Introduction to Category \mathcal{O}

Adam Gal, Elena Gal

May 21, 2010

Adam Gal, Elena Gal Introduction to Category O

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Original Objective

Classify unitary representations of reductive Lie Groups (e.g. GL(n), SL(n))

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Original Objective

Classify unitary representations of reductive Lie Groups (e.g. GL(n), SL(n))

Harish-Chandra's approach

Classify admissible representations

・ 同 ト ・ ヨ ト ・ ヨ ト …

Original Objective

Classify unitary representations of reductive Lie Groups (e.g. GL(n), SL(n))

Harish-Chandra's approach

Classify admissible representations

Analytic problem

Admissible representations of complex semisimple Lie groups (e.g. $GL(n, \mathbb{C}), SL(n, \mathbb{C})$)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Original Objective

Classify unitary representations of reductive Lie Groups (e.g. GL(n), SL(n))

Harish-Chandra's approach

Classify admissible representations

Analytic problem

Admissible representations of complex semisimple Lie groups (e.g. $GL(n, \mathbb{C}), SL(n, \mathbb{C})$)

Algebraic problem

 $\begin{array}{l} \text{Harish-Chandra modules} \\ \text{for } (\mathfrak{g} \times \mathfrak{g}, \mathfrak{g} \hookrightarrow \mathfrak{g} \times \mathfrak{g}) \end{array}$

・ロト ・ 理 ト ・ ヨ ト ・

Original Objective

Classify unitary representations of reductive Lie Groups (e.g. GL(n), SL(n))

Harish-Chandra's approach

Classify admissible representations

Analytic problem

Admissible representations of complex semisimple Lie groups (e.g. $GL(n, \mathbb{C}), SL(n, \mathbb{C})$)

Algebraic problem

Harish-Chandra modules for $(\mathfrak{g}\times\mathfrak{g},\mathfrak{g}\hookrightarrow\mathfrak{g}\times\mathfrak{g})$

Toy model

Category O

Original Objective

Classify unitary representations of reductive Lie Groups (e.g. GL(n), SL(n))

Harish-Chandra's approach

Classify admissible representations

Analytic problem

Admissible representations of complex semisimple Lie groups (e.g. $GL(n, \mathbb{C}), SL(n, \mathbb{C})$)

Algebraic problem

Harish-Chandra modules for $(\mathfrak{g}\times\mathfrak{g},\mathfrak{g}\hookrightarrow\mathfrak{g}\times\mathfrak{g})$

Toy model

Category \mathcal{O} (Also includes finite dim and Verma modules)

 \mathfrak{g} - Semisimple Lie Algebra, $U(\mathfrak{g})$ - its universal enveloping algebra.

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and $U(\mathfrak{g}) = U(\mathfrak{n}_{-})U(\mathfrak{h})U(\mathfrak{n}_{+})$ (PBW theorem)

<□> < □> < □> < □> = - のへへ

 \mathfrak{g} - Semisimple Lie Algebra, $U(\mathfrak{g})$ - its universal enveloping algebra.

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and $U(\mathfrak{g}) = U(\mathfrak{n}_{-})U(\mathfrak{h})U(\mathfrak{n}_{+})$ (PBW theorem)

Definition

Category O is the full subcategory of $ModU(\mathfrak{g})$ whose objects satisfy the following properties:

- (O1) *M* is finitely generated
- (\mathcal{O} 2) *M* is \mathfrak{h} -semisimple, i.e. $M = \bigoplus_{\lambda \in \mathfrak{h}^*} M_{\lambda}$
- (\mathcal{O} 3) *M* is locally \mathfrak{n}_+ -finite i.e. $\forall v \in M : \dim U(\mathfrak{n}_+)v < \infty$

 $\mathcal{O}(2) + \mathcal{O}(3) \Rightarrow$ for every $v \in M$ there exists k s.t. $(\mathfrak{n}_+)^k v = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Theorem

Category O satisfies the following properties:

- O is an Abelian category.
- 2 *O* is Noetherian and Artinian.
- O is closed under submodules, quotients and finite direct sums.

ヘロン 人間 とくほ とくほ とう

3

Theorem

Category \mathcal{O} satisfies the following properties:

- O is an Abelian category.
- 2 *O* is Noetherian and Artinian.
- O is closed under submodules, quotients and finite direct sums.
- $\forall M \in \mathcal{O}$ all of the weight spaces M_{λ} are finite dimensional.
- S ∀M ∈ O the weights of M are contained in the union of finitely many sets of the form λ − Γ with λ ∈ h* and Γ the semigroup generated by the positive roots.
- $\forall M \in \mathcal{O}$: *M* is finitely generated as a U(\mathfrak{n}) module.

