Parity Sheaves and Moment Graphs

Olaf M. Schnürer
Universität Bonn

May 2010, Isle of Skye

Outline

(1) Functor \mathbb{W} and Localization
(1) Parity Sheaves and Braden-MacPherson Sheaves
(1) Kazhdan-Lusztig Conjecture

Setting

$T \cong\left(\mathbb{C}^{*}\right)^{r}$: a complex torus. X : a complete normal complex T-variety.

Assumptions:
(A1a) number of zero- and one-dimensional orbits finite;
(A1b) the closure of each one-dimensional orbit is smooth (and hence isomorphic to $\mathbb{P}^{1} \mathbb{C}$).

Unoriented Moment Graph of a T-Variety

$\mathcal{G}_{X}=(\mathcal{V}, \mathcal{E}, \alpha):$ unoriented moment graph over the character lattice $X^{*}(T)$:
vertices: $\mathcal{V}=X^{T}=$ set of T-fixed points in X.
edges: $\mathcal{E}=$ set of one-dimensional orbits in X. An edge connects the two (different) fixed points in its closure.
labels: If E is an edge, let $\alpha_{E} \in X^{*}(T)$ be the character such that ker $\alpha_{E} \subset T$ is the stabilizer of some/any point in E.
α_{E} is well defined up to sign.

Reminder: Equivariant Derived Category I

$\mathcal{D}_{T}^{\mathrm{b}}(X)=\mathcal{D}_{T}^{\mathrm{b}}(X ; k): T$-equivariant derived category of sheaves of modules over a commutative ring k.

Let $\mathcal{F} \in \mathcal{D}_{T}^{\mathrm{b}}(X)$.

- The equivariant cohomology of X with coefficients in \mathcal{F} is

$$
\mathbb{H}_{T}(\mathcal{F})=H\left(B T ; \pi_{*} \mathcal{F}\right)
$$

where $\pi_{*}: \mathcal{D}_{T}^{\mathrm{b}}(X ; k) \rightarrow \mathcal{D}_{T}^{\mathrm{b}}(\mathrm{pt} ; k) \subset \mathcal{D}^{\mathrm{b}}(B T ; k)$ comes from $\pi: X \rightarrow \mathrm{pt}$.

- $\mathbb{H}_{T}(\mathcal{F})$ is a graded module over

$$
S_{k}:=S_{k}\left(X^{*}(T)_{k}\right)=H\left(B T ; k_{B T}\right)=\mathbb{H}_{T}\left(k_{p t}\right) .
$$

Reminder: Equivariant Derived Category II

- For $i: Y \subset X$ a T-equivariant embedding define

$$
\mathcal{F}_{Y}:=i^{*} \mathcal{F}
$$

The adjunction map $\mathcal{F} \rightarrow i_{*} \mathcal{F}_{Y}$ yields the restriction map for equivariant cohomology

$$
\mathbb{H}_{T}(\mathcal{F}) \rightarrow \mathbb{H}_{T}\left(\mathcal{F}_{Y}\right)
$$

Write $\mathcal{F}_{x}:=\mathcal{F}_{\{x\}}$ if $Y=\{x\}$ is a fixed point.

Basic Example.

Let T act on \mathbb{C} linearly via a non-trivial character α.
${ }^{2}$ We assume that $n \mid \alpha$ in $X^{*}(T)$ implies that n is invertible in k.

Basic Example.

Let T act on \mathbb{C} linearly via a non-trivial character α.

- For $k_{\mathbb{C}}$ the constant equivariant sheaf on \mathbb{C}, the maps ${ }^{a}$

$$
\mathbb{H}_{T}\left(k_{\mathbb{C}}\right) \rightarrow \mathbb{H}_{T}\left(k_{0}\right) \quad \text { resp. } \quad \mathbb{H}_{T}\left(k_{\mathbb{C}}\right) \rightarrow \mathbb{H}_{T}\left(k_{\mathbb{C}^{*}}\right)
$$

are identified with

$$
S_{k} \xrightarrow{\sim} S_{k} \quad \text { resp. } \quad S_{k} \rightarrow S_{k} /(\alpha)
$$

${ }^{a}$ We assume that $n \mid \alpha$ in $X^{*}(T)$ implies that n is invertible in k.

