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Original Objective

Classify unitary representations of reductive Lie Groups
(e.g. GL(n), SL(n))
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Definition of Category O

g - Semisimple Lie Algebra, U(g) - its universal enveloping
algebra.
g=n_®hdnygand U(g) = Un_)U(h)U(ny) (PBW theorem)
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Definition of Category O

g - Semisimple Lie Algebra, U(g) - its universal enveloping
algebra.
g=n_®hdnygand U(g) = Un_)U(h)U(ny) (PBW theorem)

Definition

Category O is the full subcategory of ModU(g) whose objects
satisfy the following properties:

@ (O1) M is finitely generated
@ (02) Mis h-semisimple, i.e. M = P, ;- My
@ (03) Mis locally n_-finite i.e. Vv € M : dim U(n4)v < oo

v

O(2) + O(3) = for every v € M there exists k s.t. (ny)kv =0
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Basic properties

Category O satisfies the following properties:
@ O is an Abelian category.
© O is Noetherian and Artinian.

© O is closed under submodules,quotients and finite direct
sums.
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Basic properties

Category O satisfies the following properties:
@ O is an Abelian category.
© O is Noetherian and Artinian.

© O is closed under submodules,quotients and finite direct
sums.

Q VM € O all of the weight spaces M,, are finite dimensional.

@ VM € O the weights of M are contained in the union of
finitely many sets of the form A — I with A\ € h* and T the
semigroup generated by the positive roots.

Q VM € O : M is finitely generated as a U(n_) module.
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Highest weight modules

Definition

Let M be a U(g) module, then vt € M is a highest weight
vector of weight A € h* if v € My andn, vt =0
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Highest weight modules

Definition

Let M be a U(g) module, then vt € M is a highest weight
vector of weight A € h* if v € My andn, vt =0

Any nonzero module in O has at least one highest weight
vector. If M is simple then all its heighest weight vectors have
the same weight and are multiples of each other.
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Highest weight modules

Definition
Let M be a U(g) module, then vt € M is a highest weight
vector of weight A € h* if v € My andn, vt =0

Any nonzero module in O has at least one highest weight
vector. If M is simple then all its heighest weight vectors have
the same weight and are multiples of each other.

Definition
A U(g) module M is a heighest weight module of weight X if
there is a highest weight vector vt € My s.t. M = U(g)v™"
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Highest weight modules

Let M be a heighest weight module of weight A generated by a
maximal vector v*. Fix an ordering of the positive roots
aq,...,am and choose corresponding root vectors y; € g_q,.
Then:
@ M is spanned by the vectors y;' - - yimv+t with jj € Z*,
having respective weights A — 3 jja;.
Q All weights . of M satisfy u < X (i.e.
= X\ — (sum of positive roots), or p € A —T).
© For all weights 1 of M we have dim M,, < oo, while
dim M, = 1. So M is a weight module, locally n. finite and
M e O.
© M has a unique maximal submodule and unique simple
quotient, in particualr M is indecomposable.
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Verma modules

Let b € g the Borel subalgebra. Then b/n = ). Let Cy, A € h*
be a 1-dimensional b module on which n acts trivially and h acts
by A.
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Verma modules

Let b € g the Borel subalgebra. Then b/n = ). Let Cy, A € h*
be a 1-dimensional b module on which n acts trivially and h acts
by .

Definition

M(X) := U(g) ®u) Cx
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Verma modules

Let b € g the Borel subalgebra. Then b/n = ). Let Cy, A € h*
be a 1-dimensional b module on which n acts trivially and h acts
by .

Definition

M(X) == U(g) ®y(p) Cx = IndgCy
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Verma modules

Let b € g the Borel subalgebra. Then b/n = ). Let Cy, A € h*
be a 1-dimensional b module on which n acts trivially and h acts
by A.

M(X) := U(g) @ uU(b) Cy= |ndg(C>\

M(N\) =2 Un_) ® C, as a left U(n_)-module (PBW Theorem).
Hence M(\) is a heighest weight module: it is generated as a

U(g)-module by a maximal vector v =1 @ 1 of weight A
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Verma modules

Let b € g the Borel subalgebra. Then b/n = ). Let Cy, A € h*
be a 1-dimensional b module on which n acts trivially and h acts
by A.