ヘロト ヘアト ヘビト ヘビト

Let *M* be a $U(\mathfrak{g})$ module, then $v^+ \in M$ is a highest weight vector of weight $\lambda \in \mathfrak{h}^*$ if $v^+ \in M_\lambda$ and $\mathfrak{n}_+v^+ = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Let *M* be a $U(\mathfrak{g})$ module, then $v^+ \in M$ is a highest weight vector of weight $\lambda \in \mathfrak{h}^*$ if $v^+ \in M_\lambda$ and $\mathfrak{n}_+v^+ = 0$

Remark

Any nonzero module in \mathcal{O} has at least one highest weight vector. If M is simple then all its heighest weight vectors have the same weight and are multiples of each other.

ヘロン 人間 とくほ とくほ とう

Let *M* be a $U(\mathfrak{g})$ module, then $v^+ \in M$ is a highest weight vector of weight $\lambda \in \mathfrak{h}^*$ if $v^+ \in M_\lambda$ and $\mathfrak{n}_+v^+ = 0$

Remark

Any nonzero module in \mathcal{O} has at least one highest weight vector. If M is simple then all its heighest weight vectors have the same weight and are multiples of each other.

Definition

A $U(\mathfrak{g})$ module M is a heighest weight module of weight λ if there is a highest weight vector $v^+ \in M_{\lambda}$ s.t. $M = U(\mathfrak{g})v^+$

・ロト ・ 理 ト ・ ヨ ト ・

Let *M* be a heighest weight module of weight λ generated by a maximal vector v^+ . Fix an ordering of the positive roots $\alpha_1, \ldots, \alpha_m$ and choose corresponding root vectors $y_i \in \mathfrak{g}_{-\alpha_i}$. Then:

- *M* is spanned by the vectors $y_1^{i_1} \cdots y_m^{i_m} v^+$ with $i_j \in \mathbb{Z}^+$, having respective weights $\lambda \sum i_j \alpha_j$.
- 2 All weights μ of M satisfy $\mu \leq \lambda$ (i.e. $\mu = \lambda - (\text{sum of positive roots}), \text{ or } \mu \in \lambda - \Gamma).$
- So *M* we have dim *M_μ* < ∞, while dim *M_λ* = 1. So *M* is a weight module, locally n₊ finite and *M* ∈ *O*.
- M has a unique maximal submodule and unique simple quotient, in particualr *M* is indecomposable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let $\mathfrak{b} \in \mathfrak{g}$ the Borel subalgebra. Then $\mathfrak{b}/\mathfrak{n} \cong \mathfrak{h}$. Let \mathbb{C}_{λ} , $\lambda \in \mathfrak{h}^*$ be a 1-dimensional \mathfrak{b} module on which \mathfrak{n} acts trivially and \mathfrak{h} acts by λ .

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Let $\mathfrak{b} \in \mathfrak{g}$ the Borel subalgebra. Then $\mathfrak{b}/\mathfrak{n} \cong \mathfrak{h}$. Let $\mathbb{C}_{\lambda}, \lambda \in \mathfrak{h}^*$ be a 1-dimensional \mathfrak{b} module on which \mathfrak{n} acts trivially and \mathfrak{h} acts by λ .

Definition

 $M(\lambda) := U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let $\mathfrak{b} \in \mathfrak{g}$ the Borel subalgebra. Then $\mathfrak{b}/\mathfrak{n} \cong \mathfrak{h}$. Let $\mathbb{C}_{\lambda}, \lambda \in \mathfrak{h}^*$ be a 1-dimensional \mathfrak{b} module on which \mathfrak{n} acts trivially and \mathfrak{h} acts by λ .

Definition

 $\mathit{M}(\lambda) := \mathit{U}(\mathfrak{g}) \otimes_{\mathit{U}(\mathfrak{b})} \mathbb{C}_{\lambda} = \mathsf{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{\lambda}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Let $\mathfrak{b} \in \mathfrak{g}$ the Borel subalgebra. Then $\mathfrak{b}/\mathfrak{n} \cong \mathfrak{h}$. Let $\mathbb{C}_{\lambda}, \lambda \in \mathfrak{h}^*$ be a 1-dimensional \mathfrak{b} module on which \mathfrak{n} acts trivially and \mathfrak{h} acts by λ .