Basic Example.

Let T act on \mathbb{C} linearly via a non-trivial character α.

- For $k_{\mathbb{C}}$ the constant equivariant sheaf on \mathbb{C}, the maps ${ }^{a}$

$$
\mathbb{H}_{T}\left(k_{\mathbb{C}}\right) \rightarrow \mathbb{H}_{T}\left(k_{0}\right) \quad \text { resp. } \quad \mathbb{H}_{T}\left(k_{\mathbb{C}}\right) \rightarrow \mathbb{H}_{T}\left(k_{\mathbb{C}^{*}}\right)
$$

are identified with

$$
S_{k} \xrightarrow{\sim} S_{k} \quad \text { resp. } \quad S_{k} \rightarrow S_{k} /(\alpha)
$$

- Let $\mathcal{F} \in \mathcal{D}_{T}^{\mathrm{b}}(\mathbb{C})$ and consider $\{0\} \xrightarrow{i} \mathbb{C} \xrightarrow{\pi}\{0\}$. Applying π_{*} to the adjunction morphism $\mathcal{F} \rightarrow i_{*} i^{*} \mathcal{F}$ yields an isomorphism

$$
\pi_{*} \mathcal{F} \xrightarrow{\sim} \pi_{*} i_{*} i^{*} \mathcal{F}=i^{*} \mathcal{F} \quad \text { in } \mathcal{D}_{T}^{\mathrm{b}}(\{0\}) .
$$

In particular $\mathbb{H}_{T}(\mathcal{F}) \xrightarrow{\sim} \mathbb{H}_{T}\left(\mathcal{F}_{0}\right)$.
${ }^{a}$ We assume that $n \mid \alpha$ in $X^{*}(T)$ implies that n is invertible in k.

Definition of the Functor \mathbb{W}

$\mathcal{G}_{X}-$ gMod $_{k}$: category of graded sheaves on \mathcal{G}_{X}, coefficients in k (all stalks S_{k}-modules).

$$
\mathbb{W}: \mathcal{D}_{T}^{\mathrm{b}}(X ; k) \rightarrow \mathcal{G}_{X}-\mathrm{gMod}_{k} .
$$

Let \mathcal{F} in $\mathcal{D}_{T}^{\mathrm{b}}(X ; k)$.

- $x \in \mathcal{V}=X^{T}$ a vertex:

$$
\mathbb{W}(\mathcal{F})^{x}:=\mathbb{H}_{T}\left(\mathcal{F}_{x}\right)
$$

- $E \subset X$ an edge:

$$
\mathbb{W}(\mathcal{F})^{E}:=\mathbb{H}_{T}\left(\mathcal{F}_{E}\right)
$$

These are graded S_{k} resp. $S_{k} /\left(\alpha_{E}\right)$-modules.

Definition of the Functor \mathbb{W}

- x a fixed point in the closure of an orbit E :

Then $E \cup\{x\}$ is isomorphic to \mathbb{C} with T acting by $\pm \alpha_{E}$.
The restriction morphisms on equivariant cohomology and the Basic Example yield

Definition of the Functor \mathbb{W}

- x a fixed point in the closure of an orbit E :

Then $E \cup\{x\}$ is isomorphic to \mathbb{C} with T acting by $\pm \alpha_{E}$.
The restriction morphisms on equivariant cohomology and the Basic Example yield

Localization Theorem I

We impose on our T-variety X in addition to $(\mathrm{A} 1 \mathrm{a}+\mathrm{b})$ the following assumptions:
(A2) Each fixed point is attractive: If x is a fixed point, there is an open neighborhood U of x in X and a 1-parameter subgroup $\chi: \mathbb{C}^{*} \rightarrow T$ such that

$$
\lim _{z \rightarrow 0} \chi(z) \cdot u=x \quad \text { for all } u \in U
$$

(A3a) For any $\alpha \in X^{*}(T)$, the unoriented moment graph \mathcal{G}_{X}^{α} that is obtained from \mathcal{G}_{X} by deleting all edges E with $k \alpha \cap k \alpha_{E}=0$, is a disjoint union of moment graphs with only one or two vertices.
(A3b) If E is a one-dimensional orbit and $n \in \mathbb{Z}$ is such that α_{E} is divisible by n in $X^{*}(T)$, then n is invertible in k.

