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Motivation

Original Objective

Classify unitary representations of reductive Lie Groups
(e.g. GL(n),SL(n))

Harish-Chandra’s approach
Classify admissible representations

Analytic problem
Admissible representations
of complex semisimple Lie
groups
(e.g. GL(n,C),SL(n,C))

Algebraic problem

Harish-Chandra modules
for (g× g, g ↪→ g× g)

Toy model
Category O
(Also includes finite dim and
Verma modules)

Adam Gal, Elena Gal Introduction to CategoryO



Motivation

Original Objective

Classify unitary representations of reductive Lie Groups
(e.g. GL(n),SL(n))

Harish-Chandra’s approach
Classify admissible representations

Analytic problem
Admissible representations
of complex semisimple Lie
groups
(e.g. GL(n,C),SL(n,C))

Algebraic problem

Harish-Chandra modules
for (g× g, g ↪→ g× g)

Toy model
Category O
(Also includes finite dim and
Verma modules)

Adam Gal, Elena Gal Introduction to CategoryO



Motivation

Original Objective

Classify unitary representations of reductive Lie Groups
(e.g. GL(n),SL(n))

Harish-Chandra’s approach
Classify admissible representations

Analytic problem
Admissible representations
of complex semisimple Lie
groups
(e.g. GL(n,C),SL(n,C))

Algebraic problem

Harish-Chandra modules
for (g× g, g ↪→ g× g)

Toy model
Category O
(Also includes finite dim and
Verma modules)

Adam Gal, Elena Gal Introduction to CategoryO



Motivation

Original Objective

Classify unitary representations of reductive Lie Groups
(e.g. GL(n),SL(n))

Harish-Chandra’s approach
Classify admissible representations

Analytic problem
Admissible representations
of complex semisimple Lie
groups
(e.g. GL(n,C),SL(n,C))

Algebraic problem

Harish-Chandra modules
for (g× g, g ↪→ g× g)

Toy model
Category O
(Also includes finite dim and
Verma modules)

Adam Gal, Elena Gal Introduction to CategoryO



Motivation

Original Objective

Classify unitary representations of reductive Lie Groups
(e.g. GL(n),SL(n))

Harish-Chandra’s approach
Classify admissible representations

Analytic problem
Admissible representations
of complex semisimple Lie
groups
(e.g. GL(n,C),SL(n,C))

Algebraic problem

Harish-Chandra modules
for (g× g, g ↪→ g× g)

Toy model
Category O

(Also includes finite dim and
Verma modules)

Adam Gal, Elena Gal Introduction to CategoryO



Motivation

Original Objective

Classify unitary representations of reductive Lie Groups
(e.g. GL(n),SL(n))

Harish-Chandra’s approach
Classify admissible representations

Analytic problem
Admissible representations
of complex semisimple Lie
groups
(e.g. GL(n,C),SL(n,C))

Algebraic problem

Harish-Chandra modules
for (g× g, g ↪→ g× g)

Toy model
Category O
(Also includes finite dim and
Verma modules)

Adam Gal, Elena Gal Introduction to CategoryO



Definition of Category O

g - Semisimple Lie Algebra, U(g) - its universal enveloping
algebra.
g = n− ⊕ h⊕ n+ and U(g) = U(n−)U(h)U(n+) (PBW theorem)

Definition
Category O is the full subcategory of ModU(g) whose objects
satisfy the following properties:

(O1) M is finitely generated
(O2) M is h-semisimple, i.e. M =

⊕
λ∈h∗ Mλ

(O3) M is locally n+-finite i.e. ∀v ∈ M : dim U(n+)v <∞

O(2) +O(3)⇒ for every v ∈ M there exists k s.t. (n+)kv = 0
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Basic properties

Theorem
Category O satisfies the following properties:

1 O is an Abelian category.
2 O is Noetherian and Artinian.
3 O is closed under submodules,quotients and finite direct

sums.

4 ∀M ∈ O all of the weight spaces Mλ are finite dimensional.
5 ∀M ∈ O the weights of M are contained in the union of

finitely many sets of the form λ− Γ with λ ∈ h∗ and Γ the
semigroup generated by the positive roots.