Definition

$$\mathit{M}(\lambda) := \mathit{U}(\mathfrak{g}) \otimes_{\mathit{U}(\mathfrak{b})} \mathbb{C}_{\lambda} = \mathsf{Ind}^{\mathfrak{g}}_{\mathfrak{b}} \mathbb{C}_{\lambda}$$

Remark

 $M(\lambda) \cong U(\mathfrak{n}_{-}) \otimes \mathbb{C}_{\lambda}$ as a left $U(\mathfrak{n}_{-})$ -module (PBW Theorem). Hence $M(\lambda)$ is a heighest weight module: it is generated as a $U(\mathfrak{g})$ -module by a maximal vector $v^{+} = 1 \otimes 1$ of weight λ

ヘロン 人間 とくほ とくほ とう

3

Let $\mathfrak{b} \in \mathfrak{g}$ the Borel subalgebra. Then $\mathfrak{b}/\mathfrak{n} \cong \mathfrak{h}$. Let \mathbb{C}_{λ} , $\lambda \in \mathfrak{h}^*$ be a 1-dimensional \mathfrak{b} module on which \mathfrak{n} acts trivially and \mathfrak{h} acts by λ .

Definition

$$\mathit{M}(\lambda):=\mathit{U}(\mathfrak{g})\otimes_{\mathit{U}(\mathfrak{b})}\mathbb{C}_{\lambda}=\mathsf{Ind}^{\mathfrak{g}}_{\mathfrak{b}}\mathbb{C}_{\lambda}$$

Remark

 $M(\lambda) \cong U(\mathfrak{n}_{-}) \otimes \mathbb{C}_{\lambda}$ as a left $U(\mathfrak{n}_{-})$ -module (PBW Theorem). Hence $M(\lambda)$ is a heighest weight module: it is generated as a $U(\mathfrak{g})$ -module by a maximal vector $v^{+} = 1 \otimes 1$ of weight λ

Remark

 $M(\lambda)$ is a universal heighest weight module of weight λ : For any heighest weight module M of weight λ we have a natural map from $M(\lambda)$ onto M

Simple highest weight modules

Definition

 $L(\lambda)$ is defined to be the unique simple quotient of $M(\lambda)$.

ヘロン 人間 とくほ とくほとう

₹ 990

 $L(\lambda)$ is defined to be the unique simple quotient of $M(\lambda)$.

Theorem

Every simple module in \mathcal{O} is isomorphic to some $L(\lambda)$ with $\lambda \in \mathfrak{h}^*$ and is therefore uniquely determined up to isomorphism by its highest weight. Moreover, dim $Hom_{\mathcal{O}}(L(\mu), L(\lambda)) = \delta_{\mu\lambda}$

ヘロト ヘアト ヘビト ヘビト

 $L(\lambda)$ is defined to be the unique simple quotient of $M(\lambda)$.

Theorem

Every simple module in \mathcal{O} is isomorphic to some $L(\lambda)$ with $\lambda \in \mathfrak{h}^*$ and is therefore uniquely determined up to isomorphism by its highest weight. Moreover, dim $Hom_{\mathcal{O}}(L(\mu), L(\lambda)) = \delta_{\mu\lambda}$

Integral weight lattice: $\Lambda := \{\lambda \in \Phi : \forall \alpha \in \Phi : < \lambda, \alpha^{\vee} > \in \mathbb{Z}\}$

Theorem

 $L(\lambda)$ is finite dimensional iff $\lambda \in \Lambda^+$. Additionally, in this case dim $L(\lambda)_{\mu} = \dim L(\lambda)_{w\mu}$ for any $\mu \in \mathfrak{h}^*$ and $w \in W$.

ヘロト 人間 とくほとく ほとう

Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$

₹ 990

・ロン ・聞と ・ ほと ・ ほとう

Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$

Observation

 $Z(\mathfrak{g})$ acts on the weight spaces of any $M \in \mathcal{O}$. In particular, if $M = M(\lambda)$ is a Verma module with weight λ and $v^+ \in M_{\lambda}$ is the highest weight vector with weight λ then $\forall z \in Z(\mathfrak{g}) : zv^+ = \chi_{\lambda}(z)v^+$. χ_{λ} is called the central character of $M(\lambda)$. Since $M(\lambda)$ is generated by v^+ we have that $Z(\mathfrak{g})$ acts on all of $M(\lambda)$ as

multiplication by χ_{λ} .

くロト (過) (目) (日)

Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$

Observation

 $Z(\mathfrak{g})$ acts on the weight spaces of any $M \in \mathcal{O}$. In particular, if $M = M(\lambda)$ is a Verma module with weight λ and $v^+ \in M_{\lambda}$ is the highest weight vector with weight λ then $\forall z \in Z(\mathfrak{g}) : zv^+ = \chi_{\lambda}(z)v^+$. χ_{λ} is called the central character of $M(\lambda)$. Since $M(\lambda)$ is generated by v^+ we have that $Z(\mathfrak{g})$ acts on all of $M(\lambda)$ as multiplication by χ_{λ} .

For general $M \in \mathcal{O}$ the action of $Z(\mathfrak{g})$ is more complicated, but still only involves a finite number of central characters.