Localization Theorem II

Theorem (Localization Theorem)

Let X be a complete normal T-variety satisfying (A1a)-(A3b) and \mathcal{F} be in $\mathcal{D}_{T}^{\mathrm{b}}(X ; k)$. If $\mathbb{H}_{T}(\mathcal{F})$ and $\mathbb{H}_{T}\left(\mathcal{F}_{X^{T}}\right)$ are free S_{k}-modules, then the restriction morphism $\mathbb{H}_{T}(\mathcal{F}) \rightarrow \mathbb{H}_{T}\left(\mathcal{F}_{X^{T}}\right)$ is injective, and

$$
\mathbb{H}_{T}(\mathcal{F})=\Gamma(\mathbb{W}(\mathcal{F}))
$$

as submodules of $\mathbb{H}_{T}\left(\mathcal{F}_{X^{T}}\right)=\bigoplus_{x \in X^{T}} \mathbb{H}_{T}\left(\mathcal{F}_{X}\right)=\bigoplus_{x \in X^{T}} \mathbb{W}(\mathcal{F})^{x}$.

Oriented Moment Graph of a stratified T-Variety I

X a T-variety satisfying conditions (A1a+b) and (A2). We assume that X is endowed with a Whitney stratification

$$
X=\bigsqcup_{\lambda \in \Lambda} X_{\lambda}
$$

by T-stable locally closed subvarieties, such that the closure of each stratum is a union of strata. Assume that
(S) For each $\lambda \in \Lambda$ there is a T-equivariant isomorphism $X_{\lambda} \cong \mathbb{C}^{n_{\lambda}}$, where $\mathbb{C}^{n_{\lambda}}$ carries a linear T-action.
We obtain a bijection

$$
\begin{aligned}
& \Lambda \xrightarrow{\sim} X^{T}=\{\text { vertices of } \mathcal{G} X\} \\
& \lambda \mapsto x_{\lambda}
\end{aligned}
$$

Partial order on Λ :

$$
\lambda \leq \mu \text { if and only if } X_{\lambda} \subset \bar{X}_{\mu} .
$$

This turns $\mathcal{G}_{X}=(\mathcal{V}, \mathcal{E}, \alpha)$ into an ordered moment graph. If $\lambda \leq \mu$ and an edge E connects $x_{\lambda}=\lambda$ and $x_{\mu}=\mu$, we direct E as follows:

$$
E: x_{\lambda} \rightarrow x_{\mu} .
$$

Alexandrov ${ }^{\mathrm{op}}$ topology on \mathcal{G}_{X} : Basis of open subsets is $\{\geq \lambda\}_{\lambda \in \Lambda}$.

Braden-MacPherson Sheaves I

$\mathcal{G}=(\mathcal{V}, \mathcal{E}, \alpha)$: finite directed moment graph over a lattice Y. k : commutative local noetherian ring.

$$
S_{k}=S_{k}\left(Y \otimes_{\mathbb{Z}} k\right) .
$$

Braden-MacPherson Sheaves II

Definition

A sheaf \mathscr{B} on a directed moment graph \mathcal{G} is called a Braden-MacPherson sheaf or BM-sheaf, if it satisfies the following conditions:
(1) \mathscr{B}^{x} is a graded-free S_{k}-module, for any $x \in \mathcal{V}$.
(2) For any directed edge $E: x \rightarrow y$, the map $\rho_{y, E}: \mathscr{B}^{y} \rightarrow \mathscr{B}^{E}$ is surjective with kernel $\alpha_{E} \mathscr{B}^{y}$.
(3) The sheaf \mathscr{B} is flabby in the Alexandrov ${ }^{\text {op }}$ topology: For any open subset \mathcal{J} of \mathcal{V}, the map

$$
\Gamma(\mathscr{B})=\Gamma(\mathcal{V} ; \mathscr{B}) \rightarrow \Gamma(\mathcal{J} ; \mathscr{B})
$$

is surjective.
(9) The map $\Gamma(\mathscr{B}) \rightarrow \mathscr{B}^{x}$ is surjective for any $x \in \mathcal{V}$.