M()) := U(g) ®u(e) Ca = IndgCy

M(\) = Un_) ® C, as a left U(n_)-module (PBW Theorem).
Hence M(\) is a heighest weight module: it is generated as a
U(g)-module by a maximal vector v =1 @ 1 of weight A

M()) is a universal heighest weight module of weight \:
For any heighest weight module M of weight A we have a
natural map from M()\) onto M
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Simple highest weight modules

Definition
L()) is defined to be the unique simple quotient of M()\).
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Simple highest weight modules

Definition
L()) is defined to be the unique simple quotient of M()\).

Every simple module in O is isomorphic to some L(\) with
A € b* and is therefore uniquely determined up to isomorphism
by its highest weight. Moreover, dim Homo(L(jt), L(X\)) = 6,0
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Simple highest weight modules

Definition
L()) is defined to be the unique simple quotient of M()\).

Every simple module in O is isomorphic to some L(\) with
A € b* and is therefore uniquely determined up to isomorphism
by its highest weight. Moreover, dim Homo(L(jt), L(X\)) = 6,0

Integral weight lattice: A .= {\ € ®:Va € ¢ :< \,a¥ >€ Z}

L()) is finite dimensional iff A € A*.
Additionally, in this case dim L()\),, = dim L(\)w,, for any p € b*
andw e W.
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Action of the center

Let Z(g) be the center of U(g)
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Action of the center

Let Z(g) be the center of U(g)

Observation

Z(g) acts on the weight spaces of any M € O.

In particular, if M = M()\) is a Verma module with weight X and
v € M, is the highest weight vector with weight \ then

Vze Z(g):zvt = x,(2)vT.

X, is called the central character of M()). Since M()) is
generated by v we have that Z(g) acts on all of M()) as
multiplication by x, .
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Z(g) acts on the weight spaces of any M € O.
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v € M, is the highest weight vector with weight \ then

Vze Z(g):zvt = x,(2)vT.

X, is called the central character of M()). Since M()) is
generated by v we have that Z(g) acts on all of M()) as
multiplication by x, .

For general M € O the action of Z(g) is more complicated, but
still only involves a finite number of central characters.
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Action of the center

Let Z(g) be the center of U(g)

Observation

Z(g) acts on the weight spaces of any M € O.

In particular, if M = M()\) is a Verma module with weight X and
vt € M, is the highest weight vector with weight \ then

Vze Z(g):zvt = x,(2)vT.

X, is called the central character of M()). Since M()) is
generated by v we have that Z(g) acts on all of M()) as
multiplication by x, .

For general M € O the action of Z(g) is more complicated, but
still only involves a finite number of central characters.

For M € O and x : Z(g) — C define

MX :={ve MVze Z3n:(z— x(z))"v=0}i.e. z acts locally
as multiplication by x(z) plus a nilpotent operator.
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Action of the center

Let Z(g) be the center of U(g)

Z(g) acts on the weight spaces of any M € O.

In particular, if M = M()\) is a Verma module with weight X and
vt € M, is the highest weight vector with weight \ then

Vze Z(g):zvt = x,(2)vT.

X, is called the central character of M()). Since M()) is
generated by v we have that Z(g) acts on all of M()) as
multiplication by x, .

For general M € O the action of Z(g) is more complicated, but

still only involves a finite number of central characters.

For M € O and x : Z(g) — C define

MX :={ve MVze Z3n:(z— x(z))"v=0}i.e. z acts locally

as multiplication by x(z) plus a nilpotent operator.

It is easy to check that the MX are submodules of M and are all

independent.
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Decomposition of O

Proposition
Any M € O decomposes as M = @ o MX.
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Decomposition of O

Proposition
Any M € O decomposes as M = @ o MX.

Explanation: M is generated by a finite number of its (finite
dimensional) weight spaces M,,. Each M,, decomposes into a
finite direct sum of subspaces MX by a standard argument from
linear algebra.
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Decomposition of O

Proposition
Any M € O decomposes as M = @ o MX.