ヘロト 人間 ト ヘヨト ヘヨト

Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$

Observation

 $Z(\mathfrak{g})$ acts on the weight spaces of any $M \in \mathcal{O}$. In particular, if $M = M(\lambda)$ is a Verma module with weight λ and $v^+ \in M_{\lambda}$ is the highest weight vector with weight λ then $\forall z \in Z(\mathfrak{g}) : zv^+ = \chi_{\lambda}(z)v^+$. χ_{λ} is called the central character of $M(\lambda)$. Since $M(\lambda)$ is generated by v^+ we have that $Z(\mathfrak{g})$ acts on all of $M(\lambda)$ as

multiplication by χ_{λ} .

For general $M \in \mathcal{O}$ the action of $Z(\mathfrak{g})$ is more complicated, but still only involves a finite number of central characters. For $M \in \mathcal{O}$ and $\chi : Z(\mathfrak{g}) \to \mathbb{C}$ define $M^{\chi} := \{ v \in M | \forall z \in Z. \exists n : (z - \chi(z))^n v = 0 \}$ i.e. *z* acts locally as multiplication by $\chi(z)$ plus a nilpotent operator.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$

Observation

 $Z(\mathfrak{g})$ acts on the weight spaces of any $M \in \mathcal{O}$. In particular, if $M = M(\lambda)$ is a Verma module with weight λ and $v^+ \in M_{\lambda}$ is the highest weight vector with weight λ then $\forall z \in Z(\mathfrak{g}) : zv^+ = \chi_{\lambda}(z)v^+$. χ_{λ} is called the central character of $M(\lambda)$. Since $M(\lambda)$ is generated by v^+ we have that $Z(\mathfrak{g})$ acts on all of $M(\lambda)$ as

multiplication by χ_{λ} .

For general $M \in \mathcal{O}$ the action of $Z(\mathfrak{g})$ is more complicated, but still only involves a finite number of central characters. For $M \in \mathcal{O}$ and $\chi : Z(\mathfrak{g}) \to \mathbb{C}$ define $M^{\chi} := \{ v \in M | \forall z \in Z. \exists n : (z - \chi(z))^n v = 0 \}$ i.e. *z* acts locally as multiplication by $\chi(z)$ plus a nilpotent operator. It is easy to check that the M^{χ} are submodules of *M* and are all independent.

Decomposition of \mathcal{O}

Proposition

Any $M \in \mathcal{O}$ decomposes as $M = \bigoplus_{\text{finite}} M^{\chi}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proposition

Any $M \in \mathcal{O}$ decomposes as $M = \bigoplus_{\text{finite}} M^{\chi}$.

Explanation: *M* is generated by a finite number of its (finite dimensional) weight spaces M_{μ} . Each M_{μ} decomposes into a finite direct sum of subspaces M^{χ} by a standard argument from linear algebra.

ヘロト ヘアト ヘビト ヘビト

Proposition

Any $M \in \mathcal{O}$ decomposes as $M = \bigoplus_{\text{finite}} M^{\chi}$.

Explanation: *M* is generated by a finite number of its (finite dimensional) weight spaces M_{μ} . Each M_{μ} decomposes into a finite direct sum of subspaces M^{χ} by a standard argument from linear algebra. Denote by \mathcal{O}_{χ} the full subcategory of \mathcal{O} corresponding to χ , i.e. whose objects are all *M* s.t. $M = M^{\chi}$.

ヘロト ヘアト ヘビト ヘビト

Proposition

Any $M \in \mathcal{O}$ decomposes as $M = \bigoplus_{\text{finite}} M^{\chi}$.

Explanation: *M* is generated by a finite number of its (finite dimensional) weight spaces M_{μ} . Each M_{μ} decomposes into a finite direct sum of subspaces M^{χ} by a standard argument from linear algebra. Denote by \mathcal{O}_{χ} the full subcategory of \mathcal{O} corresponding to χ , i.e. whose objects are all *M* s.t. $M = M^{\chi}$.

Proposition

Category \mathcal{O} is the direct sum of the subcategories \mathcal{O}_{χ} . Therefore each indecomposable lies in a unique \mathcal{O}_{χ} . In particular, each highest weight module of weight λ lies in $\mathcal{O}_{\chi_{\lambda}}$

イロン 不良 とくほう 不良 とうほ

Linked weights

Questions

When is $\chi_{\lambda} = \chi_{\mu}$? Are all χ of the form χ_{λ} ?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

When is $\chi_{\lambda} = \chi_{\mu}$? Are all χ of the form χ_{λ} ?

Example: If a simple module $L(\lambda)$ is a subquotient of a Verma module $M(\mu)$ then we must have $\chi_{\lambda} = \chi_{\mu}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

When is $\chi_{\lambda} = \chi_{\mu}$? Are all χ of the form χ_{λ} ?

