Introduction to Category \mathcal{O}

Adam Gal, Elena Gal

May 21, 2010

Motivation

Original Objective
Classify unitary representations of reductive Lie Groups (e.g. $G L(n), S L(n))$

Motivation

Original Objective
Classify unitary representations of reductive Lie Groups (e.g. $G L(n), S L(n))$

Harish-Chandra's approach
Classify admissible representations

Motivation

Original Objective

Classify unitary representations of reductive Lie Groups (e.g. $G L(n), S L(n))$

Harish-Chandra's approach
Classify admissible representations

Analytic problem

Admissible representations
of complex semisimple Lie groups
(e.g. $G L(n, \mathbb{C}), S L(n, \mathbb{C}))$

Motivation

Original Objective

Classify unitary representations of reductive Lie Groups (e.g. $G L(n), S L(n))$

Harish-Chandra's approach

Classify admissible representations

Analytic problem

Admissible representations of complex semisimple Lie groups
(e.g. $G L(n, \mathbb{C}), S L(n, \mathbb{C}))$

Algebraic problem

Harish-Chandra modules for $(\mathfrak{g} \times \mathfrak{g}, \mathfrak{g} \hookrightarrow \mathfrak{g} \times \mathfrak{g})$

Motivation

Original Objective

Classify unitary representations of reductive Lie Groups (e.g. $G L(n), S L(n))$

Harish-Chandra's approach

Classify admissible representations

Analytic problem

Admissible representations of complex semisimple Lie groups
(e.g. $G L(n, \mathbb{C}), S L(n, \mathbb{C}))$

Algebraic problem

Harish-Chandra modules for $(\mathfrak{g} \times \mathfrak{g}, \mathfrak{g} \hookrightarrow \mathfrak{g} \times \mathfrak{g})$

Toy model

Category \mathcal{O}

Motivation

Original Objective

Classify unitary representations of reductive Lie Groups (e.g. $G L(n), S L(n))$

Harish-Chandra's approach

Classify admissible representations

Analytic problem

Admissible representations of complex semisimple Lie groups
(e.g. $G L(n, \mathbb{C}), S L(n, \mathbb{C})$)

Algebraic problem

Harish-Chandra modules for $(\mathfrak{g} \times \mathfrak{g}, \mathfrak{g} \hookrightarrow \mathfrak{g} \times \mathfrak{g})$

Toy model

Category \mathcal{O}
(Also includes finite dim and Verma modules)

Definition of Category \mathcal{O}

\mathfrak{g}-Semisimple Lie Algebra, $U(\mathfrak{g})$ - its universal enveloping algebra.
$\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$and $U(\mathfrak{g})=U\left(\mathfrak{n}_{-}\right) U(\mathfrak{h}) U\left(\mathfrak{n}_{+}\right)$(PBW theorem)

Definition of Category \mathcal{O}

\mathfrak{g}-Semisimple Lie Algebra, $U(\mathfrak{g})$ - its universal enveloping algebra.
$\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$and $U(\mathfrak{g})=U\left(\mathfrak{n}_{-}\right) U(\mathfrak{h}) U\left(\mathfrak{n}_{+}\right)$(PBW theorem)

Definition

Category \mathcal{O} is the full subcategory of $\operatorname{Mod} U(\mathfrak{g})$ whose objects satisfy the following properties:

- (O1) M is finitely generated
- (O2) M is \mathfrak{h}-semisimple, i.e. $M=\bigoplus_{\lambda \in \mathfrak{h}^{*}} M_{\lambda}$
- (O3) M is locally \mathfrak{n}_{+}-finite i.e. $\forall v \in M: \operatorname{dim} U\left(\mathfrak{n}_{+}\right) v<\infty$
$\mathcal{O}(2)+\mathcal{O}(3) \Rightarrow$ for every $v \in M$ there exists k s.t. $\left(\mathfrak{n}_{+}\right)^{k} v=0$

Basic properties

Theorem

Category \mathcal{O} satisfies the following properties:
(1) \mathcal{O} is an Abelian category.
(2) \mathcal{O} is Noetherian and Artinian.
(3) \mathcal{O} is closed under submodules,quotients and finite direct sums.

Basic properties

Theorem

Category \mathcal{O} satisfies the following properties:
(1) \mathcal{O} is an Abelian category.
(2) \mathcal{O} is Noetherian and Artinian.
(3) \mathcal{O} is closed under submodules,quotients and finite direct sums.
(4) $\forall M \in \mathcal{O}$ all of the weight spaces M_{λ} are finite dimensional.
(5) $\forall M \in \mathcal{O}$ the weights of M are contained in the union of finitely many sets of the form $\lambda-\Gamma$ with $\lambda \in \mathfrak{h}^{*}$ and Γ the semigroup generated by the positive roots.
(6) $\forall M \in \mathcal{O}: M$ is finitely generated as a $U\left(\mathfrak{n}_{-}\right)$module.