6 ∀M ∈ O : M is finitely generated as a U(n−) module.
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Highest weight modules

Definition
Let M be a U(g) module, then v+ ∈ M is a highest weight
vector of weight λ ∈ h∗ if v+ ∈ Mλ and n+v+ = 0

Remark
Any nonzero module in O has at least one highest weight
vector. If M is simple then all its heighest weight vectors have
the same weight and are multiples of each other.

Definition
A U(g) module M is a heighest weight module of weight λ if
there is a highest weight vector v+ ∈ Mλ s.t. M = U(g)v+
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Highest weight modules

Let M be a heighest weight module of weight λ generated by a
maximal vector v+. Fix an ordering of the positive roots
α1, . . . , αm and choose corresponding root vectors yi ∈ g−αi .
Then:

1 M is spanned by the vectors y i1
1 · · · y

im
m v+ with ij ∈ Z+,

having respective weights λ−
∑

ijαj .
2 All weights µ of M satisfy µ ≤ λ (i.e.
µ = λ− (sum of positive roots), or µ ∈ λ− Γ).

3 For all weights µ of M we have dim Mµ <∞, while
dim Mλ = 1. So M is a weight module, locally n+ finite and
M ∈ O.

4 M has a unique maximal submodule and unique simple
quotient, in particualr M is indecomposable.
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Verma modules

Let b ∈ g the Borel subalgebra. Then b/n ∼= h. Let Cλ, λ ∈ h∗

be a 1-dimensional b module on which n acts trivially and h acts
by λ.

Definition

M(λ) := U(g)⊗U(b) Cλ = Indg
bCλ

Remark
M(λ) ∼= U(n−)⊗ Cλ as a left U(n−)-module (PBW Theorem).
Hence M(λ) is a heighest weight module: it is generated as a
U(g)-module by a maximal vector v+ = 1⊗ 1 of weight λ

Remark
M(λ) is a universal heighest weight module of weight λ:
For any heighest weight module M of weight λ we have a
natural map from M(λ) onto M
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Simple highest weight modules

Definition
L(λ) is defined to be the unique simple quotient of M(λ).

Theorem
Every simple module in O is isomorphic to some L(λ) with
λ ∈ h∗ and is therefore uniquely determined up to isomorphism
by its highest weight. Moreover, dim HomO(L(µ),L(λ)) = δµλ

Integral weight lattice: Λ := {λ ∈ Φ : ∀α ∈ Φ :< λ,α∨ >∈ Z}

Theorem
L(λ) is finite dimensional iff λ ∈ Λ+.
Additionally, in this case dim L(λ)µ = dim L(λ)wµ for any µ ∈ h∗

and w ∈W.
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Action of the center

Let Z (g) be the center of U(g)

Observation
Z (g) acts on the weight spaces of any M ∈ O.
In particular, if M = M(λ) is a Verma module with weight λ and
v+ ∈ Mλ is the highest weight vector with weight λ then
∀z ∈ Z (g) : zv+ = χ

λ
(z)v+.

χ
λ

is called the central character of M(λ). Since M(λ) is
generated by v+ we have that Z (g) acts on all of M(λ) as
multiplication by χ

λ
.

For general M ∈ O the action of Z (g) is more complicated, but
still only involves a finite number of central characters.
For M ∈ O and χ : Z (g)→ C define
Mχ := {v ∈ M|∀z ∈ Z .∃n : (z − χ(z))nv = 0} i.e. z acts locally
as multiplication by χ(z) plus a nilpotent operator.
It is easy to check that the Mχ are submodules of M and are all
independent.

Adam Gal, Elena Gal Introduction to CategoryO



Action of the center

Let Z (g) be the center of U(g)

Observation
Z (g) acts on the weight spaces of any M ∈ O.
In particular, if M = M(λ) is a Verma module with weight λ and
v+ ∈ Mλ is the highest weight vector with weight λ then
∀z ∈ Z (g) : zv+ = χ

λ
(z)v+.

χ
λ

is called the central character of M(λ). Since M(λ) is
generated by v+ we have that Z (g) acts on all of M(λ) as
multiplication by χ

λ
.