Theorem

(1) For any $w \in \mathcal{V}$ there is an up to isomorphism unique BM-sheaf $\mathscr{B}(w)$ on \mathcal{G} with the following properties:

- $\mathscr{B}(w)$ has support in $\{\leq w\}$.
- $\mathscr{B}(w)^{w} \cong S_{k}$.
- $\mathscr{B}(w)$ is indecomposable in $\mathcal{G}_{X}-\mathrm{gMod}_{k}$.
(2) Any BM-sheaf of finite type decomposes into a finite direct sum of objects of the form $\mathscr{B}(w)[I]$, for suitable $w \in \mathcal{V}$ and $I \in \mathbb{Z}$. This decomposition is unique up to permutation and isomorphism.

Parity Sheaves and Braden-MacPherson Sheaves I

k : complete local principal ideal domain. X : complex T-variety, satisfying (A1a)-(A3b), (S).

We further assume that for each $\lambda \in \Lambda$, there is a T-equivariant surjective morphism (not assumed to be birational)

$$
\pi_{\lambda}: \widetilde{X}_{\lambda} \rightarrow \bar{X}_{\lambda}
$$

such that
(R1) \widetilde{X}_{λ} is a smooth projective T-variety;
(R2) $\left(\widetilde{X}_{\lambda}\right)^{T}$ is finite;
(R3) the derived direct image $\pi_{\lambda *} k_{\tilde{X}_{\lambda}}$ lies in $\mathcal{D}_{T, \Lambda}^{\mathrm{b}}(X ; k)$.

Parity Sheaves and Braden-MacPherson Sheaves II

Theorem (Fiebig, Williamson)

The functor $\mathbb{W}: \mathcal{D}_{T}^{\mathrm{b}}(X ; k) \rightarrow \mathcal{G}_{X}-\mathrm{gMod}_{k}$ restricts to a fully faithful functor

$$
\mathbb{W}:\{\text { parity sheaves }\} \rightarrow\{B M \text {-sheaves }\}
$$

mapping $\mathcal{P}(\lambda)$ to $\mathscr{B}(\lambda)$.

Proof.

Let $\mathcal{P} \in \mathcal{D}_{T}^{\mathrm{b}}(X ; k)$ be a parity sheaf. We check that $\mathbb{W}(\mathcal{P})$ satisfies the four defining properties of a BM-sheaf.
1: By definition, $\mathcal{P}_{X_{\lambda}}$ is a direct sum of shifted equivariant constant sheaves, and the same holds for $\mathcal{P}_{x_{\lambda}}$. This implies that $\mathbb{W}(\mathcal{P})_{x_{\lambda}}=\mathbb{H}_{T}\left(\mathcal{P}_{x_{\lambda}}\right)$ is graded-free.
This also shows that $\mathbb{H}_{T}\left(\mathcal{P}_{X^{T}}\right)$ is a graded-free S_{k}-module.

Proof continued.

3: Let $\mathcal{J} \subset \mathcal{G}$ be an open subset and $X_{\mathcal{J}}$ the corresponding open union of strata. Let $i: X \backslash X_{\mathcal{J}} \hookrightarrow X$ be the inclusion of its complement.
The "Hom(*-even, !-even)"-short exact sequence for parity sheaves with k_{X} the equivariant constant sheaf as its left argument is

$$
0 \rightarrow \mathbb{H}_{T}(i!\mathcal{P}) \rightarrow \mathbb{H}_{T}(\mathcal{P}) \rightarrow \mathbb{H}_{T}\left(\mathcal{P}_{X_{\mathcal{J}}}\right) \rightarrow 0
$$

An induction on the stratification yields that $\mathbb{H}_{T}(\mathcal{P})$ is a free S_{k}-module. The Localization Theorem identifies the above epimorphism with the map

$$
\Gamma(\mathbb{W}(\mathcal{P})) \rightarrow \Gamma(\mathcal{J} ; \mathbb{W}(\mathcal{P})) .
$$

Proof continued.