Highest weight modules

Definition

Let M be a $U(\mathfrak{g})$ module, then $v^{+} \in M$ is a highest weight vector of weight $\lambda \in \mathfrak{h}^{*}$ if $v^{+} \in M_{\lambda}$ and $\mathfrak{n}_{+} v^{+}=0$

Highest weight modules

Definition

Let M be a $U(\mathfrak{g})$ module, then $v^{+} \in M$ is a highest weight vector of weight $\lambda \in \mathfrak{h}^{*}$ if $v^{+} \in M_{\lambda}$ and $\mathfrak{n}_{+} v^{+}=0$

Remark

Any nonzero module in \mathcal{O} has at least one highest weight vector. If M is simple then all its heighest weight vectors have the same weight and are multiples of each other.

Highest weight modules

Definition

Let M be a $U(\mathfrak{g})$ module, then $v^{+} \in M$ is a highest weight vector of weight $\lambda \in \mathfrak{h}^{*}$ if $v^{+} \in M_{\lambda}$ and $\mathfrak{n}_{+} v^{+}=0$

Remark

Any nonzero module in \mathcal{O} has at least one highest weight vector. If M is simple then all its heighest weight vectors have the same weight and are multiples of each other.

Definition

A $U(\mathfrak{g})$ module M is a heighest weight module of weight λ if there is a highest weight vector $v^{+} \in M_{\lambda}$ s.t. $M=U(\mathfrak{g}) v^{+}$

Highest weight modules

Let M be a heighest weight module of weight λ generated by a maximal vector v^{+}. Fix an ordering of the positive roots
$\alpha_{1}, \ldots, \alpha_{m}$ and choose corresponding root vectors $y_{i} \in \mathfrak{g}_{-\alpha_{i}}$.
Then:
(1) M is spanned by the vectors $y_{1}^{i_{1}} \cdots y_{m}^{i_{m}} v^{+}$with $i_{j} \in \mathbb{Z}^{+}$, having respective weights $\lambda-\sum i_{j} \alpha_{j}$.
(2) All weights μ of M satisfy $\mu \leq \lambda$ (i.e. $\mu=\lambda$ - (sum of positive roots), or $\mu \in \lambda-\Gamma$).
(3) For all weights μ of M we have $\operatorname{dim} M_{\mu}<\infty$, while $\operatorname{dim} M_{\lambda}=1$. So M is a weight module, locally \mathfrak{n}_{+}finite and $M \in \mathcal{O}$.
(4) M has a unique maximal submodule and unique simple quotient, in particualr M is indecomposable.

Verma modules

Let $\mathfrak{b} \in \mathfrak{g}$ the Borel subalgebra. Then $\mathfrak{b} / \mathfrak{n} \cong \mathfrak{h}$. Let $\mathbb{C}_{\lambda}, \lambda \in \mathfrak{h}^{*}$ be a 1-dimensional \mathfrak{b} module on which \mathfrak{n} acts trivially and \mathfrak{h} acts by λ.

Verma modules

Let $\mathfrak{b} \in \mathfrak{g}$ the Borel subalgebra. Then $\mathfrak{b} / \mathfrak{n} \cong \mathfrak{h}$. Let $\mathbb{C}_{\lambda}, \lambda \in \mathfrak{h}^{*}$ be a 1-dimensional \mathfrak{b} module on which \mathfrak{n} acts trivially and \mathfrak{h} acts by λ.

Definition
$M(\lambda):=U(\mathfrak{g}) \otimes U_{(\mathfrak{b})} \mathbb{C}_{\lambda}$

Verma modules

Let $\mathfrak{b} \in \mathfrak{g}$ the Borel subalgebra. Then $\mathfrak{b} / \mathfrak{n} \cong \mathfrak{h}$. Let $\mathbb{C}_{\lambda}, \lambda \in \mathfrak{h}^{*}$ be a 1-dimensional \mathfrak{b} module on which \mathfrak{n} acts trivially and \mathfrak{h} acts by λ.

Definition
$M(\lambda):=U(\mathfrak{g}) \otimes U(\mathfrak{b}) \mathbb{C}_{\lambda}=\operatorname{In} d_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{\lambda}$

Verma modules

Let $\mathfrak{b} \in \mathfrak{g}$ the Borel subalgebra. Then $\mathfrak{b} / \mathfrak{n} \cong \mathfrak{h}$. Let $\mathbb{C}_{\lambda}, \lambda \in \mathfrak{h}^{*}$ be a 1-dimensional \mathfrak{b} module on which \mathfrak{n} acts trivially and \mathfrak{h} acts by λ.

