Moment graphs

Martina Lanini
An Hoa Nguyen

FAU Erlangen-Nürnberg - Università di Roma Tre Universität zu Köln

Sheaves in Representation Theory Isle of Skye, Scotland, 23-28 May 2010

(1) Moment graphs
(2) Sheaves on moment graphs
(3) Sections of sheaves

4 The Alexandrov topology
(5) Flabby sheaves
(6) The Braden-MacPherson Sheaf

A short history

1998. Moment graphs were introduced by Goresky, Kottwitz and MacPherson as a combinatorial model for the topology of a complex equivariantly formal variety.
1999. Braden and MacPherson gave a description of the intersection cohomologies on suitably stratified complex projective varieties with an equivariantly formal torus action in terms of a canonical sheaf on the associated moment graph.

1998-2001. Guillemin and Zara considered similar structures (in the case of smooth varieties).

A short history

2006-2008. Fiebig used moment graphs and corresponding canonical sheaves to give a new approach to Kazhdan-Lusztig's and Lusztig's conjectures.
2009. Fiebig and Williamson obtained the Braden-MacPherson sheaves by localizing parity sheaves.

Basic definition

Let $Y=\mathbb{Z}^{r}$ be a lattice.

Definition

A moment graph \mathcal{G} over Y is a directed graph $(\mathcal{V}, \mathcal{E})$ with the set of vertices \mathcal{V} and the set of edges \mathcal{E} together with a map $\alpha: \mathcal{E} \rightarrow Y \backslash\{0\}$ (called the labelling). We assume moreover that a moment graph has neither cycles nor multiple edges.

Example

To a complex variety with a torus action that has finitely many 0 and 1-dimensional orbits and carries a suitable stratification one associates a moment graph over the character lattice of the torus.

It encodes the structure of the orbits of dimension zero and one. In a later talk we will see a more particular example of a flag variety.

Bruhat graphs

The most important examples of moment graphs for us are the ones associated to a finite or affine root system, we call them Bruhat graphs.
Let V be a finite dimensional rational vector space, V^{*} its dual and $R \subset V$ be a root system.
Let $R^{+} \subset R$ the set of positive roots and $W \subset G I(V)$ the Weyl group corresponding to R.
We denote by

$$
X:=\left\{\gamma \in V \mid\left\langle\gamma, \alpha^{\vee}\right\rangle \in \mathbb{Z} \forall \alpha \in R\right\}
$$

the weight lattice.

Bruhat graphs

Definition

The moment graph \mathcal{G}_{R} over the lattice X is given by

- The set of vertices is W.
- Two vertices $x, y \in W$ are connected by an edge E if there is a positive root β such that $x=s_{\beta} y$. We set $\alpha(E):=\beta$.
- An edge connecting x and y is directed towards y if $I(y)>I(x)$, where I is the length function.

Example.

Let us look at the A_{2} root system. There are two simple roots α, β. The Weyl group is generated by the two simple reflections $s_{1}=s_{\alpha}$ and $s_{2}=s_{\beta}$. The Bruhat graph looks like this:

Bruhat graphs

The construction for the affine case is very similar:

- The set of vertices is \widehat{W}.
- Two vertices $x, y \in \widehat{W}$ are connected by an edge E if there is a positive affine root β_{n} such that $x=s_{\beta_{n}} y$. We set $\alpha(E):=\beta_{n}$.
- An edge connecting x and y is directed towards y if $I(y)>I(x)$, where I is the length function.

Example

Let's consider now the affine case \tilde{A}_{1}. The positive affine roots are $R^{+}=\{\alpha+n \delta \mid n \geq 0\} \cup\{-\alpha+n \delta \mid n>0\}$, where α is the positive simple root for A_{1}.
The Bruhat graph looks like this:

GKM-property

Let \mathcal{G} be a moment graph over Y and k a field. Denote by $Y_{k}=Y \otimes_{\mathbb{Z}} k$ the vector space over k spanned by Y.

Definition

The pair (\mathcal{G}, k) is a GKM-pair if $\operatorname{char}(k) \neq 2$ and for any vertex x of \mathcal{G} and any two distinct edges E, E^{\prime} that contain x, the labels $\alpha(E), \alpha\left(E^{\prime}\right)$ are linearly independent in Y_{k}.

Exercise. Let \mathcal{G} be the moment graph associated to A_{n} root system. Then the pair (\mathcal{G}, k) is a GKM-pair for any field k with $\operatorname{char}(k) \neq 2$.

Sheaves on moment graphs

Let \mathcal{G} be a moment graph over a lattice Y.
Let $S=S_{k}\left(Y_{k}\right)$ be the symmetric algebra of Y_{k}. This is a polynomial algebra of rank $=\operatorname{dim}_{k}\left(Y_{k}\right)$.

