◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parity Sheaves and Moment Graphs

Olaf M. Schnürer

Universität Bonn

May 2010, Isle of Skye

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 Parity Sheaves and Braden-MacPherson Sheaves

1 Kazhdan-Lusztig Conjecture

 $T \cong (\mathbb{C}^*)^r$: a complex torus.

X: a complete normal complex T-variety.

Assumptions:

- (A1a) number of zero- and one-dimensional orbits finite;
- (A1b) the closure of each one-dimensional orbit is smooth (and hence isomorphic to $\mathbb{P}^1\mathbb{C}$).

Unoriented Moment Graph of a *T*-Variety

 $\mathcal{G}_{X} = (\mathcal{V}, \mathcal{E}, \alpha)$: unoriented moment graph over the character lattice $X^{*}(\mathcal{T})$:

vertices: $\mathcal{V} = X^T$ = set of *T*-fixed points in *X*.

- edges: \mathcal{E} = set of one-dimensional orbits in X. An edge connects the two (different) fixed points in its closure.
- labels: If E is an edge, let $\alpha_E \in X^*(T)$ be the character such that ker $\alpha_E \subset T$ is the stabilizer of some/any point in E.

 α_E is well defined up to sign.

Reminder: Equivariant Derived Category I

 $\mathcal{D}_{\mathcal{T}}^{b}(X) = \mathcal{D}_{\mathcal{T}}^{b}(X; k)$: *T*-equivariant derived category of sheaves of modules over a commutative ring *k*.

Let $\mathcal{F} \in \mathcal{D}^{\mathsf{b}}_{\mathcal{T}}(X)$.

• The equivariant cohomology of X with coefficients in \mathcal{F} is

$$\mathbb{H}_{T}(\mathcal{F}) = H(BT; \pi_{*}\mathcal{F}),$$

where $\pi_* : \mathcal{D}^{\mathsf{b}}_{\mathcal{T}}(X; k) \to \mathcal{D}^{\mathsf{b}}_{\mathcal{T}}(\mathsf{pt}; k) \subset \mathcal{D}^{\mathsf{b}}(B\mathcal{T}; k)$ comes from $\pi : X \to \mathsf{pt}$.

• $\mathbb{H}_T(\mathcal{F})$ is a graded module over

$$S_k := S_k(X^*(T)_k) = H(BT; k_{BT}) = \mathbb{H}_T(k_{pt}).$$

Reminder: Equivariant Derived Category II

• For $i: Y \subset X$ a *T*-equivariant embedding define

$$\mathcal{F}_{\mathbf{Y}} := i^* \mathcal{F}.$$

The adjunction map $\mathcal{F} \to i_* \mathcal{F}_Y$ yields the restriction map for equivariant cohomology

$$\mathbb{H}_T(\mathcal{F}) \to \mathbb{H}_T(\mathcal{F}_Y).$$

Write $\mathcal{F}_x := \mathcal{F}_{\{x\}}$ if $Y = \{x\}$ is a fixed point.

Basic Example.

Let T act on \mathbb{C} linearly via a non-trivial character α .

^aWe assume that $n | \alpha$ in $X^*(T)$ implies that *n* is invertible in *k*.

) 2 (?

Basic Example.

Let T act on \mathbb{C} linearly via a non-trivial character α .

• For $k_{\mathbb{C}}$ the constant equivariant sheaf on \mathbb{C} , the maps^a

 $\mathbb{H}_{T}(k_{\mathbb{C}}) \to \mathbb{H}_{T}(k_{0}) \quad \text{resp.} \quad \mathbb{H}_{T}(k_{\mathbb{C}}) \to \mathbb{H}_{T}(k_{\mathbb{C}^{*}})$

are identified with

$$S_k \xrightarrow{\sim} S_k$$
 resp. $S_k \twoheadrightarrow S_k/(\alpha)$

^aWe assume that $n|\alpha$ in $X^*(T)$ implies that n is invertible in k.

Basic Example.

Let T act on \mathbb{C} linearly via a non-trivial character α .