Definition
$M(\lambda):=U(\mathfrak{g}) \otimes U(\mathfrak{b}) \mathbb{C}_{\lambda}=\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{\lambda}$

Remark

$M(\lambda) \cong U\left(\mathfrak{n}_{-}\right) \otimes \mathbb{C}_{\lambda}$ as a left $U\left(\mathfrak{n}_{-}\right)$-module (PBW Theorem). Hence $M(\lambda)$ is a heighest weight module: it is generated as a $U(\mathfrak{g})$-module by a maximal vector $v^{+}=1 \otimes 1$ of weight λ

Verma modules

Let $\mathfrak{b} \in \mathfrak{g}$ the Borel subalgebra. Then $\mathfrak{b} / \mathfrak{n} \cong \mathfrak{h}$. Let $\mathbb{C}_{\lambda}, \lambda \in \mathfrak{h}^{*}$ be a 1 -dimensional \mathfrak{b} module on which \mathfrak{n} acts trivially and \mathfrak{h} acts by λ.

Definition
$M(\lambda):=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}=\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{\lambda}$

Remark

$M(\lambda) \cong U\left(\mathfrak{n}_{-}\right) \otimes \mathbb{C}_{\lambda}$ as a left $U\left(\mathfrak{n}_{-}\right)$-module (PBW Theorem). Hence $M(\lambda)$ is a heighest weight module: it is generated as a $U(\mathfrak{g})$-module by a maximal vector $v^{+}=1 \otimes 1$ of weight λ

Remark

$M(\lambda)$ is a universal heighest weight module of weight λ : For any heighest weight module M of weight λ we have a natural map from $M(\lambda)$ onto M

Simple highest weight modules

Definition

$L(\lambda)$ is defined to be the unique simple quotient of $M(\lambda)$.

Simple highest weight modules

Definition

$L(\lambda)$ is defined to be the unique simple quotient of $M(\lambda)$.

Theorem

Every simple module in \mathcal{O} is isomorphic to some $L(\lambda)$ with $\lambda \in \mathfrak{h}^{*}$ and is therefore uniquely determined up to isomorphism by its highest weight. Moreover, $\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}(L(\mu), L(\lambda))=\delta_{\mu \lambda}$

Simple highest weight modules

Definition

$L(\lambda)$ is defined to be the unique simple quotient of $M(\lambda)$.

Theorem

Every simple module in \mathcal{O} is isomorphic to some $L(\lambda)$ with $\lambda \in \mathfrak{h}^{*}$ and is therefore uniquely determined up to isomorphism by its highest weight. Moreover, $\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}(L(\mu), L(\lambda))=\delta_{\mu \lambda}$

Integral weight lattice: $\Lambda:=\left\{\lambda \in \Phi: \forall \alpha \in \Phi:<\lambda, \alpha^{\vee}>\in \mathbb{Z}\right\}$

Theorem

$L(\lambda)$ is finite dimensional iff $\lambda \in \Lambda^{+}$.
Additionally, in this case $\operatorname{dim} L(\lambda)_{\mu}=\operatorname{dim} L(\lambda)_{w \mu}$ for any $\mu \in \mathfrak{h}^{*}$ and $w \in W$.

Action of the center

Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$

Action of the center

Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$

Observation

$Z(\mathfrak{g})$ acts on the weight spaces of any $M \in \mathcal{O}$.
In particular, if $M=M(\lambda)$ is a Verma module with weight λ and
$v^{+} \in M_{\lambda}$ is the highest weight vector with weight λ then
$\forall z \in Z(\mathfrak{g}): z v^{+}=\chi_{\lambda}(z) v^{+}$.
χ_{λ} is called the central character of $M(\lambda)$. Since $M(\lambda)$ is generated by v^{+}we have that $Z(\mathfrak{g})$ acts on all of $M(\lambda)$ as multiplication by χ_{λ}.

Action of the center

Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$

Observation

$Z(\mathfrak{g})$ acts on the weight spaces of any $M \in \mathcal{O}$.
In particular, if $M=M(\lambda)$ is a Verma module with weight λ and
$v^{+} \in M_{\lambda}$ is the highest weight vector with weight λ then
$\forall z \in Z(\mathfrak{g}): z v^{+}=\chi_{\lambda}(z) v^{+}$.
χ_{λ} is called the central character of $M(\lambda)$. Since $M(\lambda)$ is generated by v^{+}we have that $Z(\mathfrak{g})$ acts on all of $M(\lambda)$ as multiplication by χ_{λ}.

For general $M \in \mathcal{O}$ the action of $Z(\mathfrak{g})$ is more complicated, but still only involves a finite number of central characters.