Definition

A k-sheaf $\mathcal{F}=\left(\left\{\mathcal{F}^{x}\right\},\left\{\mathcal{F}^{E}\right\},\left\{\rho_{x, E}\right\}\right)$ on \mathcal{G} is given by the following data:

- an S-module \mathcal{F}^{x} for any vertex x.
- an S-module \mathcal{F}^{E} such that $\alpha(E) \mathcal{F}^{E}=0$ for each edge E.
- for each edge E with vertex x a homomorphism

$$
\rho_{X, E}: \mathcal{F}^{x} \rightarrow \mathcal{F}^{E} \text { of } S \text {-modules. }
$$

The structure sheaf

The most natural sheaf on a moment graph \mathcal{G} is its structure sheaf z. It is defined in the following way:

- $z^{x}=S$ for any vertex x,
- $z^{E}=S / \alpha(E) S$ for each edge E,
- for each edge E with vertex $x, \rho_{x, E}: z^{x} \rightarrow z^{E}$ is just the canonical projection.

Example

Consider again the A_{2} case. The structure sheaf of the associated moment graph is:

Sections of sheaves

Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be a moment graph over a lattice Y and \mathcal{F} a sheaf on \mathcal{G}.

Notation. Let $\mathcal{J} \subset \mathcal{V}$, we denote by \mathcal{J} the complete subgraph of \mathcal{G} having \mathcal{J} as set of vertices as well.

Definition

The set of sections of \mathcal{F} over \mathcal{J} is:

$$
\Gamma(\mathcal{J}, \mathcal{F})=\left\{\left(m_{x}\right) \in \prod_{x \in \mathcal{J}} \mathcal{F}^{x} \mid \rho_{x, E}\left(m_{x}\right)=\rho_{y, E}\left(m_{y}\right) \forall E: x \rightarrow y\right\} .
$$

Notation. We denote by $\Gamma(\mathcal{F}):=\Gamma(\mathcal{V}, \mathcal{F})$ the set of global sections.

Structure algebra

Let \mathcal{G} be a moment graph.

Definition

We call structure algebra of \mathcal{G} the set of global sections of the structure sheaf of \mathcal{G} and we denote it by $Z:=\Gamma(\mathcal{G}, \mathcal{Z})$.

Observe that

- componentwise addition and multiplication give Z the structure of an S-algebra,
- componentwise addition and multiplication give $\Gamma(\mathcal{J}, \mathcal{F})$ a Z-module structure.

Example

Consider the moment graph associated to the A_{2} root system.
Let's build an element of its structure algebra:

The Alexandrov topology

We have not used yet the partial order on the set of vertices!
We will use it to define the Alexandrov topology on \mathcal{G}.

Definition

We say that a subset \mathcal{J} of \mathcal{V} is open if and only if it is downwardly closed, i.e. if and only if

$$
x \in \mathcal{J}, y \geq x \Rightarrow y \in \mathcal{J}
$$

The Alexandrov topology

Notation. We denote

$$
\begin{aligned}
\{>x\}:=\{y \in \mathcal{V} \mid y>x\} & \{\geq x\}:=\{y \in \mathcal{V} \mid y \geq x\} \\
\{<x\}:=\{y \in \mathcal{V} \mid y<x\} & \{\leq x\}:=\{y \in \mathcal{V} \mid y \leq x\} \\
{[x, z]:=\{\geq x\} \cap\{\leq z\} } & (x, z):=\{>x\} \cap\{<z\} \\
(x, z]:=\{>x\} \cap\{\leq z\} & {[x, z):=\{\geq x\} \cap\{<z\} }
\end{aligned}
$$

Thus a basis of open sets for the topology defined above is

$$
\{\{\geq x\} \mid x \in \mathcal{V}\}
$$

Example

Consider again the moment graph associated to the A_{2} root system.

$$
\begin{gathered}
\text { The set } \\
\left\{s_{1} s_{2} s_{1}, s_{2} s_{1}, s_{1} s_{2}\right\}
\end{gathered}
$$

is OPEN

Example

Consider again the moment graph associated to the A_{2} root system.

The set
$\left\{s_{2}, e\right\}$
is CLOSED

Example

Consider again the moment graph associated to the A_{2} root system.

The set

$$
\left\{s_{1} s_{2} s_{1}, s_{2} s_{1}, e\right\}
$$

is neither OPEN nor CLOSED

Flabby Sheaves

Problem. Understand whether a sheaf \mathcal{F} on \mathcal{G} is flabby, i.e. whether for any open subset $\mathcal{J} \subseteq \mathcal{V}$ the restriction map $\Gamma(\mathcal{F}) \rightarrow \Gamma(\mathcal{J}, \mathcal{F})$ is surjective.

Example

Consider the A_{3} root system, having as set of simple roots $\{\alpha, \beta, \gamma\}$. We denote by $s_{1}:=s_{\alpha}, s_{2}:=s_{\beta}, s_{3}=s_{\gamma}$ the corresponding reflections. Consider the complete subgraph of $\mathcal{G}_{A_{3}}$ having as set of vertices the interval [$s_{2}, s_{2} s_{1} s_{3} s_{2}$].