• For $k_{\mathbb{C}}$ the constant equivariant sheaf on \mathbb{C} , the maps^a

$$\mathbb{H}_{T}(k_{\mathbb{C}}) \to \mathbb{H}_{T}(k_{0}) \quad \text{resp.} \quad \mathbb{H}_{T}(k_{\mathbb{C}}) \to \mathbb{H}_{T}(k_{\mathbb{C}^{*}})$$

are identified with

$$S_k \xrightarrow{\sim} S_k$$
 resp. $S_k \twoheadrightarrow S_k/(\alpha)$

• Let $\mathcal{F} \in \mathcal{D}_T^{\mathsf{b}}(\mathbb{C})$ and consider $\{0\} \xrightarrow{i} \mathbb{C} \xrightarrow{\pi} \{0\}$. Applying π_* to the adjunction morphism $\mathcal{F} \to i_* i^* \mathcal{F}$ yields an isomorphism

$$\pi_*\mathcal{F} \xrightarrow{\sim} \pi_*i_*i^*\mathcal{F} = i^*\mathcal{F} \quad \text{ in } \mathcal{D}_T^{\mathsf{b}}(\{0\}).$$

In particular $\mathbb{H}_T(\mathcal{F}) \xrightarrow{\sim} \mathbb{H}_T(\mathcal{F}_0)$.

^aWe assume that $n \mid \alpha$ in $X^*(T)$ implies that *n* is invertible in *k*.

Definition of the Functor $\mathbb W$

$$\begin{split} \mathcal{G}_{X^{-}} \operatorname{gMod}_{k} &: \text{ category of graded sheaves on } \mathcal{G}_{X}, \text{ coefficients in } k \\ & (\text{all stalks } S_{k}\text{-modules}). \\ & \mathbb{W} : \mathcal{D}_{T}^{b}(X;k) \to \mathcal{G}_{X^{-}} \operatorname{gMod}_{k}. \end{split}$$
Let $\mathcal{F} \text{ in } \mathcal{D}_{T}^{b}(X;k).$ • $x \in \mathcal{V} = X^{T}$ a vertex: $\mathbb{W}(\mathcal{F})^{x} := \mathbb{H}_{T}(\mathcal{F}_{x})$

• $E \subset X$ an edge: $\mathbb{W}(\mathcal{F})^E := \mathbb{H}_T(\mathcal{F}_E).$

These are graded S_k resp. $S_k/(\alpha_E)$ -modules.

Definition of the Functor $\mathbb W$

 x a fixed point in the closure of an orbit E: Then E ∪ {x} is isomorphic to C with T acting by ±α_E. The restriction morphisms on equivariant cohomology and the Basic Example yield

Definition of the Functor $\mathbb W$

 x a fixed point in the closure of an orbit E: Then E ∪ {x} is isomorphic to C with T acting by ±α_E. The restriction morphisms on equivariant cohomology and the Basic Example yield

Localization Theorem I

We impose on our T-variety X in addition to (A1a+b) the following assumptions:

(A2) Each fixed point is attractive: If x is a fixed point, there is an open neighborhood U of x in X and a 1-parameter subgroup $\chi : \mathbb{C}^* \to T$ such that

$$\lim_{z\to 0}\chi(z).u=x \quad \text{for all } u\in U.$$

- (A3a) For any $\alpha \in X^*(T)$, the unoriented moment graph \mathcal{G}_X^{α} that is obtained from \mathcal{G}_X by deleting all edges E with $k\alpha \cap k\alpha_E = 0$, is a disjoint union of moment graphs with only one or two vertices.
- (A3b) If E is a one-dimensional orbit and $n \in \mathbb{Z}$ is such that α_E is divisible by n in $X^*(T)$, then n is invertible in k.

Localization Theorem II

Theorem (Localization Theorem)

Let X be a complete normal T-variety satisfying (A1a)-(A3b) and \mathcal{F} be in $\mathcal{D}_T^b(X; k)$. If $\mathbb{H}_T(\mathcal{F})$ and $\mathbb{H}_T(\mathcal{F}_{X^T})$ are free S_k -modules, then the restriction morphism $\mathbb{H}_T(\mathcal{F}) \to \mathbb{H}_T(\mathcal{F}_{X^T})$ is injective, and

 $\mathbb{H}_{T}(\mathcal{F}) = \Gamma(\mathbb{W}(\mathcal{F}))$

as submodules of $\mathbb{H}_T(\mathcal{F}_{X^T}) = \bigoplus_{x \in X^T} \mathbb{H}_T(\mathcal{F}_x) = \bigoplus_{x \in X^T} \mathbb{W}(\mathcal{F})^x$.

Oriented Moment Graph of a stratified T-Variety I

X a T-variety satisfying conditions (A1a+b) and (A2). We assume that X is endowed with a Whitney stratification

$$X = \bigsqcup_{\lambda \in \Lambda} X_{\lambda}.$$

by T-stable locally closed subvarieties, such that the closure of each stratum is a union of strata. Assume that

(S) For each $\lambda \in \Lambda$ there is a *T*-equivariant isomorphism $X_{\lambda} \cong \mathbb{C}^{n_{\lambda}}$, where $\mathbb{C}^{n_{\lambda}}$ carries a linear *T*-action.