Action of the center

Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$

Observation

$Z(\mathfrak{g})$ acts on the weight spaces of any $M \in \mathcal{O}$.
In particular, if $M=M(\lambda)$ is a Verma module with weight λ and
$v^{+} \in M_{\lambda}$ is the highest weight vector with weight λ then
$\forall z \in Z(\mathfrak{g}): z v^{+}=\chi_{\lambda}(z) v^{+}$.
χ_{λ} is called the central character of $M(\lambda)$. Since $M(\lambda)$ is generated by v^{+}we have that $Z(\mathfrak{g})$ acts on all of $M(\lambda)$ as multiplication by χ_{λ}.

For general $M \in \mathcal{O}$ the action of $Z(\mathfrak{g})$ is more complicated, but still only involves a finite number of central characters.
For $M \in \mathcal{O}$ and $\chi: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ define
$M^{\chi}:=\left\{v \in M \mid \forall z \in Z . \exists n:(z-\chi(z))^{n} v=0\right\}$ i.e. z acts locally as multiplication by $\chi(z)$ plus a nilpotent operator.

Action of the center

Let $Z(\mathfrak{g})$ be the center of $U(\mathfrak{g})$

Observation

$Z(\mathfrak{g})$ acts on the weight spaces of any $M \in \mathcal{O}$.
In particular, if $M=M(\lambda)$ is a Verma module with weight λ and
$v^{+} \in M_{\lambda}$ is the highest weight vector with weight λ then
$\forall z \in Z(\mathfrak{g}): z v^{+}=\chi_{\lambda}(z) v^{+}$.
χ_{λ} is called the central character of $M(\lambda)$. Since $M(\lambda)$ is generated by v^{+}we have that $Z(\mathfrak{g})$ acts on all of $M(\lambda)$ as multiplication by χ_{λ}.

For general $M \in \mathcal{O}$ the action of $Z(\mathfrak{g})$ is more complicated, but still only involves a finite number of central characters.
For $M \in \mathcal{O}$ and $\chi: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ define
$M^{\chi}:=\left\{v \in M \mid \forall z \in Z . \exists n:(z-\chi(z))^{n} v=0\right\}$ i.e. z acts locally as multiplication by $\chi(z)$ plus a nilpotent operator. It is easy to check that the M^{χ} are submodules of M and are all independent.

Decomposition of \mathcal{O}

Proposition

Any $M \in \mathcal{O}$ decomposes as $M=\bigoplus_{\text {finite }} M^{\chi}$.

Decomposition of \mathcal{O}

Proposition

Any $M \in \mathcal{O}$ decomposes as $M=\bigoplus_{\text {finite }} M^{\chi}$.
Explanation: M is generated by a finite number of its (finite dimensional) weight spaces M_{μ}. Each M_{μ} decomposes into a finite direct sum of subspaces M^{χ} by a standard argument from linear algebra.

Decomposition of \mathcal{O}

Proposition

Any $M \in \mathcal{O}$ decomposes as $M=\bigoplus_{\text {finite }} M^{\chi}$.
Explanation: M is generated by a finite number of its (finite dimensional) weight spaces M_{μ}. Each M_{μ} decomposes into a finite direct sum of subspaces M^{χ} by a standard argument from linear algebra. Denote by \mathcal{O}_{χ} the full subcategory of \mathcal{O} corresponding to χ, i.e. whose objects are all M s.t. $M=M^{\chi}$.

Decomposition of \mathcal{O}

Proposition

Any $M \in \mathcal{O}$ decomposes as $M=\bigoplus_{\text {finite }} M^{\chi}$.
Explanation: M is generated by a finite number of its (finite dimensional) weight spaces M_{μ}. Each M_{μ} decomposes into a finite direct sum of subspaces M^{χ} by a standard argument from linear algebra. Denote by \mathcal{O}_{χ} the full subcategory of \mathcal{O} corresponding to χ, i.e. whose objects are all M s.t. $M=M^{\chi}$.

Proposition

Category \mathcal{O} is the direct sum of the subcategories \mathcal{O}_{χ}. Therefore each indecomposable lies in a unique \mathcal{O}_{χ}. In particular, each highest weight module of weight λ lies in $\mathcal{O}_{\chi_{\lambda}}$

Linked weights

Questions
When is $\chi_{\lambda}=\chi_{\mu}$? Are all χ of the form χ_{λ} ?

Linked weights

Questions

When is $\chi_{\lambda}=\chi_{\mu}$? Are all χ of the form χ_{λ} ?
Example: If a simple module $L(\lambda)$ is a subquotient of a Verma module $M(\mu)$ then we must have $\chi_{\lambda}=\chi_{\mu}$.

Linked weights

Questions

When is $\chi_{\lambda}=\chi_{\mu}$? Are all χ of the form χ_{λ} ?
Example: If a simple module $L(\lambda)$ is a subquotient of a Verma module $M(\mu)$ then we must have $\chi_{\lambda}=\chi_{\mu}$.