For general M ∈ O the action of Z (g) is more complicated, but
still only involves a finite number of central characters.
For M ∈ O and χ : Z (g)→ C define
Mχ := {v ∈ M|∀z ∈ Z .∃n : (z − χ(z))nv = 0} i.e. z acts locally
as multiplication by χ(z) plus a nilpotent operator.
It is easy to check that the Mχ are submodules of M and are all
independent.

Adam Gal, Elena Gal Introduction to CategoryO



Action of the center

Let Z (g) be the center of U(g)

Observation
Z (g) acts on the weight spaces of any M ∈ O.
In particular, if M = M(λ) is a Verma module with weight λ and
v+ ∈ Mλ is the highest weight vector with weight λ then
∀z ∈ Z (g) : zv+ = χ

λ
(z)v+.

χ
λ

is called the central character of M(λ). Since M(λ) is
generated by v+ we have that Z (g) acts on all of M(λ) as
multiplication by χ

λ
.

For general M ∈ O the action of Z (g) is more complicated, but
still only involves a finite number of central characters.

For M ∈ O and χ : Z (g)→ C define
Mχ := {v ∈ M|∀z ∈ Z .∃n : (z − χ(z))nv = 0} i.e. z acts locally
as multiplication by χ(z) plus a nilpotent operator.
It is easy to check that the Mχ are submodules of M and are all
independent.

Adam Gal, Elena Gal Introduction to CategoryO



Action of the center

Let Z (g) be the center of U(g)

Observation
Z (g) acts on the weight spaces of any M ∈ O.
In particular, if M = M(λ) is a Verma module with weight λ and
v+ ∈ Mλ is the highest weight vector with weight λ then
∀z ∈ Z (g) : zv+ = χ

λ
(z)v+.

χ
λ

is called the central character of M(λ). Since M(λ) is
generated by v+ we have that Z (g) acts on all of M(λ) as
multiplication by χ

λ
.

For general M ∈ O the action of Z (g) is more complicated, but
still only involves a finite number of central characters.
For M ∈ O and χ : Z (g)→ C define
Mχ := {v ∈ M|∀z ∈ Z .∃n : (z − χ(z))nv = 0} i.e. z acts locally
as multiplication by χ(z) plus a nilpotent operator.

It is easy to check that the Mχ are submodules of M and are all
independent.

Adam Gal, Elena Gal Introduction to CategoryO



Action of the center

Let Z (g) be the center of U(g)

Observation
Z (g) acts on the weight spaces of any M ∈ O.
In particular, if M = M(λ) is a Verma module with weight λ and
v+ ∈ Mλ is the highest weight vector with weight λ then
∀z ∈ Z (g) : zv+ = χ

λ
(z)v+.

χ
λ

is called the central character of M(λ). Since M(λ) is
generated by v+ we have that Z (g) acts on all of M(λ) as
multiplication by χ

λ
.

For general M ∈ O the action of Z (g) is more complicated, but
still only involves a finite number of central characters.
For M ∈ O and χ : Z (g)→ C define
Mχ := {v ∈ M|∀z ∈ Z .∃n : (z − χ(z))nv = 0} i.e. z acts locally
as multiplication by χ(z) plus a nilpotent operator.
It is easy to check that the Mχ are submodules of M and are all
independent.

Adam Gal, Elena Gal Introduction to CategoryO



Decomposition of O

Proposition

Any M ∈ O decomposes as M =
⊕

finite Mχ.

Explanation: M is generated by a finite number of its (finite
dimensional) weight spaces Mµ. Each Mµ decomposes into a
finite direct sum of subspaces Mχ by a standard argument from
linear algebra. Denote by Oχ the full subcategory of O
corresponding to χ, i.e. whose objects are all M s.t. M = Mχ.

Proposition
Category O is the direct sum of the subcategories Oχ.
Therefore each indecomposable lies in a unique Oχ. In
particular, each highest weight module of weight λ lies in Oχ

λ
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Linked weights

Questions
When is χ

λ
= χµ? Are all χ of the form χ

λ
?

Example: If a simple module L(λ) is a subquotient of a Verma
module M(µ) then we must have χ

λ
= χµ .

