Consider again the A_2 case. The structure sheaf of the associated moment graph is:

Image: A mathematical states and a mathem

< ∃⇒

Sections of sheaves

Let $\mathfrak{G} = (\mathcal{V}, \mathcal{E})$ be a moment graph over a lattice Y and \mathfrak{F} a sheaf on \mathfrak{G} .

Notation. Let $\mathcal{I} \subset \mathcal{V}$, we denote by \mathcal{I} the complete subgraph of \mathcal{G} having \mathcal{I} as set of vertices as well.

Definition

The set of sections of \mathcal{F} over \mathcal{I} is:

$$\Gamma(\mathfrak{I},\mathfrak{F}) = \Big\{ (m_x) \in \prod_{x \in \mathfrak{I}} \mathfrak{F}^x \mid \rho_{x,E}(m_x) = \rho_{y,E}(m_y) \,\forall E : x \to y \Big\}.$$

Notation. We denote by $\Gamma(\mathcal{F}) := \Gamma(\mathcal{V}, \mathcal{F})$ the set of global sections.

Structure algebra

Let \mathcal{G} be a moment graph.

Definition

We call **structure algebra** of \mathfrak{G} the set of global sections of the structure sheaf of \mathfrak{G} and we denote it by $Z := \Gamma(\mathfrak{G}, \mathfrak{Z})$.

Observe that

- componentwise addition and multiplication give Z the structure of an S-algebra,
- componentwise addition and multiplication give Γ(J, F) a Z-module structure.

イロト イヨト イヨト イヨト

Example

Consider the moment graph associated to the A_2 root system.

Let's build an element of its structure algebra:

< 177 ▶

3

The Alexandrov topology

We have not used yet the partial order on the set of vertices!

We will use it to define the **Alexandrov topology** on \mathcal{G} .

Definition

We say that a subset ${\mathcal I}$ of ${\mathcal V}$ is **open** if and only if it is downwardly closed, i.e. if and only if

$$x \in \mathcal{I}, y \ge x \Rightarrow y \in \mathcal{I}.$$

< 17 > <

The Alexandrov topology

Notation. We denote

$$\{>x\} := \{y \in \mathcal{V} \mid y > x\} \quad \{\ge x\} := \{y \in \mathcal{V} \mid y \ge x\}$$
$$\{
$$[x, z] := \{\ge x\} \cap \{\le z\} \quad (x, z) := \{>x\} \cap \{< z\}$$
$$(x, z] := \{>x\} \cap \{\le z\} \quad [x, z) := \{\ge x\} \cap \{< z\}$$$$

Thus a basis of open sets for the topology defined above is

$$\big\{\{\geq x\}\,|\,x\in\mathcal{V}\big\}.$$

イロン イヨン イヨン イヨン

æ

Example

Consider again the moment graph associated to the A_2 root system.

The set $\left\{ s_1 s_2 s_1, s_2 s_1, s_1 s_2 \right\}$

is OPEN

Image: A math a math

≣ >

Example

Consider again the moment graph associated to the A_2 root system.

The set

$$\{s_2, e\}$$

is CLOSED

Image: A mathematical states and a mathem

≣ >

Example

Consider again the moment graph associated to the A_2 root system.

The set $\{ s_1 s_2 s_1, s_2 s_1, e \}$

is neither OPEN nor CLOSED

• • • • •

Problem. Understand whether a sheaf \mathcal{F} on \mathcal{G} is flabby, i.e. whether for any open subset $\mathcal{I} \subseteq \mathcal{V}$ the restriction map $\Gamma(\mathcal{F}) \to \Gamma(\mathcal{I}, \mathcal{F})$ is surjective.

イロン 不同と 不同と 不同と

æ

Example

Consider the A_3 root system, having as set of simple roots $\{\alpha, \beta, \gamma\}$. We denote by $s_1 := s_\alpha$, $s_2 := s_\beta$, $s_3 = s_\gamma$ the corresponding reflections. Consider the complete subgraph of \mathcal{G}_{A_3} having as set of vertices the interval $[s_2, s_2s_1s_3s_2]$.

Flabbiness conditions

Let \mathcal{F} be a sheaf on a moment graph \mathcal{G} and $x \in \mathcal{V}$.

Notation. Denote by

.