Definition

The dot action of the Weil group W on \mathfrak{h}^{*} is defined by the formula $w \cdot \lambda:=w(\lambda+\rho)-\rho$, where ρ is the sum of fundamental weights.

Linked weights

Questions

When is $\chi_{\lambda}=\chi_{\mu}$? Are all χ of the form χ_{λ} ?
Example: If a simple module $L(\lambda)$ is a subquotient of a Verma module $M(\mu)$ then we must have $\chi_{\lambda}=\chi_{\mu}$.

Definition

The dot action of the Weil group W on \mathfrak{h}^{*} is defined by the formula $w \cdot \lambda:=w(\lambda+\rho)-\rho$, where ρ is the sum of fundamental weights.

Definition

$\lambda, \mu \in \mathfrak{h}^{*}$ are linked if there exists $w \in W: \mu=w \cdot \lambda$

Linked weights

Questions

When is $\chi_{\lambda}=\chi_{\mu}$? Are all χ of the form χ_{λ} ?
Example: If a simple module $L(\lambda)$ is a subquotient of a Verma module $M(\mu)$ then we must have $\chi_{\lambda}=\chi_{\mu}$.

Definition

The dot action of the Weil group W on \mathfrak{h}^{*} is defined by the formula $w \cdot \lambda:=w(\lambda+\rho)-\rho$, where ρ is the sum of fundamental weights.

Definition

$\lambda, \mu \in \mathfrak{h}^{*}$ are linked if there exists $w \in W: \mu=\boldsymbol{w} \cdot \lambda$
It can be shown that in the above case λ and μ are linked.

Linked weights

Questions

When is $\chi_{\lambda}=\chi_{\mu}$? Are all χ of the form χ_{λ} ?
Example: If a simple module $L(\lambda)$ is a subquotient of a Verma module $M(\mu)$ then we must have $\chi_{\lambda}=\chi_{\mu}$.

Definition

The dot action of the Weil group W on \mathfrak{h}^{*} is defined by the formula $w \cdot \lambda:=w(\lambda+\rho)-\rho$, where ρ is the sum of fundamental weights.

Definition

$\lambda, \mu \in \mathfrak{h}^{*}$ are linked if there exists $w \in W: \mu=\boldsymbol{w} \cdot \lambda$
It can be shown that in the above case λ and μ are linked.

Linked weights

Theorem (Harish-Chandra)

(1) $\forall \lambda, \mu \in \mathfrak{h}^{*}$ we have $\chi_{\lambda}=\chi_{\mu}$ iff $\exists w \in W: \mu=w \cdot \lambda$
(2) Every central character $\chi: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ is of the form χ_{λ}

Linked weights

Theorem (Harish-Chandra)

(1) $\forall \lambda, \mu \in \mathfrak{h}^{*}$ we have $\chi_{\lambda}=\chi_{\mu}$ iff $\exists w \in W: \mu=w \cdot \lambda$
(2) Every central character $\chi: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ is of the form χ_{λ}

Conclusion

The subcategories \mathcal{O}_{χ} each contain a finite number of simple modules $L(\lambda)$, i.e. those $L(\lambda)$ such that $\lambda \in W \cdot \lambda_{0}$, where $\chi=\chi_{\lambda_{0}}$.

The categories \mathcal{O}_{χ}

The decomposition $M=\bigoplus_{\text {finite }} M^{\chi}$ alows us to confine our study of category \mathcal{O} to the study of the subcategories \mathcal{O}_{χ}.

The categories \mathcal{O}_{χ}

The decomposition $M=\bigoplus_{\text {finite }} M^{\chi}$ alows us to confine our study of category \mathcal{O} to the study of the subcategories \mathcal{O}_{χ}.

Remark

Each $M \in \mathcal{O}$ possesses a composition series $0=M_{0} \subset \ldots \subset M_{n}=M$ s.t $M_{i} / M_{i-1} \cong L(\lambda)$ and $[M: L(\lambda)]$ is well defined.
(n is called the length of M)

The categories \mathcal{O}_{χ}

The decomposition $M=\bigoplus_{\text {finite }} M^{\chi}$ alows us to confine our study of category \mathcal{O} to the study of the subcategories \mathcal{O}_{χ}.

Remark

Each $M \in \mathcal{O}$ possesses a composition series
$0=M_{0} \subset \ldots \subset M_{n}=M$ s.t $M_{i} / M_{i-1} \cong L(\lambda)$ and $[M: L(\lambda)]$ is well defined.
(n is called the length of M)
Thus we want to study the structure of $L(\lambda) \in \mathcal{O}_{\chi}$. This together with the decomposition series will give us substantional information about the structure of $M \in \mathcal{O}$. This leads to the notion of formal characters in \mathcal{O}.