We obtain a bijection

$$\Lambda \xrightarrow{\sim} X^{\mathcal{T}} = \{ \text{vertices of } \mathcal{G}_X \}, \\ \lambda \mapsto x_{\lambda}.$$

Partial order on Λ :

$$\lambda \leq \mu$$
 if and only if $X_{\lambda} \subset \overline{X}_{\mu}$.

This turns $\mathcal{G}_X = (\mathcal{V}, \mathcal{E}, \alpha)$ into an ordered moment graph. If $\lambda \leq \mu$ and an edge E connects $x_{\lambda} = \lambda$ and $x_{\mu} = \mu$, we direct E as follows:

$$E: x_{\lambda} \to x_{\mu}.$$

Alexandrov^{op} topology on \mathcal{G}_X : Basis of open subsets is $\{\geq \lambda\}_{\lambda \in \Lambda}$.

Braden-MacPherson Sheaves I

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \alpha)$: finite directed moment graph over a lattice Y. k: commutative local noetherian ring. $S_k = S_k(Y \otimes_{\mathbb{Z}} k)$.

Braden-MacPherson Sheaves II

Definition

A sheaf \mathscr{B} on a directed moment graph \mathcal{G} is called a **Braden-MacPherson sheaf** or **BM-sheaf**, if it satisfies the following conditions:

- **1** \mathscr{B}^{x} is a graded-free S_k -module, for any $x \in \mathcal{V}$.
- ② For any directed edge E : x → y, the map ρ_{y,E} : ℬ^y → ℬ^E is surjective with kernel α_Eℬ^y.
- The sheaf *B* is flabby in the Alexandrov^{op} topology: For any open subset *J* of *V*, the map

$$\Gamma(\mathscr{B}) = \Gamma(\mathcal{V}; \mathscr{B}) \to \Gamma(\mathcal{J}; \mathscr{B})$$

is surjective.

• The map $\Gamma(\mathscr{B}) \to \mathscr{B}^x$ is surjective for any $x \in \mathcal{V}$.

Theorem

- For any $w \in V$ there is an up to isomorphism unique BM-sheaf $\mathscr{B}(w)$ on \mathcal{G} with the following properties:
 - $\mathscr{B}(w)$ has support in $\{\leq w\}$.
 - $\mathscr{B}(w)^w \cong S_k$.
 - $\mathscr{B}(w)$ is indecomposable in \mathcal{G}_X -gMod_k.
- Any BM-sheaf of finite type decomposes into a finite direct sum of objects of the form ℬ(w)[I], for suitable w ∈ V and I ∈ ℤ. This decomposition is unique up to permutation and isomorphism.

Parity Sheaves and Braden-MacPherson Sheaves I

k: complete local principal ideal domain.

X: complex T-variety, satisfying (A1a)-(A3b), (S).

We further assume that for each $\lambda \in \Lambda$, there is a *T*-equivariant surjective morphism (not assumed to be birational)

$$\pi_{\lambda}:\widetilde{X}_{\lambda}\to\overline{X}_{\lambda}$$

such that

- (R1) X_{λ} is a smooth projective *T*-variety;
- (R2) $(\widetilde{X}_{\lambda})^{T}$ is finite;
- (R3) the derived direct image $\pi_{\lambda*}k_{\widetilde{X}_{\lambda}}$ lies in $\mathcal{D}_{T,\Lambda}^{b}(X;k)$.

Parity Sheaves and Braden-MacPherson Sheaves II

Theorem (Fiebig, Williamson)

The functor $\mathbb{W} : \mathcal{D}^{b}_{T}(X; k) \to \mathcal{G}_{X}\text{-}\mathsf{gMod}_{k}$ restricts to a fully faithful functor

 \mathbb{W} : {parity sheaves} \rightarrow {BM-sheaves}

mapping $\mathcal{P}(\lambda)$ to $\mathscr{B}(\lambda)$.

Proof.

Let $\mathcal{P} \in \mathcal{D}_{\mathcal{T}}^{b}(X; k)$ be a parity sheaf. We check that $\mathbb{W}(\mathcal{P})$ satisfies the four defining properties of a BM-sheaf. 1: By definition, $\mathcal{P}_{X_{\lambda}}$ is a direct sum of shifted equivariant constant sheaves, and the same holds for $\mathcal{P}_{x_{\lambda}}$. This implies that $\mathbb{W}(\mathcal{P})_{x_{\lambda}} = \mathbb{H}_{\mathcal{T}}(\mathcal{P}_{x_{\lambda}})$ is graded-free. This also shows that $\mathbb{H}_{\mathcal{T}}(\mathcal{P}_{X^{\mathcal{T}}})$ is a graded-free S_k -module.