Explanation: M is generated by a finite number of its (finite
dimensional) weight spaces M,,. Each M,, decomposes into a
finite direct sum of subspaces MX by a standard argument from
linear algebra. Denote by O, the full subcategory of O
corresponding to x, i.e. whose objects are all M s.t. M = Mx.
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Decomposition of O

Proposition
Any M € O decomposes as M = @ o MX.

Explanation: M is generated by a finite number of its (finite
dimensional) weight spaces M,,. Each M,, decomposes into a
finite direct sum of subspaces MX by a standard argument from
linear algebra. Denote by O, the full subcategory of O
corresponding to x, i.e. whose objects are all M s.t. M = Mx.

Proposition

Category O is the direct sum of the subcategories O,,.
Therefore each indecomposable lies in a unique O,,. In
particular, each highest weight module of weight X lies in O,
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Linked weights

When is x, = x,? Are all x of the form x,?
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Linked weights

When is x, = x,? Are all x of the form x,?

Example: If a simple module L()) is a subquotient of a Verma
module M(y:) then we must have x, = x,,.
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Linked weights

When is x, = x,? Are all x of the form x,?

Example: If a simple module L()) is a subquotient of a Verma
module M(y:) then we must have x, = x,,.

Definition

The dot action of the Weil group W on h* is defined by the
formula w - X := w(X + p) — p, where p is the sum of
fundamental weights.
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Linked weights

When is x, = x,? Are all x of the form x,?

Example: If a simple module L()) is a subquotient of a Verma
module M(y:) then we must have x, = x,,.

Definition

The dot action of the Weil group W on h* is defined by the
formula w - X := w(X + p) — p, where p is the sum of
fundamental weights.

Definition

A € b* are linked if there exists we W : p=w -\
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Linked weights

When is x, = x,? Are all x of the form x,?

Example: If a simple module L()) is a subquotient of a Verma
module M(y:) then we must have x, = x,,.

Definition

The dot action of the Weil group W on h* is defined by the
formula w - X := w(X + p) — p, where p is the sum of
fundamental weights.

Definition

A € b* are linked if there exists we W : p=w -\

It can be shown that in the above case X\ and x are linked.
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Linked weights

When is x, = x,? Are all x of the form x,?

Example: If a simple module L()) is a subquotient of a Verma
module M(y:) then we must have x, = x,,.

Definition

The dot action of the Weil group W on h* is defined by the
formula w - X := w(X + p) — p, where p is the sum of
fundamental weights.

Definition

A € b* are linked if there exists we W : p=w -\

It can be shown that in the above case X\ and x are linked.
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Linked weights

Theorem (Harish-Chandra)

Q v\ pebh*wehaveyx, =x, iff3we W:p=w-X\
@ Every central character x : Z(g) — C is of the form x,
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Linked weights

Theorem (Harish-Chandra)

Q v\ pebh*wehaveyx, =x, iff3we W:p=w-X\
@ Every central character x : Z(g) — C is of the form x,

The subcategories O,, each contain a finite number of simple
modules L()), i.e. those L(\) such that A € W - )\, where

X = Xy
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The categories O,

The decomposition M = @, M alows us to confine our
study of category O to the study of the subcategories O, .
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The categories O,

The decomposition M = @, M alows us to confine our
study of category O to the study of the subcategories O, .

Each M € O possesses a composition series
O=MyC...C My=MstM/M_y=L(\)and [M: L(\)]is
well defined.

(n is called the length of M)
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The categories O,

The decomposition M = @, M alows us to confine our
study of category O to the study of the subcategories O, .

Each M € O possesses a composition series
O=MyC...C My=MstM/M_y=L(\)and [M: L(\)]is
well defined.