Characters in \mathcal{O}

Definition

$\mathrm{ch}_{M}: \mathfrak{h}^{*} \rightarrow \mathbb{Z}^{+}, \mathrm{ch}_{M}(\lambda)=\operatorname{dim} M_{\lambda}$

Characters in \mathcal{O}

Definition

$\operatorname{ch}_{M}: \mathfrak{h}^{*} \rightarrow \mathbb{Z}^{+}, \operatorname{ch}_{M}(\lambda)=\operatorname{dim} M_{\lambda}$
If M is finite dimensional then it corresponds to a group representation and knowing the formal character is equivalent to knowing the usual character on all elements of the group.

Characters in \mathcal{O}

Definition

$\mathrm{ch}_{M}: \mathfrak{h}^{*} \rightarrow \mathbb{Z}^{+}, \operatorname{ch}_{M}(\lambda)=\operatorname{dim} M_{\lambda}$
If M is finite dimensional then it corresponds to a group representation and knowing the formal character is equivalent to knowing the usual character on all elements of the group. Remark:
$0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0 \Rightarrow \operatorname{ch} M=\operatorname{ch} M^{\prime}+\operatorname{ch} M^{\prime \prime}$
So we can compute the character of any module if we know it's composition factors and their characters.

Characters in \mathcal{O}

Definition

$\mathrm{ch}_{M}: \mathfrak{h}^{*} \rightarrow \mathbb{Z}^{+}, \operatorname{ch}_{M}(\lambda)=\operatorname{dim} M_{\lambda}$
If M is finite dimensional then it corresponds to a group representation and knowing the formal character is equivalent to knowing the usual character on all elements of the group. Remark:
$0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0 \Rightarrow \operatorname{ch} M=\operatorname{ch} M^{\prime}+\operatorname{ch} M^{\prime \prime}$
So we can compute the character of any module if we know it's composition factors and their characters.
Computing $\mathrm{ch}_{L(\lambda)}$ directly is difficult. On the other hand $\mathrm{ch}_{M(\lambda)}$ is given by a simple formula (since it is a free $U\left(\mathfrak{n}_{-}\right)$module) and they turn out to be closely related.

Characters in \mathcal{O}

Observation

$\mathrm{ch}_{M(\lambda)}=\sum_{\mu} \boldsymbol{a}(\lambda, \mu) \mathrm{ch}_{L(\mu)}$
Here $\mu \leq \lambda$ and linked to $\lambda, a(\lambda, \mu)=[M(\lambda): L(\mu)] \in \mathbb{Z}^{+}$and $a(\lambda, \lambda)=1$.

Characters in \mathcal{O}

Observation

$\mathrm{ch}_{M(\lambda)}=\sum_{\mu} \boldsymbol{a}(\lambda, \mu) \mathrm{ch}_{L(\mu)}$
Here $\mu \leq \lambda$ and linked to $\lambda, a(\lambda, \mu)=[M(\lambda): L(\mu)] \in \mathbb{Z}^{+}$and $a(\lambda, \lambda)=1$.
Inverting this triangular linear system, we get:
$\operatorname{ch}_{L(\lambda)}=\sum_{\mu} b(\lambda, \mu) \operatorname{ch}_{M(\mu)} \Leftrightarrow \operatorname{ch}_{L(\lambda)}=\sum_{w \cdot \lambda \leq \lambda} b(\lambda, w) \operatorname{ch}_{M(w \cdot \lambda)}$

Characters in \mathcal{O}

Observation

$\mathrm{ch}_{M(\lambda)}=\sum_{\mu} \boldsymbol{a}(\lambda, \mu) \mathrm{ch}_{L(\mu)}$
Here $\mu \leq \lambda$ and linked to $\lambda, a(\lambda, \mu)=[M(\lambda): L(\mu)] \in \mathbb{Z}^{+}$and $a(\lambda, \lambda)=1$.
Inverting this triangular linear system, we get:
$\operatorname{ch}_{L(\lambda)}=\sum_{\mu} b(\lambda, \mu) \operatorname{ch}_{M(\mu)} \Leftrightarrow \operatorname{ch}_{L(\lambda)}=\sum_{w \cdot \lambda \leq \lambda} b(\lambda, w) \operatorname{ch}_{M(w \cdot \lambda)}$

Remark

Using the above observation it is possible to use formal characters to prove the Weyl charcter formula.