Definition
The dot action of the Weil group W on h∗ is defined by the
formula w · λ := w(λ+ ρ)− ρ, where ρ is the sum of
fundamental weights.

Definition
λ, µ ∈ h∗ are linked if there exists w ∈W : µ = w · λ

It can be shown that in the above case λ and µ are linked.

Adam Gal, Elena Gal Introduction to CategoryO



Linked weights

Questions
When is χ

λ
= χµ? Are all χ of the form χ

λ
?

Example: If a simple module L(λ) is a subquotient of a Verma
module M(µ) then we must have χ

λ
= χµ .

Definition
The dot action of the Weil group W on h∗ is defined by the
formula w · λ := w(λ+ ρ)− ρ, where ρ is the sum of
fundamental weights.

Definition
λ, µ ∈ h∗ are linked if there exists w ∈W : µ = w · λ

It can be shown that in the above case λ and µ are linked.

Adam Gal, Elena Gal Introduction to CategoryO



Linked weights

Questions
When is χ

λ
= χµ? Are all χ of the form χ

λ
?

Example: If a simple module L(λ) is a subquotient of a Verma
module M(µ) then we must have χ

λ
= χµ .

Definition
The dot action of the Weil group W on h∗ is defined by the
formula w · λ := w(λ+ ρ)− ρ, where ρ is the sum of
fundamental weights.

Definition
λ, µ ∈ h∗ are linked if there exists w ∈W : µ = w · λ

It can be shown that in the above case λ and µ are linked.

Adam Gal, Elena Gal Introduction to CategoryO



Linked weights

Questions
When is χ

λ
= χµ? Are all χ of the form χ

λ
?

Example: If a simple module L(λ) is a subquotient of a Verma
module M(µ) then we must have χ

λ
= χµ .

Definition
The dot action of the Weil group W on h∗ is defined by the
formula w · λ := w(λ+ ρ)− ρ, where ρ is the sum of
fundamental weights.

Definition
λ, µ ∈ h∗ are linked if there exists w ∈W : µ = w · λ

It can be shown that in the above case λ and µ are linked.

Adam Gal, Elena Gal Introduction to CategoryO



Linked weights

Questions
When is χ

λ
= χµ? Are all χ of the form χ

λ
?

Example: If a simple module L(λ) is a subquotient of a Verma
module M(µ) then we must have χ

λ
= χµ .

Definition
The dot action of the Weil group W on h∗ is defined by the
formula w · λ := w(λ+ ρ)− ρ, where ρ is the sum of
fundamental weights.

Definition
λ, µ ∈ h∗ are linked if there exists w ∈W : µ = w · λ

It can be shown that in the above case λ and µ are linked.

Adam Gal, Elena Gal Introduction to CategoryO



Linked weights

Questions
When is χ

λ
= χµ? Are all χ of the form χ

λ
?

Example: If a simple module L(λ) is a subquotient of a Verma
module M(µ) then we must have χ

λ
= χµ .

Definition
The dot action of the Weil group W on h∗ is defined by the
formula w · λ := w(λ+ ρ)− ρ, where ρ is the sum of
fundamental weights.

Definition
λ, µ ∈ h∗ are linked if there exists w ∈W : µ = w · λ

It can be shown that in the above case λ and µ are linked.

Adam Gal, Elena Gal Introduction to CategoryO



Linked weights

Theorem (Harish-Chandra)
1 ∀λ, µ ∈ h∗ we have χ

λ
= χµ iff ∃w ∈W : µ = w · λ

2 Every central character χ : Z (g)→ C is of the form χ
λ

Conclusion
The subcategories Oχ each contain a finite number of simple
modules L(λ), i.e. those L(λ) such that λ ∈W · λ0, where
χ = χ

λ0
.
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The categories Oχ

The decomposition M =
⊕

finite Mχ alows us to confine our
study of category O to the study of the subcategories Oχ.

