Computation of stalks of simple perverse sheaves on the flag variety (after MacPherson and Springer)

Simon Riche

(Université Blaise Pascal - Clermont-Ferrand)

Isle of Skye, May 27th, 2010

Table of contents

Table of contents

-

Table of contents

2 Perverse sheaves on ${\cal B}$ and the Hecke algebra

Hecke algebra

G is a complex, connected, semisimple algebraic group. B is a Borel subgroup. T is a maximal torus.

Hecke algebra

G is a complex, connected, semisimple algebraic group. *B* is a Borel subgroup. *T* is a maximal torus. $W = N_G(T)/T$ is the Weyl group. $S \subset W$ is the set of Coxeter generators defined by *B*.

Hecke algebra

G is a complex, connected, semisimple algebraic group. *B* is a Borel subgroup. *T* is a maximal torus. $W = N_G(T)/T$ is the Weyl group. $S \subset W$ is the set of Coxeter generators defined by *B*.

Definition (Hecke algebra of (W, S))

The Hecke algebra of (W, S) is

$$\mathcal{H}_W \;=\; igoplus_{w \in W} \mathbb{Z}[t,t^{-1}] \cdot \mathcal{T}_w,$$

with the multiplication given by

$$\left(\begin{array}{cc} T_v \cdot T_w = T_{vw} & \text{if } \ell(vw) = \ell(v) + \ell(w), \\ T_s T_w = (t^2 - 1)T_w + t^2 T_{sw} & \text{if } s \in S \text{ and } sw < w. \end{array} \right.$$

KL basis and KL polynomials

Kazhdan-Lusztig involution $i : \mathcal{H}_W \to \mathcal{H}_W$ is the algebra involution defined by the formulas

$$i(t) = t^{-1}, \quad i(T_w) = T_{w^{-1}}^{-1}.$$

KL basis and KL polynomials

Kazhdan-Lusztig involution $i : \mathcal{H}_W \to \mathcal{H}_W$ is the algebra involution defined by the formulas

$$i(t) = t^{-1}, \quad i(T_w) = T_{w^{-1}}^{-1}.$$

Theorem (Kazhdan-Lusztig)

For any $w \in W$, there exists a unique element $C_w \in \mathcal{H}_W$ which satisfies the following properties:

Moreover, for each $x \leq w$, there exists a polynomial $P_{x,w} \in \mathbb{Z}[q]$ (of degree $\leq \frac{1}{2}(\ell(w) - \ell(x) - 1))$ such that $Q_{x,w}(t) = P_{x,w}(t^2)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples

Example

• For
$$w = 1$$
 we have $C_1 = T_1$.

Simon Riche Perverse sheaves on the flag variety

æ

Examples

Example

- For w = 1 we have $C_1 = T_1$.
- For $s \in S$ we have $C_s = t^{-1}(1 + T_s)$. Hence $P_{1,s} = 1$.

・ロト ・ 一下・ ・ 日 ・

Examples

Example

- For w = 1 we have $C_1 = T_1$.
- For $s \in S$ we have $C_s = t^{-1}(1 + T_s)$. Hence $P_{1,s} = 1$.
- For $s \neq t$ in S we have $C_{st} = C_s C_t = t^{-2}(1 + T_s + T_t + T_{st})$.

(日) (同) (三) (

Bruhat decomposition and Schubert varieties

Bruhat decomposition:

$$\mathcal{B} := G/B = \bigsqcup_{w \in W} Y_w$$
 with $Y_w := BwB/B$.

Bruhat decomposition and Schubert varieties

Bruhat decomposition:

$$\mathcal{B} := G/B = \bigsqcup_{w \in W} Y_w$$
 with $Y_w := BwB/B$.

Schubert varieties:

$$X_w := \overline{Y_w} = \bigsqcup_{v \le w} Y_v.$$

Bruhat decomposition and Schubert varieties

Bruhat decomposition:

$$\mathcal{B} := G/B = \bigsqcup_{w \in W} Y_w$$
 with $Y_w := BwB/B$.