Kazhdan-Lustig Conjecture

Kazhdan-Lustig Conjecture

Consider the subcategory $\mathcal{O}_{0}:=\mathcal{O}_{\chi_{0}}$ (the principal block). The weight -2ρ is minimal in this linkage class. Note that $M(-2 \rho)=L(-2 \rho)$.
We parametrize the simple and Verma modules in \mathcal{O}_{0} by the elements of W, e.g. write $L_{w}:=L(w \cdot(-2 \rho))$. It holds that [$\left.M_{w}: L_{x}\right] \neq 0$ iff $x \leq w$ in the Bruhat ordering of the Weyl group.

Kazhdan-Lustig Conjecture

Consider the subcategory $\mathcal{O}_{0}:=\mathcal{O}_{\chi_{0}}$ (the principal block). The weight -2ρ is minimal in this linkage class. Note that $M(-2 \rho)=L(-2 \rho)$.
We parametrize the simple and Verma modules in \mathcal{O}_{0} by the elements of W, e.g. write $L_{w}:=L(w \cdot(-2 \rho))$. It holds that [$\left.M_{w}: L_{x}\right] \neq 0$ iff $x \leq w$ in the Bruhat ordering of the Weyl group.

Conjecture (Kazhdan-Lustig)

$$
\operatorname{ch}_{L_{w}}=\sum_{x \leq w}(-1)^{I(w)-l(x)} P_{x, w}(1) \operatorname{ch}_{M_{x}}
$$

Where $P_{x, w}$ is a Kazhdan-Lustig polynomial.

Kazhdan-Lustig Conjecture

Remark

For regular integral weights λ (i.e. $\lambda \in \Lambda:|W \cdot \lambda|=|W|)$ the categories $\mathcal{O}_{\chi_{\lambda}}$ are equivalent, so this result allows to describe them as well.
There are similar results for the rest of \mathcal{O} involving certain subgroups of W.

Projectives in \mathcal{O}

Definition

An object P in an abelian category is called projective if the functor $\operatorname{Hom}(P,-)$ is exact.

Projectives in \mathcal{O}

Definition

An object P in an abelian category is called projective if the functor $\operatorname{Hom}(P,-)$ is exact.

Theorem

Category \mathcal{O} has enough projectives, i.e. for any $M \in \mathcal{O}$ there is a projective object $P \in \mathcal{O}$ and an epimorphism $P \rightarrow M$.

Projectives in \mathcal{O}

Definition

An object P in an abelian category is called projective if the functor $\operatorname{Hom}(P,-)$ is exact.

Theorem

Category \mathcal{O} has enough projectives, i.e. for any $M \in \mathcal{O}$ there is a projective object $P \in \mathcal{O}$ and an epimorphism $P \rightarrow M$.

A standard consequence that holds in a greater generality than category \mathcal{O} is the following

Projectives in \mathcal{O}

Definition

An object P in an abelian category is called projective if the functor $\operatorname{Hom}(P,-)$ is exact.

Theorem

Category \mathcal{O} has enough projectives, i.e. for any $M \in \mathcal{O}$ there is a projective object $P \in \mathcal{O}$ and an epimorphism $P \rightarrow M$.

A standard consequence that holds in a greater generality than category \mathcal{O} is the following

Theorem

For each simple module $L(\lambda) \in \mathcal{O}$ there is a unique indecomposable projective $P(\lambda) \in \mathcal{O}$ with an epimorphism $P(\lambda) \rightarrow L(\lambda)$. Moreover, we can decompose this epimorphism as two epimorphisms $P(\lambda) \rightarrow M(\lambda) \rightarrow L(\lambda)$.

Verma flags and BGG Reciprocity

For each category \mathcal{O}_{χ} this gives a matrix with entries $[P(\lambda): L(\mu)]$ called the Cartan matrix of the category. In category \mathcal{O} we can use the Verma modules to simplify the computation of this matrix.

Verma flags and BGG Reciprocity

For each category \mathcal{O}_{χ} this gives a matrix with entries $[P(\lambda): L(\mu)]$ called the Cartan matrix of the category. In category \mathcal{O} we can use the Verma modules to simplify the computation of this matrix.

Definition

A Verma flag of $M \in \mathcal{O}$ is a filtration of M such that all quotients are of the form $M(\lambda)$. When such a filtration exists the multiplicities of each $M(\lambda)$ are well defined and we denote them by $(M: M(\lambda))$

Verma flags and BGG Reciprocity

For each category \mathcal{O}_{χ} this gives a matrix with entries $[P(\lambda): L(\mu)]$ called the Cartan matrix of the category. In category \mathcal{O} we can use the Verma modules to simplify the computation of this matrix.

Definition

A Verma flag of $M \in \mathcal{O}$ is a filtration of M such that all quotients are of the form $M(\lambda)$. When such a filtration exists the multiplicities of each $M(\lambda)$ are well defined and we denote them by $(M: M(\lambda))$

Theorem

Any projective object in \mathcal{O} has a Verma flag.