(n is called the length of M)

Thus we want to study the structure of L(\) € O,. This together
with the decomposition series will give us substantional
information about the structure of M € O. This leads to the
notion of formal characters in O.
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Characters in ©

Definition
chy : b* — Z*,chy()) = dim M,
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Characters in ©

Definition
chy : b* — Z*,chy()) = dim M,

If M is finite dimensional then it corresponds to a group
representation and knowing the formal character is equivalent
to knowing the usual character on all elements of the group.
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Characters in ©

Definition
chy : b* — Z*,chy()) = dim M,

If M is finite dimensional then it corresponds to a group
representation and knowing the formal character is equivalent
to knowing the usual character on all elements of the group.
Remark:

0O—-M—>M-—M"— 0= chM =chM +chM”’

So we can compute the character of any module if we know it's
composition factors and their characters.
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Characters in ©

Definition
chy : b* — Z*,chy()) = dim M,

If M is finite dimensional then it corresponds to a group
representation and knowing the formal character is equivalent
to knowing the usual character on all elements of the group.
Remark:

0O—-M—>M-—M"— 0= chM =chM +chM”’

So we can compute the character of any module if we know it’s
composition factors and their characters.

Computing chyy) directly is difficult. On the other hand chyy(»)
is given by a simple formula (since it is a free U(n_) module)
and they turn out to be closely related.
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Characters in ©

Observation

chyy = 22, alA, p)chy

Here 1 < X and linked to \, a(\, ) = [M()) : L(p)] € Z+ and
aia ) =1.
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Characters in ©

Observation

chyy = 22, alA, p)chy
Here 1 < X and linked to \, a(\, ) = [M()) : L(p)] € Z+ and
aia ) =1.

Inverting this triangular linear system, we get:
chiy = 22, BN, p)ehmyy < chipy = D u <0 DA, W)Chyw.y)

4
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Characters in ©

chyy = 22, alA, p)chy

Here © < X and linked to \, a(\, 1) = [M(\) : L(n)] € Z* and
aia ) =1.

Inverting this triangular linear system, we get:

chiny = 22, b, p)ehy & chiny = D wa<n A, W)Chpw.a)

Using the above observation it is possible to use formal
characters to prove the Weyl charcter formula.

Adam Gal, Elena Gal Introduction to Category ©



Kazhdan-Lustig Conjecture
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Kazhdan-Lustig Conjecture

Consider the subcategory Op := O, (the principal block).
The weight —2p is minimal in this linkage class. Note that
M(—2p) = L(—2p).

We parametrize the simple and Verma modules in Oy by the
elements of W, e.g. write Ly, := L(w - (—2p)). It holds that

[My : L] # 0iff x < w in the Bruhat ordering of the Weyl group.
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Kazhdan-Lustig Conjecture

Consider the subcategory Op := O, (the principal block).
The weight —2p is minimal in this linkage class. Note that
M(—2p) = L(—2p).

We parametrize the simple and Verma modules in Oy by the
elements of W, e.g. write Ly, := L(w - (—2p)). It holds that

[My : L] # 0iff x < w in the Bruhat ordering of the Weyl group.

Conjecture (Kazhdan-Lustig)

chy, =Y (=1 NP, ,(1)chy,

x<w

Where Py, is a Kazhdan-Lustig polynomial.
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Kazhdan-Lustig Conjecture

For regular integral weights A(i.e. A € A : |W - \| = |W]) the
categories O, are equivalent, so this result allows to describe
them as well.

There are similar results for the rest of O involving certain
subgroups of W.
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Projectives in O

Definition

An object P in an abelian category is called projective if the
functor Hom(P, —) is exact.
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Projectives in O

An object P in an abelian category is called projective if the
functor Hom(P, —) is exact.

Theorem

Category O has enough projectives, i.e. for any M € O there is
a projective object P € O and an epimorphism P — M.
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Projectives in O

An object P in an abelian category is called projective if the
functor Hom(P, —) is exact.

Theorem

Category O has enough projectives, i.e. for any M € O there is
a projective object P € O and an epimorphism P — M.

v

A standard consequence that holds in a greater generality than
category O is the following
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Projectives in O

Definition

An object P in an abelian category is called projective if the
functor Hom(P, —) is exact.

Category O has enough projectives, i.e. for any M € O there is
a projective object P € O and an epimorphism P — M.

A standard consequence that holds in a greater generality than
category O is the following

For each simple module L(\) € O there is a unique
indecomposable projective P(\) € O with an epimorphism
P()\) — L(X). Moreover, we can decompose this epimorphism
as two epimorphisms P(\) — M(X) — L(\).
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Verma flags and BGG Reciprocity

For each category O,, this gives a matrix with entries

[P(M) : L(p)] called the Cartan matrix of the category.