Schubert varieties:

$$X_w := \overline{Y_w} = \bigsqcup_{v \le w} Y_v.$$

G-equivariant versions:

$$\mathcal{B} \times \mathcal{B} = \bigsqcup_{w \in W} \mathfrak{Y}_w$$
 with $\mathfrak{Y}_w := G \cdot (B/B, wB/B)$,

$$\mathfrak{X}_{w} := \overline{\mathfrak{Y}_{w}} = \bigsqcup_{v \leq w} \mathfrak{Y}_{v}.$$

For any y, w in W and $i \in \mathbb{Z}$ we have

 $H^{i}(\mathrm{IC}(\mathfrak{X}_{w})_{(B/B, yB/B)}) \cong H^{i+\dim(\mathcal{B})}(\mathrm{IC}(X_{w})_{yB/B}).$

< /₽ > < E >

For any y, w in W and $i \in \mathbb{Z}$ we have

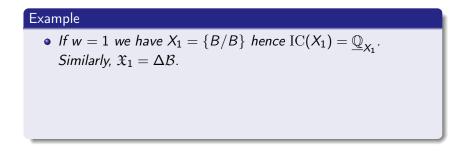
$$H^{i}(\mathrm{IC}(\mathfrak{X}_{w})_{(B/B,yB/B)}) \cong H^{i+\dim(\mathcal{B})}(\mathrm{IC}(X_{w})_{yB/B}).$$

We are interested in the computation of the dimension of these vector spaces.

For any y, w in W and $i \in \mathbb{Z}$ we have

$$H^{i}(\mathrm{IC}(\mathfrak{X}_{w})_{(B/B,yB/B)}) \cong H^{i+\dim(\mathcal{B})}(\mathrm{IC}(X_{w})_{yB/B}).$$

We are interested in the computation of the dimension of these vector spaces.



 $\begin{array}{c} \hline \textbf{Reminder and notation} \\ \textbf{Perverse sheaves on \mathcal{B} and the Hecke algebra} \\ \hline \textbf{Examples} \end{array}$

For any y, w in W and $i \in \mathbb{Z}$ we have

$$H^{i}(\mathrm{IC}(\mathfrak{X}_{w})_{(B/B,yB/B)}) \cong H^{i+\dim(\mathcal{B})}(\mathrm{IC}(X_{w})_{yB/B}).$$

We are interested in the computation of the dimension of these vector spaces.

Example

- If w = 1 we have $X_1 = \{B/B\}$ hence $IC(X_1) = \underline{\mathbb{Q}}_{X_1}$. Similarly, $\mathfrak{X}_1 = \Delta \mathcal{B}$.
- If s ∈ S we have X_s = P_s/B ≅ P¹, hence IC(X_s) = Q_{X_s}[1]. Similarly, X_s = B ×_{P_s} B.

For any y, w in W and $i \in \mathbb{Z}$ we have

$$H^{i}(\mathrm{IC}(\mathfrak{X}_{w})_{(B/B,yB/B)}) \cong H^{i+\dim(\mathcal{B})}(\mathrm{IC}(X_{w})_{yB/B}).$$

We are interested in the computation of the dimension of these vector spaces.

Example

- If w = 1 we have $X_1 = \{B/B\}$ hence $IC(X_1) = \underline{\mathbb{Q}}_{X_1}$. Similarly, $\mathfrak{X}_1 = \Delta \mathcal{B}$.
- If s ∈ S we have X_s = P_s/B ≅ P¹, hence IC(X_s) = Q_{X_s}[1]. Similarly, X_s = B ×_{P_s} B.
- For $s \neq t$ in S, X_{st} is smooth, hence $IC(X_{st}) = \underline{\mathbb{Q}}_{X_{st}}[2]$.

Bott-Samelson(-Demazure-Hansen) resolutions

Let $w \in W$, and let $w = s_1 \cdots s_n$ be a reduced decomposition.

$$BS_{(s_1,\cdots,s_n)} := P_{s_1} \times^B P_{s_2} \times^B \cdots \times^B P_{s_n}/B.$$
$$\varpi_{(s_1,\cdots,s_n)} : \begin{cases} BS_{(s_1,\cdots,s_n)} \to \mathcal{B}\\ [p_1:\cdots:p_nB/B] \mapsto p_1\cdots p_nB/B \end{cases}$$

Bott-Samelson(-Demazure-Hansen) resolutions

Let $w \in W$, and let $w = s_1 \cdots s_n$ be a reduced decomposition.

$$BS_{(s_1,\cdots,s_n)} := P_{s_1} \times^B P_{s_2} \times^B \cdots \times^B P_{s_n}/B.$$
$$\varpi_{(s_1,\cdots,s_n)} : \begin{cases} BS_{(s_1,\cdots,s_n)} \to \mathcal{B}\\ [p_1:\cdots:p_nB/B] \mapsto p_1\cdots p_nB/B \end{cases}$$