2: Let $E: x_{\mu} \rightarrow x_{\lambda}$ be a directed edge. Then the one-dimensional orbit E is contained in X_{λ}. The map

$$
\rho_{x_{\lambda}, E}: \mathbb{W}(\mathcal{P})^{x_{\lambda}} \rightarrow \mathbb{W}(\mathcal{P})^{E}
$$

is defined by

$$
\mathbb{H}_{T}\left(\mathcal{F}_{E \cup\{x\}}\right) \rightarrow \mathbb{H}_{T}\left(\mathcal{F}_{E}\right)
$$

Since $\mathcal{P}_{X_{\lambda}}$ is a direct sum of shifted equivariant constant sheaves, we only have to prove that

$$
\mathbb{H}_{T}\left(k_{E \cup\{x\}}\right) \rightarrow \mathbb{H}_{T}\left(k_{E}\right)
$$

is surjective with kernel $\alpha_{E} \mathbb{H}_{T}\left(k_{E \cup\{x\}}\right)$. We have seen this in the above Basic Example.

Proof continued.

4: Omitted. Uses (R1)-(R3).
The fully faithfulness follows from the "Hom(*-even, !-even)"-short exact sequence for parity sheaves and an induction on the number of strata. This implies that $\mathbb{W}(\mathcal{P}(\lambda))$ is indecomposable. Hence, $\mathbb{W}(\mathcal{P}(\lambda)) \cong \mathscr{B}(\lambda)$ by considering the support.

Kazhdan-Lusztig Conjecture I

$$
k=\mathbb{C}
$$

$\mathfrak{g} \supset \mathfrak{b} \supset \mathfrak{h}$: semisimple complex Lie algebra with Borel and Cartan subalgebra.
$\Phi^{+} \subset \Phi \subset \mathfrak{h}^{*}:$ roots of \mathfrak{b} and \mathfrak{g} with respect to \mathfrak{h}.
W: Weyl group.
$\Delta(\mu)$: Verma module with highest weight $\mu \in \mathfrak{h}^{*}$.
$L(\mu)$: the simple quotient of $\Delta(\mu)$.
$P(\mu)$: a projective cover of $L(\mu)$ in \mathcal{O}.

Theorem (Kazhdan-Lusztig-Conjecture)

Let $\lambda \in \mathfrak{h}^{*}$ be regular integral antidominant. Then

$$
[\Delta(x \cdot \lambda): L(y \cdot \lambda)]=h_{x w_{0}, y w_{0}}(1)
$$

for all $x, y \in W$.

Proof.

$S=S(\mathfrak{h})$
$A=S_{S_{\mathfrak{h}}}$: localization of S at the maximal ideal generated by \mathfrak{h}. \mathcal{G}^{λ} : ordered moment graph over the root lattice:

- set of vertices: W
- edges: $w, w^{\prime} \in W, \alpha \in \Phi^{+}$:

$$
w \stackrel{\alpha}{-} w^{\prime} \Longleftrightarrow w=s_{\alpha} w^{\prime} .
$$

- ordering: $w \leq^{\lambda} w^{\prime} \Longleftrightarrow w \cdot \lambda \leq w^{\prime} \cdot \lambda$. (Refines Bruhat ordering.)
$\mathcal{G}^{\text {Bruhat }}$: moment graph with the same vertices, edges and labels, but Bruhat ordering.
$\mathscr{B}^{\circ \mathrm{OP}}(x): \mathrm{BM}$ sheaves (with \mathbb{C} coefficients) on $\left(\mathcal{G}^{\lambda}\right)^{\mathrm{op}}$ and $\left(\mathcal{G}^{\text {Bruhat }}\right)^{\mathrm{op}}$.
$\mathscr{B}^{\circ \mathrm{P}}(x)$ has support in $\{\geq x\}$.

Proof continued.

$$
\begin{aligned}
{[\Delta(x \cdot \lambda): L(y \cdot \lambda)] } & =(P(y \cdot \lambda): \Delta(x \cdot \lambda)) \\
& =\left(P_{A}(y \cdot \lambda): \Delta_{A}(x \cdot \lambda)\right) \\
& =\operatorname{rank}_{A}\left(\mathcal{L} \mathbb{V} P_{A}(y \cdot \lambda)\right)^{x} \\
& =\operatorname{rank}_{A}\left(\mathscr{B}^{\mathrm{op}}(y) \otimes_{S} A\right)^{x} \\
& =\operatorname{rank}_{S} \mathscr{B}^{\mathrm{op}}(y)^{x}
\end{aligned}
$$

Proof continued.