Verma flags and BGG Reciprocity

For each category \mathcal{O}_{χ} this gives a matrix with entries $[P(\lambda): L(\mu)]$ called the Cartan matrix of the category. In category \mathcal{O} we can use the Verma modules to simplify the computation of this matrix.

Definition

A Verma flag of $M \in \mathcal{O}$ is a filtration of M such that all quotients are of the form $M(\lambda)$. When such a filtration exists the multiplicities of each $M(\lambda)$ are well defined and we denote them by $(M: M(\lambda))$

Theorem

Any projective object in \mathcal{O} has a Verma flag.

Theorem (BGG Reciprocity)
$(P(\lambda): M(\mu))=[M(\mu): L(\lambda)]$

Example

Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$.

Example

Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$.
We can identify the weight lattice \wedge with \mathbb{Z} so that $\rho=1$. The Weyl group has one non trivial element that acts by $w \lambda=-\lambda$ so $w \cdot \lambda=-\lambda-2$.

Example

Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$.
We can identify the weight lattice \wedge with \mathbb{Z} so that $\rho=1$. The Weyl group has one non trivial element that acts by $w \lambda=-\lambda$ so $w \cdot \lambda=-\lambda-2$.
The weight decomposition of the Verma modules is
$M(\lambda)=\bigoplus_{k \in \mathbb{Z}, k \geq 0} \mathbb{C}_{\lambda-2 k}$.

Example

Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$.
We can identify the weight lattice \wedge with \mathbb{Z} so that $\rho=1$. The Weyl group has one non trivial element that acts by $w \lambda=-\lambda$ so $w \cdot \lambda=-\lambda-2$.
The weight decomposition of the Verma modules is
$M(\lambda)=\bigoplus_{k \in \mathbb{Z}, k \geq 0} \mathbb{C}_{\lambda-2 k}$.
\mathcal{O}_{0} has two simple modules, $L(0)=\mathbb{C}_{0}$ and $L(-2)=M(-2)$.
The Kazhdan-Lusztig conjecture in this case reduces to the observation that $\mathrm{ch}_{L(0)}=\mathrm{ch}_{M(0)}-\mathrm{ch}_{M(-2)}$.
By BGG reciprocity $P(0)=M(0)$ and $P(-2)$ is a non-trivial extension of $M(0)$ and $M(-2)$.

Example

Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$.
We can identify the weight lattice \wedge with \mathbb{Z} so that $\rho=1$. The
Weyl group has one non trivial element that acts by $w \lambda=-\lambda$
so $w \cdot \lambda=-\lambda-2$.
The weight decomposition of the Verma modules is
$M(\lambda)=\bigoplus_{k \in \mathbb{Z}, k \geq 0} \mathbb{C}_{\lambda-2 k}$.
\mathcal{O}_{0} has two simple modules, $L(0)=\mathbb{C}_{0}$ and $L(-2)=M(-2)$.
The Kazhdan-Lusztig conjecture in this case reduces to the observation that $\mathrm{ch}_{L(0)}=\mathrm{ch}_{M(0)}-\mathrm{ch}_{M(-2)}$.
By BGG reciprocity $P(0)=M(0)$ and $P(-2)$ is a non-trivial extension of $M(0)$ and $M(-2)$.
For $k>0$ (i.e. a dominant integral weight) we have $\mathrm{ch}_{L(k)}=\mathrm{ch}_{M(k)}-\mathrm{ch}_{M(-k-2)}$.

Example

Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$.
We can identify the weight lattice \wedge with \mathbb{Z} so that $\rho=1$. The
Weyl group has one non trivial element that acts by $w \lambda=-\lambda$
so $w \cdot \lambda=-\lambda-2$.
The weight decomposition of the Verma modules is
$M(\lambda)=\bigoplus_{k \in \mathbb{Z}, k \geq 0} \mathbb{C}_{\lambda-2 k}$.
\mathcal{O}_{0} has two simple modules, $L(0)=\mathbb{C}_{0}$ and $L(-2)=M(-2)$.
The Kazhdan-Lusztig conjecture in this case reduces to the observation that $\mathrm{ch}_{L(0)}=\mathrm{ch}_{M(0)}-\mathrm{ch}_{M(-2)}$.
By BGG reciprocity $P(0)=M(0)$ and $P(-2)$ is a non-trivial extension of $M(0)$ and $M(-2)$.
For $k>0$ (i.e. a dominant integral weight) we have $\mathrm{ch}_{L(k)}=\mathrm{ch}_{M(k)}-\mathrm{ch}_{M(-k-2)}$.
Remark: \mathcal{O}_{λ} for $\lambda \notin \mathbb{Z}$ in this case decomposes as a direct sum of two categories each containing one irreducible module.