G-equivariant versions:

$$\mathfrak{BG}_{(\mathfrak{s}_1,\cdots,\mathfrak{s}_n)} := \mathcal{B} \times_{\mathcal{P}_{\mathfrak{s}_1}} \cdots \times_{\mathcal{P}_{\mathfrak{s}_n}} \mathcal{B} \cong \mathfrak{X}_{\mathfrak{s}_1} \times_{\mathcal{B}} \cdots \times_{\mathcal{B}} \mathfrak{X}_{\mathfrak{s}_n}.$$

$$\pi_{(s_1,\cdots,s_n)}: \begin{cases} \mathfrak{BG}_{(s_1,\cdots,s_n)} & \to & \mathcal{B} \times \mathcal{B} \\ (g_0 B/B,\cdots,g_n B/B) & \mapsto & (g_0 B/B,g_n B/B) \end{cases}$$

Perverse sheaves on $\mathcal{B} \times \mathcal{B}$

 $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$: bounded derived category of sheaves of \mathbb{Q} -vector spaces on $\mathcal{B} \times \mathcal{B}$, constructible with respect to the stratification \mathcal{S} by *G*-orbits.

Notation: $\mathcal{A}_w := \mathcal{A}_{(B/B, wB/B)}$.

Perverse sheaves on $\mathcal{B} \times \mathcal{B}$

 $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$: bounded derived category of sheaves of \mathbb{Q} -vector spaces on $\mathcal{B} \times \mathcal{B}$, constructible with respect to the stratification \mathcal{S} by G-orbits.

Notation: $\mathcal{A}_w := \mathcal{A}_{(B/B, wB/B)}$.

For \mathcal{A} in $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$, consider $h(\mathcal{A}) \in \mathcal{H}_W$ defined by the formula:

$$h(\mathcal{A}) = \sum_{w \in W} (\sum_{i \in \mathbb{Z}} \dim H^i(\mathcal{A}_w)t^i) \cdot T_w.$$

Perverse sheaves on $\mathcal{B} \times \mathcal{B}$

 $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$: bounded derived category of sheaves of \mathbb{Q} -vector spaces on $\mathcal{B} \times \mathcal{B}$, constructible with respect to the stratification \mathcal{S} by G-orbits.

Notation: $\mathcal{A}_w := \mathcal{A}_{(B/B, wB/B)}$.

For \mathcal{A} in $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$, consider $h(\mathcal{A}) \in \mathcal{H}_W$ defined by the formula:

$$h(\mathcal{A}) = \sum_{w \in W} \left(\sum_{i \in \mathbb{Z}} \dim H^i(\mathcal{A}_w) t^i \right) \cdot T_w.$$

Convolution product: for $\mathcal{A}_1, \mathcal{A}_2$ in $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$,

$$\mathcal{A}_1 \star \mathcal{A}_2 := (p_{1,3})_* \big(p_{1,2}^* \mathcal{A}_1 \otimes_{\mathbb{Q}} p_{2,3}^* \mathcal{A}_2 \big) \quad \in D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B}).$$

Perverse sheaves on $\mathcal{B} \times \mathcal{B}$

 $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$: bounded derived category of sheaves of \mathbb{Q} -vector spaces on $\mathcal{B} \times \mathcal{B}$, constructible with respect to the stratification \mathcal{S} by G-orbits.

Notation: $\mathcal{A}_w := \mathcal{A}_{(B/B, wB/B)}$.

For \mathcal{A} in $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$, consider $h(\mathcal{A}) \in \mathcal{H}_W$ defined by the formula:

$$h(\mathcal{A}) = \sum_{w \in W} (\sum_{i \in \mathbb{Z}} \dim H^i(\mathcal{A}_w)t^i) \cdot T_w.$$

Convolution product: for $\mathcal{A}_1, \mathcal{A}_2$ in $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$,

$$\mathcal{A}_1 \star \mathcal{A}_2 := (p_{1,3})_* \big(p_{1,2}^* \mathcal{A}_1 \otimes_{\mathbb{Q}} p_{2,3}^* \mathcal{A}_2 \big) \quad \in D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B}).$$

This product is associative, the unit is $\mathbb{Q}_{\mathfrak{X}_1}$.