In category O we can use the Verma modules to simplify the
computation of this matrix.
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Verma flags and BGG Reciprocity

For each category O,, this gives a matrix with entries

[P(M) : L(p)] called the Cartan matrix of the category.

In category O we can use the Verma modules to simplify the
computation of this matrix.

Definition

A Verma flag of M € O is a filtration of M such that all quotients
are of the form M(X). When such a filtration exists the
multiplicities of each M(\) are well defined and we denote them
by (M : M()))
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Verma flags and BGG Reciprocity

For each category O,, this gives a matrix with entries

[P(M) : L(p)] called the Cartan matrix of the category.

In category O we can use the Verma modules to simplify the
computation of this matrix.

Definition

A Verma flag of M € O is a filtration of M such that all quotients
are of the form M(X). When such a filtration exists the
multiplicities of each M(\) are well defined and we denote them
by (M : M()))

Any projective object in O has a Verma flag.
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Verma flags and BGG Reciprocity

For each category O,, this gives a matrix with entries

[P(M) : L(p)] called the Cartan matrix of the category.

In category O we can use the Verma modules to simplify the
computation of this matrix.

Definition

A Verma flag of M € O is a filtration of M such that all quotients
are of the form M(X). When such a filtration exists the
multiplicities of each M(\) are well defined and we denote them
by (M : M()))

Any projective object in O has a Verma flag.

Theorem (BGG Reciprocity)
(P(A) : M(p)) = [M(p) = L(N)]
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Let g = sl(2,C).
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Let g = sl(2,C).
We can identify the weight lattice A with Z so that p = 1. The
Weyl group has one non trivial element that acts by wi = —\

SOW-\A=—-)\—2.
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Let g = sl(2,C).

We can identify the weight lattice A with Z so that p = 1. The
Weyl group has one non trivial element that acts by wi = —\
SOW-A=-—-\—2.

The weight decomposition of the Verma modules is

M(X) = Drez k=0 Cr—2k-
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Let g = sl(2,C).

We can identify the weight lattice A with Z so that p = 1. The
Weyl group has one non trivial element that acts by wi = —\
SOW-A=-—-\—2.

The weight decomposition of the Verma modules is

M(X) = Drez k=0 Cr—2k-

Oy has two simple modules, L(0) = Cy and L(—2) = M(-2).
The Kazhdan-Lusztig conjecture in this case reduces to the
observation that chy ) = chy) — chy(—2)-

By BGG reciprocity P(0) = M(0) and P(—2) is a non-trivial
extension of M(0) and M(—2).
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Let g = sl(2,C).

We can identify the weight lattice A with Z so that p = 1. The
Weyl group has one non trivial element that acts by wi = —\
sOw-A=-\-2.

The weight decomposition of the Verma modules is

M(X) = Drez k=0 Cr—2k-

Oy has two simple modules, L(0) = Cy and L(—2) = M(-2).
The Kazhdan-Lusztig conjecture in this case reduces to the
observation that chy ) = chy) — chy(—2)-

By BGG reciprocity P(0) = M(0) and P(—2) is a non-trivial
extension of M(0) and M(—2).

For k > 0 (i.e. a dominant integral weight) we have

chiky = chmky — Chm(—k—2)-
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Let g = sl(2,C).

We can identify the weight lattice A with Z so that p = 1. The
Weyl group has one non trivial element that acts by wi = —\
sOw-A=-\-2.

The weight decomposition of the Verma modules is

M(X) = Drez k=0 Cr—2k-

Oy has two simple modules, L(0) = Cy and L(—2) = M(-2).
The Kazhdan-Lusztig conjecture in this case reduces to the
observation that chy ) = chy) — chy(—2)-

By BGG reciprocity P(0) = M(0) and P(—2) is a non-trivial
extension of M(0) and M(—2).

For k > 0 (i.e. a dominant integral weight) we have

chiky = chmky — Chm(—k—2)-

Remark: O, for A ¢ Z in this case decomposes as a direct sum
of two categories each containing one irreducible module.
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