Example: If a simple module $L(\lambda)$ is a subquotient of a Verma module $M(\mu)$ then we must have $\chi_{\lambda} = \chi_{\mu}$.

Definition

The **dot action** of the Weil group W on \mathfrak{h}^* is defined by the formula $w \cdot \lambda := w(\lambda + \rho) - \rho$, where ρ is the sum of fundamental weights.

イロト イポト イヨト イヨト 一日

When is $\chi_{\lambda} = \chi_{\mu}$? Are all χ of the form χ_{λ} ?

Example: If a simple module $L(\lambda)$ is a subquotient of a Verma module $M(\mu)$ then we must have $\chi_{\lambda} = \chi_{\mu}$.

Definition

The **dot action** of the Weil group W on \mathfrak{h}^* is defined by the formula $w \cdot \lambda := w(\lambda + \rho) - \rho$, where ρ is the sum of fundamental weights.

Definition

 $\lambda, \mu \in \mathfrak{h}^*$ are linked if there exists $w \in W : \mu = w \cdot \lambda$

イロト 不得 とくほ とくほ とう

When is $\chi_{\lambda} = \chi_{\mu}$? Are all χ of the form χ_{λ} ?

Example: If a simple module $L(\lambda)$ is a subquotient of a Verma module $M(\mu)$ then we must have $\chi_{\lambda} = \chi_{\mu}$.

Definition

The **dot action** of the Weil group W on \mathfrak{h}^* is defined by the formula $w \cdot \lambda := w(\lambda + \rho) - \rho$, where ρ is the sum of fundamental weights.

Definition

 $\lambda, \mu \in \mathfrak{h}^*$ are linked if there exists $w \in W : \mu = w \cdot \lambda$

It can be shown that in the above case λ and μ are linked.

・ロト ・ 理 ト ・ ヨ ト ・

When is $\chi_{\lambda} = \chi_{\mu}$? Are all χ of the form χ_{λ} ?

Example: If a simple module $L(\lambda)$ is a subquotient of a Verma module $M(\mu)$ then we must have $\chi_{\lambda} = \chi_{\mu}$.

Definition

The **dot action** of the Weil group W on \mathfrak{h}^* is defined by the formula $w \cdot \lambda := w(\lambda + \rho) - \rho$, where ρ is the sum of fundamental weights.

Definition

 $\lambda, \mu \in \mathfrak{h}^*$ are linked if there exists $w \in W : \mu = w \cdot \lambda$

It can be shown that in the above case λ and μ are linked.

・ロト ・ 理 ト ・ ヨ ト ・

Theorem (Harish-Chandra)

)
$$\forall \lambda, \mu \in \mathfrak{h}^*$$
 we have $\chi_{\lambda} = \chi_{\mu}$ iff $\exists w \in W : \mu = w \cdot \lambda$

2 Every central character $\chi : Z(\mathfrak{g}) \to \mathbb{C}$ is of the form χ_{λ}

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Theorem (Harish-Chandra)

$$lacksymbol{0}\ orall\lambda,\mu\in\mathfrak{h}^*$$
 we have $\chi_\lambda=\chi_\mu$ iff \exists w \in W : $\mu=$ w \cdot λ

2 Every central character $\chi : Z(\mathfrak{g}) \to \mathbb{C}$ is of the form χ_{λ}

Conclusion

The subcategories \mathcal{O}_{χ} each contain a finite number of simple modules $L(\lambda)$, i.e. those $L(\lambda)$ such that $\lambda \in W \cdot \lambda_0$, where $\chi = \chi_{\lambda_0}$.

イロト イポト イヨト イヨト 一臣

The categories \mathcal{O}_{χ}

The decomposition $M = \bigoplus_{\text{finite}} M^{\chi}$ alows us to confine our study of category \mathcal{O} to the study of the subcategories \mathcal{O}_{χ} .

(雪) (ヨ) (ヨ)

The decomposition $M = \bigoplus_{\text{finite}} M^{\chi}$ alows us to confine our study of category \mathcal{O} to the study of the subcategories \mathcal{O}_{χ} .

Remark

Each $M \in \mathcal{O}$ possesses a composition series $0 = M_0 \subset \ldots \subset M_n = M \text{ s.t } M_i/M_{i-1} \cong L(\lambda) \text{ and } [M : L(\lambda)] \text{ is}$ well defined. (*n* is called the length of *M*)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The decomposition $M = \bigoplus_{\text{finite}} M^{\chi}$ alows us to confine our study of category \mathcal{O} to the study of the subcategories \mathcal{O}_{χ} .