Let \mathcal{A} be in $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$, with $\mathcal{H}^i(\mathcal{A}) = 0$ if *i* is odd (resp. even), and let $s \in S$. Then $\underline{\mathbb{Q}}_{\mathfrak{X}_e} \star \mathcal{A}$ has the same property, and

$$h(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}) = (T_{s}+1) \cdot h(\mathcal{A}).$$

→ < Ξ →</p>

Let \mathcal{A} be in $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$, with $\mathcal{H}^i(\mathcal{A}) = 0$ if *i* is odd (resp. even), and let $s \in S$. Then $\underline{\mathbb{Q}}_{\mathfrak{X}_s} \star \mathcal{A}$ has the same property, and

$$h(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}) = (T_{s}+1) \cdot h(\mathcal{A}).$$

Proof:

$$(T_s+1) \cdot h(\mathcal{A}) = \sum_{sw < w} \left(\sum_{i \in \mathbb{Z}} \dim H^i(\mathcal{A}_w) t^i \right) \cdot \left((t^2-1) T_w + t^2 T_{sw} \right)$$

Let \mathcal{A} be in $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$, with $\mathcal{H}^i(\mathcal{A}) = 0$ if *i* is odd (resp. even), and let $s \in S$. Then $\underline{\mathbb{Q}}_{\mathfrak{X}_s} \star \mathcal{A}$ has the same property, and

$$h(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}) = (T_{s}+1) \cdot h(\mathcal{A}).$$

Proof:

$$(T_{s}+1) \cdot h(\mathcal{A}) = \sum_{sw < w} \left(\sum_{i \in \mathbb{Z}} \dim H^{i}(\mathcal{A}_{w})t^{i} \right) \cdot \left((t^{2}-1)T_{w} + t^{2}T_{sw} \right)$$
$$+ \sum_{sw > w} \left(\sum_{i \in \mathbb{Z}} \dim H^{i}(\mathcal{A}_{w})t^{i} \right) \cdot T_{sw} + \sum_{w \in W} \left(\sum_{i \in \mathbb{Z}} \dim H^{i}(\mathcal{A}_{w})t^{i} \right) \cdot T_{w}$$

Let \mathcal{A} be in $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$, with $\mathcal{H}^i(\mathcal{A}) = 0$ if i is odd (resp. even), and let $s \in S$. Then $\underline{\mathbb{Q}}_{\mathfrak{X}_s} \star \mathcal{A}$ has the same property, and

$$h(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}) = (T_{s}+1) \cdot h(\mathcal{A}).$$

Proof:

$$(T_{s}+1) \cdot h(\mathcal{A}) = \sum_{sw < w} \left(\sum_{i \in \mathbb{Z}} \dim H^{i}(\mathcal{A}_{w})t^{i} \right) \cdot \left((t^{2}-1)T_{w} + t^{2}T_{sw} \right)$$
$$+ \sum_{sw > w} \left(\sum_{i \in \mathbb{Z}} \dim H^{i}(\mathcal{A}_{w})t^{i} \right) \cdot T_{sw} + \sum_{w \in W} \left(\sum_{i \in \mathbb{Z}} \dim H^{i}(\mathcal{A}_{w})t^{i} \right) \cdot T_{w}$$
$$= \sum_{sw < w} \left(\sum_{i \in \mathbb{Z}} (\dim H^{i}(\mathcal{A}_{sw}) + \dim H^{i-2}(\mathcal{A}_{w}))t^{i} \right) \cdot T_{w}$$

Let \mathcal{A} be in $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$, with $\mathcal{H}^i(\mathcal{A}) = 0$ if *i* is odd (resp. even), and let $s \in S$. Then $\underline{\mathbb{Q}}_{\mathfrak{X}_s} \star \mathcal{A}$ has the same property, and

$$h(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}) = (T_{s}+1) \cdot h(\mathcal{A}).$$

Proof:

$$(T_{s}+1)\cdot h(\mathcal{A}) = \sum_{sw < w} \left(\sum_{i \in \mathbb{Z}} \dim H^{i}(\mathcal{A}_{w})t^{i} \right) \cdot \left((t^{2}-1)T_{w} + t^{2}T_{sw} \right)$$

+
$$\sum_{sw > w} \left(\sum_{i \in \mathbb{Z}} \dim H^{i}(\mathcal{A}_{w})t^{i} \right) \cdot T_{sw} + \sum_{w \in W} \left(\sum_{i \in \mathbb{Z}} \dim H^{i}(\mathcal{A}_{w})t^{i} \right) \cdot T_{w}$$