- $\mathcal{E}_{\delta x} := \{ E \in \mathcal{E} \mid E : x \to y \},$
- $\mathcal{V}_{\delta x} := \big\{ y \in \mathcal{V} \mid \exists E \in \mathcal{E}_{\delta x} \text{ such that } E : x \to y \big\},$
- $\rho_{\delta_x} := (\rho_{x,E})_{E \in \mathcal{E}_{\delta_x}}^T$
- 𝔅^{δx} : the image of Γ({>x}) := Γ({>x},𝔅) under the composition u_x of the following functions:

$$u_{x}: \ \Gamma(\{>x\}) \hookrightarrow \prod_{\substack{y \in \mathcal{V} \\ y > x}} \mathcal{F}^{y} \to \prod_{\substack{y \in \mathcal{V}_{\delta x}}} \mathcal{F}^{y} \xrightarrow{\oplus_{\mathcal{B}_{y,E}}} \prod_{E \in \mathcal{E}_{\delta x}} \mathcal{F}^{E}$$

・ロン ・回と ・ヨン ・ヨン

Flabbiness conditions

Lemma

Let \mathfrak{F} be a sheaf on \mathfrak{G} . The following sentences are equivalent:

- (i) For any open set $\mathfrak{I} \subseteq \mathfrak{J} \subseteq \mathcal{V}$ the restriction map $\Gamma(\mathfrak{J},\mathfrak{F}) \to \Gamma(\mathfrak{I},\mathfrak{F})$ is surjective.
- (ii) For any vertex $x \in \mathcal{V}$, the restriction map $\Gamma(\{\geq x\}, \mathfrak{F}) \to \Gamma(\{>x\}, \mathfrak{F})$ is surjective.
- (iii) For any vertex $x \in \mathcal{V}$, the map $\rho_{\delta x} : \mathcal{F}^x \to \prod_{E \in \mathcal{E}_{\delta x}} \mathcal{F}^E$ contains $\mathcal{F}^{\delta x}$ in its image.

イロン イヨン イヨン イヨン

This Lemma motivates the construction of the main object associated to a moment graph.

The Braden-MacPherson Sheaf

Theorem (Braden-MacPherson, 2001)

Let \mathcal{G} be a finite moment graph over Y with highest vertex w. There exists exactly one (up to isomorphism) indecomposable sheaf \mathcal{B}_w on \mathcal{G} with the following properties:

イロト イヨト イヨト イヨト

We call \mathcal{B}_{w} Braden-MacPherson sheaf or canonical sheaf.

The *BMP*-sheaf on G_{A_2} is the following one:

 $S/\beta S S/\alpha S$ $S/(\alpha + \beta) S S/\beta S S/\alpha S$ $S/(\alpha + \beta) S S/\alpha S$ $S/(\alpha + \beta) S S/\alpha S$ $S/(\alpha + \beta) S$ $S/(\alpha$

Remark

Any moment graph associated to a finite root system has BMP-sheaf isomorphic to its structure sheaf. This is because the corresponding Schubert variety is smooth.

Example

Consider now the moment graph associated to the interval $[s_2, s_2s_1s_3s_2] \in W$, the Weyl group corresponding to the A_3 root system. It has the following *BMP*-sheaf :

イロト イヨト イヨト イヨト

The multiplicity conjecture

Consider a moment graph \mathcal{G} associated to a root system (finite or affine) having Weyl group W.

Conjecture

Le k be a field and (\mathfrak{G}, k) a GKM-pair. For every $w \in W$ and for all $x \leq w$ we have:

$$\mathsf{r} \mathsf{k} \mathcal{B}^{\mathsf{x}}_{\mathsf{w}} = \mathsf{P}_{\mathsf{x},\mathsf{w}}(1).$$

 $P_{x,w}$ are the Kazhdan-Lusztig polynomials.

The multiplicity conjecture in short

The multiplicity conjecture has very important consequences in representation theory.

- It is proved if
 - char k = 0
 - $\mathcal{B}_w^x \cong S$ if and only if $P_{x,w}(1) = 1$. (Fiebig, 2006)

In positive characteristic the multiplicity conjecture is proven only for p bigger than a huge number, depending on the Weyl group (Fiebig, 2007).

・ロン ・回 と ・ ヨ と ・ ヨ と