Remark

Each $M \in \mathcal{O}$ possesses a composition series $0 = M_0 \subset \ldots \subset M_n = M \text{ s.t } M_i/M_{i-1} \cong L(\lambda) \text{ and } [M : L(\lambda)] \text{ is}$ well defined. (*n* is called the length of *M*)

Thus we want to study the structure of $L(\lambda) \in \mathcal{O}_{\chi}$. This together with the decomposition series will give us substantional information about the structure of $M \in \mathcal{O}$. This leads to the notion of **formal characters** in \mathcal{O} .

ヘロア 人間 アメヨア 人口 ア

Characters in \mathcal{O}

Definition

 $\mathsf{ch}_M:\mathfrak{h}^* o\mathbb{Z}^+,\mathsf{ch}_M(\lambda)=\dim M_\lambda$

 $\mathsf{ch}_M:\mathfrak{h}^*\to\mathbb{Z}^+,\mathsf{ch}_M(\lambda)=\dim M_\lambda$

If M is finite dimensional then it corresponds to a group representation and knowing the formal character is equivalent to knowing the usual character on all elements of the group.

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

 $\mathsf{ch}_M:\mathfrak{h}^* o\mathbb{Z}^+,\mathsf{ch}_M(\lambda)=\dim M_\lambda$

If *M* is finite dimensional then it corresponds to a group representation and knowing the formal character is equivalent to knowing the usual character on all elements of the group. **Remark:**

 $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0 \Rightarrow chM = chM' + chM''$

So we can compute the character of any module if we know it's composition factors and their characters.

イロト イポト イヨト イヨト 三日

 $\mathsf{ch}_M:\mathfrak{h}^* o\mathbb{Z}^+,\mathsf{ch}_M(\lambda)=\dim M_\lambda$

If *M* is finite dimensional then it corresponds to a group representation and knowing the formal character is equivalent to knowing the usual character on all elements of the group. **Remark:**

 $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0 \Rightarrow chM = chM' + chM''$

So we can compute the character of any module if we know it's composition factors and their characters.

Computing $ch_{L(\lambda)}$ directly is difficult. On the other hand $ch_{M(\lambda)}$ is given by a simple formula (since it is a free $U(\mathfrak{n}_{-})$ module) and they turn out to be closely related.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Observation

$$ch_{M(\lambda)} = \sum_{\mu} a(\lambda, \mu) ch_{L(\mu)}$$

Here $\mu \leq \lambda$ and linked to λ , $a(\lambda, \mu) = [M(\lambda) : L(\mu)] \in \mathbb{Z}^+$ and $a(\lambda, \lambda) = 1$.

Observation

 $\begin{array}{l} \mathsf{ch}_{M(\lambda)} = \sum_{\mu} a(\lambda, \mu) \mathsf{ch}_{L(\mu)} \\ \text{Here } \mu \leq \lambda \text{ and linked to } \lambda, \, a(\lambda, \mu) = [M(\lambda) : L(\mu)] \in \mathbb{Z}^+ \text{ and} \\ a(\lambda, \lambda) = 1. \\ \text{Inverting this triangular linear system, we get:} \\ \mathsf{ch}_{L(\lambda)} = \sum_{\mu} b(\lambda, \mu) \mathsf{ch}_{M(\mu)} \Leftrightarrow \mathsf{ch}_{L(\lambda)} = \sum_{w \cdot \lambda \leq \lambda} b(\lambda, w) \mathsf{ch}_{M(w \cdot \lambda)} \end{array}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Observation

 $\begin{array}{l} \mathsf{ch}_{M(\lambda)} = \sum_{\mu} a(\lambda,\mu) \mathsf{ch}_{L(\mu)} \\ \text{Here } \mu \leq \lambda \text{ and linked to } \lambda, \, a(\lambda,\mu) = [M(\lambda):L(\mu)] \in \mathbb{Z}^+ \text{ and} \\ a(\lambda,\lambda) = 1. \\ \text{Inverting this triangular linear system, we get:} \\ \mathsf{ch}_{L(\lambda)} = \sum_{\mu} b(\lambda,\mu) \mathsf{ch}_{M(\mu)} \Leftrightarrow \mathsf{ch}_{L(\lambda)} = \sum_{w \cdot \lambda \leq \lambda} b(\lambda,w) \mathsf{ch}_{M(w \cdot \lambda)} \end{array}$

Remark

Using the above observation it is possible to use formal characters to prove the Weyl charcter formula.