=
$$\sum_{sw < w} \left(\sum_{i \in \mathbb{Z}} (\dim H^{i}(\mathcal{A}_{sw}) + \dim H^{i-2}(\mathcal{A}_{w}))t^{i} \right) \cdot T_{w}$$

+
$$\sum_{sw > w} \left(\sum_{i \in \mathbb{Z}} (\dim H^{i}(\mathcal{A}_{w}) + \dim H^{i-2}(\mathcal{A}_{sw}))t^{i} \right) \cdot T_{w}.$$

So, we have to prove that

$$\dim H^{i}((\underline{\mathbb{Q}}_{\mathfrak{X}_{s}}\star\mathcal{A})_{w}) = \begin{cases} \dim H^{i}(\mathcal{A}_{sw}) + \dim H^{i-2}(\mathcal{A}_{w}) & \text{if } sw < w, \\ \dim H^{i}(\mathcal{A}_{w}) + \dim H^{i-2}(\mathcal{A}_{sw}) & \text{if } sw > w. \end{cases}$$

æ

< /i>

So, we have to prove that

$$\dim H^{i}((\underline{\mathbb{Q}}_{\mathfrak{X}_{s}}\star\mathcal{A})_{w}) = \begin{cases} \dim H^{i}(\mathcal{A}_{sw}) + \dim H^{i-2}(\mathcal{A}_{w}) & \text{if } sw < w, \\ \dim H^{i}(\mathcal{A}_{w}) + \dim H^{i-2}(\mathcal{A}_{sw}) & \text{if } sw > w. \end{cases}$$

Assume sw < w. Let C be the restriction of $p_{1,2}^* \underline{\mathbb{Q}}_{\mathfrak{X}_s} \otimes_{\mathbb{Q}} p_{2,3}^* \mathcal{A}$ to

$$Z_w^s := \{(B/B, gB/B, wB/B), g \in P_s\} \cong \mathbb{P}^1.$$

We have $H^n((\underline{\mathbb{Q}}_{\mathfrak{X}_s} \star \mathcal{A})_w) \cong H^n(Z^s_w, \mathcal{C}).$

▶ < ∃ >

So, we have to prove that

$$\dim H^{i}((\underline{\mathbb{Q}}_{\mathfrak{X}_{s}}\star\mathcal{A})_{w}) = \begin{cases} \dim H^{i}(\mathcal{A}_{sw}) + \dim H^{i-2}(\mathcal{A}_{w}) & \text{if } sw < w, \\ \dim H^{i}(\mathcal{A}_{w}) + \dim H^{i-2}(\mathcal{A}_{sw}) & \text{if } sw > w. \end{cases}$$

Assume sw < w. Let C be the restriction of $p_{1,2}^* \underline{\mathbb{Q}}_{\mathfrak{X}_s} \otimes_{\mathbb{Q}} p_{2,3}^* \mathcal{A}$ to

$$Z^s_w := \{(B/B, gB/B, wB/B), g \in P_s\} \cong \mathbb{P}^1.$$

We have $H^n((\underline{\mathbb{Q}}_{\mathfrak{X}_s} \star \mathcal{A})_w) \cong H^n(Z^s_w, \mathcal{C}).$ We have $(gB/B, wB/B) \in \mathfrak{Y}_{sw}$ iff gB = sB. Let

 $i: \{(B/B, sB/B, wB/B)\} \hookrightarrow Z^s_w$

be the inclusion, and let j be the inclusion of the complement.

Consider the exact triangle $j_!j^*\mathcal{C} \to \mathcal{C} \to i_*i^*\mathcal{C} \xrightarrow{+1}$, and the associated long exact sequence

$$\cdots \to H^n_c(j_!j^*\mathcal{C}) \to H^n_c(\mathcal{C}) \to H^n_c(i_*i^*\mathcal{C}) \to H^{n+1}_c(j_!j^*\mathcal{C}) \to \cdots$$

Consider the exact triangle $j_! j^* \mathcal{C} \to \mathcal{C} \to i_* i^* \mathcal{C} \xrightarrow{+1}$, and the associated long exact sequence

$$\cdots \to H^n_c(j_!j^*\mathcal{C}) \to H^n_c(\mathcal{C}) \to H^n_c(i_*i^*\mathcal{C}) \to H^{n+1}_c(j_!j^*\mathcal{C}) \to \cdots$$

We have

$$H^n_c(i_*i^*\mathcal{C}) \cong H^n(\mathcal{A}_{sw}), \quad H^n_c(j_!j^*\mathcal{C}) \cong H^{n-2}(\mathcal{A}_w).$$

(Because j^*C has constant cohomology, with fiber \mathcal{A}_w , and $H^*_c(\mathbb{C}, \underline{\mathbb{Q}}) = \mathbb{Q}[-2]$.)