Proof continued.

3: Let $\mathcal{J} \subset \mathcal{G}$ be an open subset and $X_{\mathcal{J}}$ the corresponding open union of strata. Let $i : X \setminus X_{\mathcal{J}} \hookrightarrow X$ be the inclusion of its complement.

The "Hom(*-even, !-even)"-short exact sequence for parity sheaves with k_X the equivariant constant sheaf as its left argument is

$$0 \to \mathbb{H}_{\mathcal{T}}(i^!\mathcal{P}) \to \mathbb{H}_{\mathcal{T}}(\mathcal{P}) \to \mathbb{H}_{\mathcal{T}}(\mathcal{P}_{X_{\mathcal{T}}}) \to 0.$$

An induction on the stratification yields that $\mathbb{H}_T(\mathcal{P})$ is a free S_k -module. The Localization Theorem identifies the above epimorphism with the map

$$\Gamma(\mathbb{W}(\mathcal{P})) \to \Gamma(\mathcal{J}; \mathbb{W}(\mathcal{P})).$$

2: Let $E: x_{\mu} \to x_{\lambda}$ be a directed edge. Then the one-dimensional orbit E is contained in X_{λ} . The map

$$\rho_{\boldsymbol{x}_{\lambda},\boldsymbol{E}}:\mathbb{W}(\mathcal{P})^{\boldsymbol{x}_{\lambda}}\to\mathbb{W}(\mathcal{P})^{\boldsymbol{E}}$$

is defined by

$$\mathbb{H}_T(\mathcal{F}_{E\cup\{x\}})\to\mathbb{H}_T(\mathcal{F}_E).$$

Since \mathcal{P}_{X_λ} is a direct sum of shifted equivariant constant sheaves, we only have to prove that

$$\mathbb{H}_T(k_{E\cup\{x\}})\to\mathbb{H}_T(k_E)$$

is surjective with kernel $\alpha_E \mathbb{H}_T(k_{E \cup \{x\}})$. We have seen this in the above Basic Example.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof continued.

4: Omitted. Uses (R1)-(R3).

The fully faithfulness follows from the "Hom(*-even, !-even)"-short exact sequence for parity sheaves and an induction on the number of strata. This implies that $\mathbb{W}(\mathcal{P}(\lambda))$ is indecomposable. Hence, $\mathbb{W}(\mathcal{P}(\lambda)) \cong \mathscr{B}(\lambda)$ by considering the support.

Kazhdan-Lusztig Conjecture I

 $k = \mathbb{C}.$

- $\mathfrak{g} \supset \mathfrak{b} \supset \mathfrak{h}$: semisimple complex Lie algebra with Borel and Cartan subalgebra.
- $\Phi^+ \subset \Phi \subset \mathfrak{h}^*$: roots of \mathfrak{b} and \mathfrak{g} with respect to \mathfrak{h} .
 - W: Weyl group.
 - $\Delta(\mu)$: Verma module with highest weight $\mu \in \mathfrak{h}^*$.
 - $L(\mu)$: the simple quotient of $\Delta(\mu)$.
 - $P(\mu)$: a projective cover of $L(\mu)$ in \mathcal{O} .

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Theorem (Kazhdan-Lusztig-Conjecture)

Let $\lambda \in \mathfrak{h}^*$ be regular integral antidominant. Then

$$[\Delta(x \cdot \lambda) : L(y \cdot \lambda)] = h_{xw_0, yw_0}(1)$$

for all $x, y \in W$.

Proof.

- $S = S(\mathfrak{h})$
- $A = S_{S\mathfrak{h}}$: localization of S at the maximal ideal generated by \mathfrak{h} . \mathcal{G}^{λ} : ordered moment graph over the root lattice:
 - set of vertices: W
 - edges: $w, w' \in W$, $\alpha \in \Phi^+$:

$$w \xrightarrow{\alpha} w' \iff w = s_{\alpha} w'.$$

- ordering: $w \leq^{\lambda} w' \iff w \cdot \lambda \leq w' \cdot \lambda$. (Refines Bruhat ordering.)
- $\mathcal{G}^{\mathsf{Bruhat}}$: moment graph with the same vertices, edges and labels, but Bruhat ordering.
- $\begin{aligned} \mathscr{B}^{\operatorname{op}}(x) &: \text{ BM sheaves (with } \mathbb{C} \text{ coefficients) on } (\mathcal{G}^{\lambda})^{\operatorname{op}} \\ & \text{ and } (\mathcal{G}^{\operatorname{Bruhat}})^{\operatorname{op}}. \\ & \mathscr{B}^{\operatorname{op}}(x) \text{ has support in } \{ \geq x \}. \end{aligned}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof continued.