イロト イポト イヨト イヨト 三日

Kazhdan-Lustig Conjecture

Adam Gal, Elena Gal Introduction to Category O

ヘロン 人間 とくほ とくほ とう

æ

Consider the subcategory $\mathcal{O}_0 := \mathcal{O}_{\chi_0}$ (the principal block). The weight -2ρ is minimal in this linkage class. Note that $M(-2\rho) = L(-2\rho)$. We parametrize the simple and Verma modules in \mathcal{O}_0 by the elements of W, e.g. write $L_w := L(w \cdot (-2\rho))$. It holds that $[M_w : L_x] \neq 0$ iff $x \leq w$ in the Bruhat ordering of the Weyl group.

イロト イポト イヨト イヨト 三日

Consider the subcategory $\mathcal{O}_0 := \mathcal{O}_{\chi_0}$ (the principal block). The weight -2ρ is minimal in this linkage class. Note that $M(-2\rho) = L(-2\rho)$. We parametrize the simple and Verma modules in \mathcal{O}_0 by the elements of W, e.g. write $L_w := L(w \cdot (-2\rho))$. It holds that $[M_w : L_x] \neq 0$ iff $x \leq w$ in the Bruhat ordering of the Weyl group.

Conjecture (Kazhdan-Lustig)

$$\mathsf{ch}_{L_w} = \sum_{x \leq w} (-1)^{l(w) - l(x)} \mathcal{P}_{x,w}(1) \mathsf{ch}_{M_x}$$

Where $P_{x,w}$ is a Kazhdan-Lustig polynomial.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Remark

For regular integral weights λ (i.e. $\lambda \in \Lambda : |W \cdot \lambda| = |W|$) the categories $\mathcal{O}_{\chi_{\lambda}}$ are equivalent, so this result allows to describe them as well. There are similar results for the rest of \mathcal{O} involving certain subgroups of W.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Definition

An object *P* in an abelian category is called *projective* if the functor Hom(P, -) is exact.

Definition

An object *P* in an abelian category is called *projective* if the functor Hom(P, -) is exact.

Theorem

Category \mathcal{O} has enough projectives, i.e. for any $M \in \mathcal{O}$ there is a projective object $P \in \mathcal{O}$ and an epimorphism $P \to M$.

ヘロン 人間 とくほ とくほ とう

3

Definition

An object *P* in an abelian category is called *projective* if the functor Hom(P, -) is exact.

Theorem

Category \mathcal{O} has enough projectives, i.e. for any $M \in \mathcal{O}$ there is a projective object $P \in \mathcal{O}$ and an epimorphism $P \to M$.

A standard consequence that holds in a greater generality than category ${\cal O}$ is the following

ヘロン 人間 とくほ とくほ とう

Definition

An object *P* in an abelian category is called *projective* if the functor Hom(P, -) is exact.

Theorem

Category \mathcal{O} has enough projectives, i.e. for any $M \in \mathcal{O}$ there is a projective object $P \in \mathcal{O}$ and an epimorphism $P \to M$.

A standard consequence that holds in a greater generality than category ${\cal O}$ is the following

Theorem

For each simple module $L(\lambda) \in \mathcal{O}$ there is a unique indecomposable projective $P(\lambda) \in \mathcal{O}$ with an epimorphism $P(\lambda) \rightarrow L(\lambda)$. Moreover, we can decompose this epimorphism as two epimorphisms $P(\lambda) \rightarrow M(\lambda) \rightarrow L(\lambda)$.

For each category \mathcal{O}_{χ} this gives a matrix with entries $[P(\lambda) : L(\mu)]$ called the **Cartan matrix** of the category. In category \mathcal{O} we can use the Verma modules to simplify the computation of this matrix.

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

For each category \mathcal{O}_{χ} this gives a matrix with entries $[P(\lambda) : L(\mu)]$ called the **Cartan matrix** of the category. In category \mathcal{O} we can use the Verma modules to simplify the computation of this matrix.

Definition

A **Verma flag** of $M \in O$ is a filtration of M such that all quotients are of the form $M(\lambda)$. When such a filtration exists the multiplicities of each $M(\lambda)$ are well defined and we denote them by $(M : M(\lambda))$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

For each category \mathcal{O}_{χ} this gives a matrix with entries $[P(\lambda) : L(\mu)]$ called the **Cartan matrix** of the category. In category \mathcal{O} we can use the Verma modules to simplify the computation of this matrix.

Definition

A **Verma flag** of $M \in O$ is a filtration of M such that all quotients are of the form $M(\lambda)$. When such a filtration exists the multiplicities of each $M(\lambda)$ are well defined and we denote them by $(M : M(\lambda))$

Theorem

Any projective object in \mathcal{O} has a Verma flag.

ヘロト ヘ戸ト ヘヨト ヘヨト

For each category \mathcal{O}_{χ} this gives a matrix with entries $[P(\lambda) : L(\mu)]$ called the **Cartan matrix** of the category. In category \mathcal{O} we can use the Verma modules to simplify the computation of this matrix.