Consider the exact triangle $j_! j^* \mathcal{C} \to \mathcal{C} \to i_* i^* \mathcal{C} \xrightarrow{+1}$, and the associated long exact sequence

$$\cdots \to H^n_c(j_!j^*\mathcal{C}) \to H^n_c(\mathcal{C}) \to H^n_c(i_*i^*\mathcal{C}) \to H^{n+1}_c(j_!j^*\mathcal{C}) \to \cdots$$

We have

$$H^n_c(i_*i^*\mathcal{C}) \cong H^n(\mathcal{A}_{sw}), \quad H^n_c(j_!j^*\mathcal{C}) \cong H^{n-2}(\mathcal{A}_w).$$

(Because j^*C has constant cohomology, with fiber \mathcal{A}_w , and $H^*_c(\mathbb{C}, \underline{\mathbb{Q}}) = \mathbb{Q}[-2]$.) Hence the long exact sequence splits into short exact sequences, and

$$\dim H^n((\underline{\mathbb{Q}}_{\mathfrak{X}_{\mathfrak{s}}}\star\mathcal{A})_w) \ = \ \dim H^n(\mathcal{A}_{\mathfrak{s} w}) + \dim H^{n-2}(\mathcal{A}_w).$$

Consider the exact triangle $j_! j^* \mathcal{C} \to \mathcal{C} \to i_* i^* \mathcal{C} \xrightarrow{+1}$, and the associated long exact sequence

$$\cdots \to H^n_c(j_!j^*\mathcal{C}) \to H^n_c(\mathcal{C}) \to H^n_c(i_*i^*\mathcal{C}) \to H^{n+1}_c(j_!j^*\mathcal{C}) \to \cdots$$

We have

$$H^n_c(i_*i^*\mathcal{C}) \cong H^n(\mathcal{A}_{sw}), \quad H^n_c(j_!j^*\mathcal{C}) \cong H^{n-2}(\mathcal{A}_w).$$

(Because j^*C has constant cohomology, with fiber \mathcal{A}_w , and $H^*_c(\mathbb{C}, \underline{\mathbb{Q}}) = \mathbb{Q}[-2]$.) Hence the long exact sequence splits into short exact sequences, and

$$\dim H^n\big((\underline{\mathbb{Q}}_{\mathfrak{X}_{\mathfrak{s}}}\star\mathcal{A})_w\big) = \dim H^n(\mathcal{A}_{\mathfrak{s}w}) + \dim H^{n-2}(\mathcal{A}_w).$$

The case sw > w is similar. \Box

Computation of fibers

Theorem

For $w \in W$, we have

$$h(\mathrm{IC}(\mathfrak{X}_w)) = t^{-\dim \mathcal{B}} \cdot C_w.$$

Hence for $y \le w$ and $i \in \mathbb{Z}$, dim $(H^i(\operatorname{IC}(X_w)_y))$ is zero if $i + \ell(w)$ is odd, and is the coefficient of $q^{(i+\ell(w))/2}$ in $P_{y,w}(q)$ if $i + \ell(w)$ is even.

4 A D A D A D A

Computation of fibers

Theorem

For $w \in W$, we have

$$h(\mathrm{IC}(\mathfrak{X}_w)) = t^{-\dim \mathcal{B}} \cdot C_w.$$

Hence for $y \le w$ and $i \in \mathbb{Z}$, dim $(H^i(\operatorname{IC}(X_w)_y))$ is zero if $i + \ell(w)$ is odd, and is the coefficient of $q^{(i+\ell(w))/2}$ in $P_{y,w}(q)$ if $i + \ell(w)$ is even.

Proof: By induction on $\ell(w)$.

4 A D A D A D A

Computation of fibers

Theorem

For $w \in W$, we have

$$h(\mathrm{IC}(\mathfrak{X}_w)) = t^{-\dim \mathcal{B}} \cdot C_w.$$

Hence for $y \le w$ and $i \in \mathbb{Z}$, dim $(H^i(\operatorname{IC}(X_w)_y))$ is zero if $i + \ell(w)$ is odd, and is the coefficient of $q^{(i+\ell(w))/2}$ in $P_{y,w}(q)$ if $i + \ell(w)$ is even.