Remark
Each M ∈ O possesses a composition series
0 = M0 ⊂ . . . ⊂ Mn = M s.t Mi/Mi−1

∼= L(λ) and [M : L(λ)] is
well defined.
(n is called the length of M)

Thus we want to study the structure of L(λ) ∈ Oχ. This together
with the decomposition series will give us substantional
information about the structure of M ∈ O. This leads to the
notion of formal characters in O.
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Characters in O

Definition
chM : h∗ → Z+,chM(λ) = dim Mλ

If M is finite dimensional then it corresponds to a group
representation and knowing the formal character is equivalent
to knowing the usual character on all elements of the group.
Remark:
0→ M ′ → M → M ′′ → 0⇒ chM = chM ′ + chM ′′

So we can compute the character of any module if we know it’s
composition factors and their characters.
Computing chL(λ) directly is difficult. On the other hand chM(λ)

is given by a simple formula (since it is a free U(n−) module)
and they turn out to be closely related.
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Characters in O

Observation
chM(λ) =

∑
µ a(λ, µ)chL(µ)

Here µ ≤ λ and linked to λ, a(λ, µ) = [M(λ) : L(µ)] ∈ Z+ and
a(λ, λ) = 1.

Inverting this triangular linear system, we get:
chL(λ) =

∑
µ b(λ, µ)chM(µ) ⇔ chL(λ) =

∑
w ·λ≤λ b(λ,w)chM(w ·λ)

Remark
Using the above observation it is possible to use formal
characters to prove the Weyl charcter formula.
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Kazhdan-Lustig Conjecture

Consider the subcategory O0 := Oχ0
(the principal block).

The weight −2ρ is minimal in this linkage class. Note that
M(−2ρ) = L(−2ρ).
We parametrize the simple and Verma modules in O0 by the
elements of W , e.g. write Lw := L(w · (−2ρ)). It holds that
[Mw : Lx ] 6= 0 iff x ≤ w in the Bruhat ordering of the Weyl group.

Conjecture (Kazhdan-Lustig)

chLw =
∑
x≤w

(−1)l(w)−l(x)Px ,w (1)chMx

Where Px ,w is a Kazhdan-Lustig polynomial.
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Kazhdan-Lustig Conjecture

Remark
For regular integral weights λ(i.e. λ ∈ Λ : |W · λ| = |W |) the
categories Oχ

λ
are equivalent, so this result allows to describe

them as well.
There are similar results for the rest of O involving certain
subgroups of W.
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Projectives in O

Definition
An object P in an abelian category is called projective if the
functor Hom(P,−) is exact.

Theorem
Category O has enough projectives, i.e. for any M ∈ O there is
a projective object P ∈ O and an epimorphism P → M.

A standard consequence that holds in a greater generality than
category O is the following

Theorem
For each simple module L(λ) ∈ O there is a unique
indecomposable projective P(λ) ∈ O with an epimorphism
P(λ)→ L(λ). Moreover, we can decompose this epimorphism
as two epimorphisms P(λ)→ M(λ)→ L(λ).
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Verma flags and BGG Reciprocity

For each category Oχ this gives a matrix with entries
[P(λ) : L(µ)] called the Cartan matrix of the category.
In category O we can use the Verma modules to simplify the
computation of this matrix.

Definition
A Verma flag of M ∈ O is a filtration of M such that all quotients
are of the form M(λ). When such a filtration exists the
multiplicities of each M(λ) are well defined and we denote them
by (M : M(λ))

Theorem
Any projective object in O has a Verma flag.

Theorem (BGG Reciprocity)

(P(λ) : M(µ)) = [M(µ) : L(λ)]
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Example

Let g = sl(2,C).

We can identify the weight lattice Λ with Z so that ρ = 1. The
Weyl group has one non trivial element that acts by wλ = −λ
so w · λ = −λ− 2.
The weight decomposition of the Verma modules is
M(λ) =

⊕
k∈Z,k≥0 Cλ−2k .

O0 has two simple modules, L(0) = C0 and L(−2) = M(−2).
The Kazhdan-Lusztig conjecture in this case reduces to the
observation that chL(0) = chM(0) − chM(−2).
By BGG reciprocity P(0) = M(0) and P(−2) is a non-trivial
extension of M(0) and M(−2).
For k > 0 (i.e. a dominant integral weight) we have
chL(k) = chM(k) − chM(−k−2).
Remark: Oλ for λ /∈ Z in this case decomposes as a direct sum
of two categories each containing one irreducible module.
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