Definition

A **Verma flag** of $M \in O$ is a filtration of M such that all quotients are of the form $M(\lambda)$. When such a filtration exists the multiplicities of each $M(\lambda)$ are well defined and we denote them by $(M : M(\lambda))$

Theorem

Any projective object in \mathcal{O} has a Verma flag.

Theorem (BGG Reciprocity)

 $(\boldsymbol{P}(\lambda):\boldsymbol{M}(\mu))=[\boldsymbol{M}(\mu):\boldsymbol{L}(\lambda)]$

Let
$$\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$$
.

Adam Gal, Elena Gal Introduction to Category O

ヘロア 人間 アメヨア 人間アー

Let $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$. We can identify the weight lattice Λ with \mathbb{Z} so that $\rho = 1$. The Weyl group has one non trivial element that acts by $w\lambda = -\lambda$ so $w \cdot \lambda = -\lambda - 2$.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Let $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$. We can identify the weight lattice Λ with \mathbb{Z} so that $\rho = 1$. The Weyl group has one non trivial element that acts by $w\lambda = -\lambda$ so $w \cdot \lambda = -\lambda - 2$. The weight decomposition of the Verma modules is $M(\lambda) = \bigoplus_{k \in \mathbb{Z}, k > 0} \mathbb{C}_{\lambda - 2k}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let $\mathfrak{a} = \mathfrak{sl}(2, \mathbb{C})$. We can identify the weight lattice Λ with \mathbb{Z} so that $\rho = 1$. The Weyl group has one non trivial element that acts by $w\lambda = -\lambda$ so $\mathbf{W} \cdot \mathbf{\lambda} = -\mathbf{\lambda} - \mathbf{2}$. The weight decomposition of the Verma modules is $M(\lambda) = \bigoplus_{k \in \mathbb{Z}, k > 0} \mathbb{C}_{\lambda - 2k}.$ \mathcal{O}_0 has two simple modules, $L(0) = \mathbb{C}_0$ and L(-2) = M(-2). The Kazhdan-Lusztig conjecture in this case reduces to the observation that $ch_{L(0)} = ch_{M(0)} - ch_{M(-2)}$. By BGG reciprocity P(0) = M(0) and P(-2) is a non-trivial extension of M(0) and M(-2).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let $\mathfrak{a} = \mathfrak{sl}(2, \mathbb{C})$. We can identify the weight lattice Λ with \mathbb{Z} so that $\rho = 1$. The Weyl group has one non trivial element that acts by $w\lambda = -\lambda$ so $\mathbf{W} \cdot \mathbf{\lambda} = -\mathbf{\lambda} - \mathbf{2}$. The weight decomposition of the Verma modules is $M(\lambda) = \bigoplus_{k \in \mathbb{Z}, k > 0} \mathbb{C}_{\lambda - 2k}.$ \mathcal{O}_0 has two simple modules, $L(0) = \mathbb{C}_0$ and L(-2) = M(-2). The Kazhdan-Lusztig conjecture in this case reduces to the observation that $ch_{L(0)} = ch_{M(0)} - ch_{M(-2)}$. By BGG reciprocity P(0) = M(0) and P(-2) is a non-trivial extension of M(0) and M(-2). For k > 0 (i.e. a dominant integral weight) we have $\operatorname{ch}_{L(k)} = \operatorname{ch}_{M(k)} - \operatorname{ch}_{M(-k-2)}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $\mathfrak{a} = \mathfrak{sl}(2, \mathbb{C})$. We can identify the weight lattice Λ with \mathbb{Z} so that $\rho = 1$. The Weyl group has one non trivial element that acts by $w\lambda = -\lambda$ so $\mathbf{W} \cdot \mathbf{\lambda} = -\mathbf{\lambda} - \mathbf{2}$. The weight decomposition of the Verma modules is $M(\lambda) = \bigoplus_{k \in \mathbb{Z}, k > 0} \mathbb{C}_{\lambda - 2k}.$ \mathcal{O}_0 has two simple modules, $L(0) = \mathbb{C}_0$ and L(-2) = M(-2). The Kazhdan-Lusztig conjecture in this case reduces to the observation that $ch_{L(0)} = ch_{M(0)} - ch_{M(-2)}$. By BGG reciprocity P(0) = M(0) and P(-2) is a non-trivial extension of M(0) and M(-2). For k > 0 (i.e. a dominant integral weight) we have $\operatorname{ch}_{L(k)} = \operatorname{ch}_{M(k)} - \operatorname{ch}_{M(-k-2)}.$ **Remark:** \mathcal{O}_{λ} for $\lambda \notin \mathbb{Z}$ in this case decomposes as a direct sum of two categories each containing one irreducible module.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