Proof: By induction on $\ell(w)$.

Let $w = s_1 \cdots s_n$ be a reduced decomposition. Consider the resolution

$$\pi_{(s_1,\cdots,s_n)}:\mathfrak{BS}_{(s_1,\cdots,s_n)}\to\mathfrak{X}_w.$$

A (1) > (1) > (1)

$$(\pi_{(s_1,\cdots,s_n)})_*\underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_1}} \star \cdots \star \underline{\mathbb{Q}}_{\mathfrak{X}_{s_n}}.$$

æ

$$(\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_1}} \star \cdots \star \underline{\mathbb{Q}}_{\mathfrak{X}_{s_n}}.$$

Indeed,

$$\mathfrak{BG}_{(s_1,\cdots,s_n)}\cong\mathfrak{BG}_{(s_1,\cdots,s_{n-1})} imes_{\mathcal{B}}\mathfrak{X}_{s_n}.$$

(日) (同) (三)

문 문 문

$$(\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{BG}_{(s_1,\cdots,s_n)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_1}} \star \cdots \star \underline{\mathbb{Q}}_{\mathfrak{X}_{s_n}}.$$

Indeed,

$$\mathfrak{BS}_{(s_1,\cdots,s_n)}\cong\mathfrak{BS}_{(s_1,\cdots,s_{n-1})} imes_{\mathcal{B}}\mathfrak{X}_{s_n}.$$

Hence

$$(\pi_{(s_1,\cdots,s_n)})_*\underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}} \cong (p_{1,n+1})_*(\underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_{n-1})}\times\mathcal{B}}\otimes_{\mathbb{Q}}\underline{\mathbb{Q}}_{\mathcal{B}^{n-1}\times\mathfrak{X}_{s_n}})$$

æ

$$(\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{BG}_{(s_1,\cdots,s_n)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_1}} \star \cdots \star \underline{\mathbb{Q}}_{\mathfrak{X}_{s_n}}.$$

Indeed,

$$\mathfrak{BS}_{(s_1,\cdots,s_n)}\cong\mathfrak{BS}_{(s_1,\cdots,s_{n-1})} imes_{\mathcal{B}}\mathfrak{X}_{s_n}.$$

Hence

$$(\pi_{(s_1,\dots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{BS}_{(s_1,\dots,s_n)}} \cong (\rho_{1,n+1})_* (\underline{\mathbb{Q}}_{\mathfrak{BS}_{(s_1,\dots,s_{n-1})} \times \mathcal{B}} \otimes_{\mathbb{Q}} \underline{\mathbb{Q}}_{\mathcal{B}^{n-1} \times \mathfrak{X}_{s_n}})$$
$$\cong (\rho_{1,3})_* ((\rho_{1,n,n+1})_* \underline{\mathbb{Q}}_{\mathfrak{BS}_{(s_1,\dots,s_{n-1})} \times \mathcal{B}} \otimes_{\mathbb{Q}} \underline{\mathbb{Q}}_{\mathcal{B} \times \mathfrak{X}_{s_n}})$$

æ

$$(\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{BS}_{(s_1,\cdots,s_n)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_1}} \star \cdots \star \underline{\mathbb{Q}}_{\mathfrak{X}_{s_n}}.$$

Indeed,

$$\mathfrak{BS}_{(s_1,\cdots,s_n)}\cong\mathfrak{BS}_{(s_1,\cdots,s_{n-1})} imes_{\mathcal{B}}\mathfrak{X}_{s_n}$$

Hence

$$\begin{aligned} (\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}} &\cong (p_{1,n+1})_* \big(\underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_{n-1})} \times \mathcal{B}} \otimes_{\mathbb{Q}} \underline{\mathbb{Q}}_{\mathcal{B}^{n-1} \times \mathfrak{X}_{s_n}} \big) \\ &\cong (p_{1,3})_* \big((p_{1,n,n+1})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_{n-1})} \times \mathcal{B}} \otimes_{\mathbb{Q}} \underline{\mathbb{Q}}_{\mathcal{B} \times \mathfrak{X}_{s_n}} \big) \\ &\cong \big((\pi_{(s_1,\cdots,s_{n-1})})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_{n-1})} \big) \times \underline{\mathbb{Q}}_{\mathfrak{X}_{s_n}}. \end{aligned}$$

æ

$$(\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{BG}_{(s_1,\cdots,s_n)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_1}} \star \cdots \star \underline{\mathbb{Q}}_{\mathfrak{X}_{s_n}}.$$