Flabbiness conditions

Let \mathcal{F} be a sheaf on a moment graph \mathcal{G} and $x \in \mathcal{V}$.
Notation.Denote by

- $\mathcal{E}_{\delta x}:=\{E \in \mathcal{E} \mid E: x \rightarrow y\}$,
- $\mathcal{V}_{\delta x}:=\left\{y \in \mathcal{V} \mid \exists E \in \mathcal{E}_{\delta x}\right.$ such that $\left.E: x \rightarrow y\right\}$,
- $\rho_{\delta_{x}}:=\left(\rho_{x, E}\right)_{E \in \varepsilon_{\delta x}}^{T}$,
- $\mathcal{F}^{\delta x}$: the image of $\Gamma(\{>x\}):=\Gamma(\{>x\}, \mathcal{F})$ under the composition u_{x} of the following functions:

$$
u_{x}: \Gamma(\{>x\}) \hookrightarrow \prod_{\substack{y \in \mathcal{V} \\ y>x}} \mathcal{F}^{y} \rightarrow \prod_{y \in \mathcal{V}_{\delta x}} \mathcal{F}^{y} \xrightarrow{\oplus a_{y}, E} \prod_{E \in \mathcal{E}_{\delta x}} \mathcal{F}^{E}
$$

Flabbiness conditions

Lemma

Let \mathcal{F} be a sheaf on \mathcal{G}. The following sentences are equivalent:
(i) For any open set $\mathcal{J} \subseteq \mathcal{J} \subseteq \mathcal{V}$ the restriction map

$$
\Gamma(\mathcal{J}, \mathcal{F}) \rightarrow \Gamma(\mathcal{J}, \mathcal{F}) \text { is surjective. }
$$

(ii) For any vertex $x \in \mathcal{V}$, the restriction map

$$
\Gamma(\{\geq x\}, \mathcal{F}) \rightarrow \Gamma(\{>x\}, \mathcal{F}) \text { is surjective } .
$$

(iii) For any vertex $x \in \mathcal{V}$, the map

$$
\rho_{\delta x}: \mathcal{F}^{x} \rightarrow \prod_{E \in \mathcal{E}_{\delta x}} \mathcal{F}^{E} \text { contains } \mathcal{F}^{\delta x} \text { in its image. }
$$

This Lemma motivates the construction of the main object associated to a moment graph.

The Braden-MacPherson Sheaf

Theorem (Braden-MacPherson, 2001)

Let \mathcal{G} be a finite moment graph over Y with highest vertex w. There exists exactly one (up to isomorphism) indecomposable sheaf \mathcal{B}_{w} on \mathcal{G} with the following properties:
(i) $\mathcal{B}_{w}^{w} \cong S$;
(ii) If $x, y \in \mathcal{V}, E: x \rightarrow y \in \mathcal{E}$, then $\mathcal{B}_{w}^{E} \cong \mathcal{B}_{w}^{y} / \alpha(E) \mathcal{B}_{w}^{y}$;
(iii) If $x, y \in \mathcal{V}, E: x \rightarrow y \in \mathcal{E}$, then $\rho_{\delta x}: \mathcal{B}_{w}^{x} \rightarrow \mathcal{B}_{w}^{\delta x}$ is a projective cover in the category of graded S-modules.

We call \mathcal{B}_{w} Braden-MacPherson sheaf or canonical sheaf.

Example

The BMP-sheaf on $\mathcal{G}_{A_{2}}$ is the following one:

Remark

Any moment graph associated to a finite root system has BMP-sheaf isomorphic to its structure sheaf. This is because the corresponding Schubert variety is smooth.

Example

Consider now the moment graph associated to the interval $\left[s_{2}, s_{2} s_{1} s_{3} s_{2}\right] \in W$, the Weyl group corresponding to the A_{3} root system. It has the following $B M P$-sheaf :

The multiplicity conjecture

Consider a moment graph \mathcal{G} associated to a root system (finite or affine) having Weyl group W.

Conjecture

Le k be a field and (\mathcal{G}, k) a GKM-pair. For every $w \in W$ and for all $x \leq w$ we have:

$$
r k \mathcal{B}_{w}^{x}=P_{x, w}(1)
$$

$P_{x, w}$ are the Kazhdan-Lusztig polynomials.

The multiplicity conjecture in short

The multiplicity conjecture has very important consequences in representation theory.

It is proved if

- char $k=0$
- $\mathcal{B}_{w}^{x} \cong S$ if and only if $P_{x, w}(1)=1$. (Fiebig, 2006)

In positive characteristic the multiplicity conjecture is proven only for p bigger than a huge number, depending on the Weyl group (Fiebig, 2007).