$$\begin{aligned} [\Delta(x \cdot \lambda) : L(y \cdot \lambda)] &= (P(y \cdot \lambda) : \Delta(x \cdot \lambda)) \\ &= (P_A(y \cdot \lambda) : \Delta_A(x \cdot \lambda)) \\ &= \operatorname{rank}_A (\mathcal{L} \mathbb{V} P_A(y \cdot \lambda))^x \\ &= \operatorname{rank}_A (\mathscr{B}^{\operatorname{op}}(y) \otimes_S A)^x \\ &= \operatorname{rank}_S \mathscr{B}^{\operatorname{op}}(y)^x \end{aligned}$$

Proof continued.

Geometry enters the game.

 $G^{\vee} \supset B^{\vee} \supset T^{\vee}$: semisimple connected complex algebraic group with Borus such that the root system of (G^{\vee}, T^{\vee}) is dual to $\Phi \subset \mathfrak{h}^*$ and such that the roots of B^{\vee} are $\Phi^{+\vee} = (\Phi^{\vee})^+$.

$$\begin{split} X &= G^{\vee}/B^{\vee}: \text{ the flag variety, considered as a } T^{\vee}\text{-variety.} \\ X_w &= B^{\vee}wB^{\vee}/B^{\vee}: \text{ the Bruhat cell associated to } w \in W. \\ X &= \bigsqcup_{w \in W} X_w: \text{ stratification into Bruhat cells.} \\ \mathcal{G}_X: \text{ associated oriented moment graph over } X^*(T^{\vee}). \\ \text{ Coincides with } \mathcal{G}^{\text{Bruhat}}. \end{split}$$

All our assumptions satisfied.

$$\mathscr{B}(x)$$
: BM-sheaves (with \mathbb{C} -coefficients) on \mathcal{G}_X .
 $\mathscr{B}(x)$ has support in $\{\leq x\}$.

Note that

$$X^*(T^{\vee})_{\mathbb{C}} = (\operatorname{Lie} T^{\vee})^* = \mathfrak{h}$$

implies

$$S(X^*(T^{\vee})_{\mathbb{C}} = S(\mathfrak{h}) = S.$$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

The isomorphism of directed moment graphs

$$(\mathcal{G}^{\mathsf{Bruhat}})^{\mathsf{op}} \xrightarrow{\sim} \mathcal{G}_X,$$

 $x \mapsto xw_0.$

identifies $\mathscr{B}^{op}(y)$ and $\mathscr{B}(yw_0)$. Hence

$$\begin{aligned} [\Delta(x \cdot \lambda) : L(y \cdot \lambda) &= \operatorname{rank}_{\mathcal{S}} \mathscr{B}^{\operatorname{op}}(y)^{\times} \\ &= \operatorname{rank}_{\mathcal{S}} \mathscr{B}(yw_0)^{xw_0} \end{aligned}$$

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

By the above Theorem $\mathbb{W}(\mathcal{P}(yw_0)) \cong \mathscr{B}(yw_0)$. Since we work with complex coefficients, we have $\mathcal{P}(yw_0) \cong \mathcal{IC}_{\mathcal{T}}(\overline{X}_{yw_0})$. Hence

$$\mathscr{B}(yw_0)^{\times w_0} \cong \mathbb{H}_T(\mathcal{P}(yw_0)_{\times w_0})$$

 $\cong \mathbb{H}_T(\mathcal{IC}_T(\overline{X}_{yw_0})_{\times w_0}).$

All these modules being S-free, we have

$$\mathbb{C} \otimes_{\mathcal{S}} \mathbb{H}_{\mathcal{T}}(\mathcal{IC}_{\mathcal{T}}(\overline{X}_{yw_0})_{xw_0}) \cong \mathbb{H}(\mathcal{IC}(\overline{X}_{yw_0})_{xw_0})$$

and finally

$$\begin{split} [\Delta(x \cdot \lambda) : L(y \cdot \lambda) &= \operatorname{rank}_{S} \mathscr{B}(yw_{0})^{xw_{0}} \\ &= \dim_{\mathbb{C}} \mathbb{H}(\mathcal{IC}(\overline{X}_{yw_{0}})_{xw_{0}}) \\ &= h_{xw_{0},yw_{0}}(1). \end{split}$$

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()~

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Many thanks to the organizers!