Geometry enters the game.
$G^{\vee} \supset B^{\vee} \supset T^{\vee}$: semisimple connected complex algebraic group with Borus such that the root system of $\left(G^{\vee}, T^{\vee}\right)$ is dual to $\Phi \subset \mathfrak{h}^{*}$ and such that the roots of B^{\vee} are $\Phi^{+\vee}=\left(\Phi^{\vee}\right)^{+}$.
$X=G^{\vee} / B^{\vee}$: the flag variety, considered as a T^{\vee}-variety.
$X_{w}=B^{\vee} w B^{\vee} / B^{\vee}$: the Bruhat cell associated to $w \in W$.
$X=\bigsqcup_{w \in W} X_{w}$: stratification into Bruhat cells.
$\mathcal{G} X$: associated oriented moment graph over $X^{*}\left(T^{\vee}\right)$. Coincides with $\mathcal{G}^{\text {Bruhat }}$.

All our assumptions satisfied.

Proof continued.

$\mathscr{B}(x)$: BM-sheaves (with \mathbb{C}-coefficients) on $\mathcal{G} X$. $\mathscr{B}(x)$ has support in $\{\leq x\}$.
Note that

$$
X^{*}\left(T^{\vee}\right)_{\mathbb{C}}=\left(\operatorname{Lie} T^{\vee}\right)^{*}=\mathfrak{h}
$$

implies

$$
S\left(X^{*}\left(T^{\vee}\right)_{\mathbb{C}}=S(\mathfrak{h})=S .\right.
$$

Proof continued.

The isomorphism of directed moment graphs

$$
\begin{aligned}
\left(\mathcal{G}^{\text {Bruhat }}\right)^{\mathrm{op}} & \xrightarrow{\sim} \mathcal{G}_{X}, \\
x & \mapsto x w_{0} .
\end{aligned}
$$

identifies $\mathscr{B}^{\circ p}(y)$ and $\mathscr{B}\left(y w_{0}\right)$. Hence

$$
\begin{aligned}
{[\Delta(x \cdot \lambda): L(y \cdot \lambda)} & =\operatorname{rank}_{S} \mathscr{B}^{\circ \mathrm{P}}(y)^{x} \\
& =\operatorname{rank}_{S} \mathscr{B}\left(y w_{0}\right)^{x w_{0}}
\end{aligned}
$$

Proof continued.

By the above Theorem $\mathbb{W}\left(\mathcal{P}\left(y w_{0}\right)\right) \cong \mathscr{B}\left(y w_{0}\right)$.
Since we work with complex coefficients, we have $\mathcal{P}\left(y w_{0}\right) \cong \mathcal{I C} \mathcal{C}_{T}\left(\bar{X}_{y w_{0}}\right)$. Hence

$$
\begin{aligned}
\mathscr{B}\left(y w_{0}\right)^{x w_{0}} & \cong \mathbb{H}_{T}\left(\mathcal{P}\left(y w_{0}\right)_{x w_{0}}\right) \\
& \cong \mathbb{H}_{T}\left(\mathcal{I C} \mathcal{C}_{T}\left(\bar{X}_{y w_{0}}\right)_{x w_{0}}\right) .
\end{aligned}
$$

All these modules being S-free, we have

$$
\mathbb{C} \otimes_{S} \mathbb{H}_{T}\left(\mathcal{I C} \mathcal{T}_{T}\left(\bar{X}_{y w_{0}}\right)_{x w_{0}}\right) \cong \mathbb{H}\left(\mathcal{I C}\left(\bar{X}_{y w_{0}}\right)_{x w_{0}}\right)
$$

and finally

$$
\begin{aligned}
{[\Delta(x \cdot \lambda): L(y \cdot \lambda)} & =\operatorname{rank}_{S} \mathscr{B}\left(y w_{0}\right)^{x w_{0}} \\
& =\operatorname{dim}_{\mathbb{C}} \mathbb{H}\left(\mathcal{I C}\left(\bar{X}_{y w_{0}}\right)_{x w_{0}}\right) \\
& =h_{x w_{0}, y w_{0}}(1) .
\end{aligned}
$$

Many thanks to the organizers!