Indeed,

$$\mathfrak{BS}_{(s_1,\cdots,s_n)}\cong\mathfrak{BS}_{(s_1,\cdots,s_{n-1})} imes_{\mathcal{B}}\mathfrak{X}_{s_n}.$$

Hence

$$\begin{aligned} (\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{BS}_{(s_1,\cdots,s_n)}} &\cong (p_{1,n+1})_* \big(\underline{\mathbb{Q}}_{\mathfrak{BS}_{(s_1,\cdots,s_{n-1})} \times \mathcal{B}} \otimes \underline{\mathbb{Q}}_{\underline{\mathbb{Q}}_{\beta^{n-1} \times \mathfrak{X}_{s_n}}} \big) \\ &\cong (p_{1,3})_* \big((p_{1,n,n+1})_* \underline{\mathbb{Q}}_{\mathfrak{BS}_{(s_1,\cdots,s_{n-1})} \times \mathcal{B}} \otimes \underline{\mathbb{Q}}_{\underline{\mathbb{Q}}_{\beta \times \mathfrak{X}_{s_n}}} \big) \\ &\cong \big((\pi_{(s_1,\cdots,s_{n-1})})_* \underline{\mathbb{Q}}_{\mathfrak{BS}_{(s_1,\cdots,s_{n-1})}} \big) \star \underline{\mathbb{Q}}_{\mathfrak{X}_{s_n}}. \end{aligned}$$

The claim follows by induction.

$$h((\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}}[n]) = t^{-n}(1+T_{s_1})\cdots(1+T_{s_n})$$
$$= C_{s_1}\cdots C_{s_n}.$$

æ

< 同 ト < 三 ト

$$h((\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}}[n]) = t^{-n}(1+T_{s_1})\cdots(1+T_{s_n})$$
$$= C_{s_1}\cdots C_{s_n}.$$

In particular, this element of \mathcal{H}_W is stable under *i*.

$$h((\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}}[n]) = t^{-n}(1+T_{s_1})\cdots(1+T_{s_n})$$
$$= C_{s_1}\cdots C_{s_n}.$$

In particular, this element of \mathcal{H}_W is stable under *i*. By the Decomposition Theorem,

$$(\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}}[n+\dim \mathcal{B}] \cong \bigoplus_{y\leq w} \operatorname{IC}(\mathfrak{X}_y) \otimes_{\mathbb{Q}} V_y,$$

where the V_y 's are graded finite dimensional \mathbb{Q} -vector space, with $V_w = \mathbb{Q}$.

$$h((\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}}[n]) = t^{-n}(1+T_{s_1})\cdots(1+T_{s_n})$$
$$= C_{s_1}\cdots C_{s_n}.$$

In particular, this element of \mathcal{H}_W is stable under *i*. By the Decomposition Theorem,

$$(\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}}[n+\dim \mathcal{B}] \cong \bigoplus_{y\leq w} \operatorname{IC}(\mathfrak{X}_y) \otimes_{\mathbb{Q}} V_y,$$

where the V_y 's are graded finite dimensional \mathbb{Q} -vector space, with $V_w = \mathbb{Q}$. This object is stable under \mathbb{D} , hence $\dim(V_v^n) = \dim(V_v^{-n})$.

$$\begin{split} h((\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}}[n+\dim\mathcal{B}]) \\ &= h(\mathrm{IC}(\mathfrak{X}_w)) + \sum_{y < w} Q_y(t) h(\mathrm{IC}(\mathfrak{X}_y)), \end{split}$$

where Q_y is a Laurent polynomial such that $Q_y(t) = Q_y(t^{-1})$.

▶ ∢ ≣ ▶

$$\begin{split} h((\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{B}\mathfrak{S}_{(s_1,\cdots,s_n)}}[n+\dim\mathcal{B}]) \\ &= h(\mathrm{IC}(\mathfrak{X}_w)) + \sum_{y < w} Q_y(t)h(\mathrm{IC}(\mathfrak{X}_y)), \end{split}$$

where Q_y is a Laurent polynomial such that $Q_y(t) = Q_y(t^{-1})$.

By induction, $h(IC(\mathfrak{X}_y)) = t^{-\dim \mathcal{B}}C_y$ for any y < w.

▶ < Ξ ▶</p>

$$\begin{split} h((\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{BG}_{(s_1,\cdots,s_n)}}[n+\dim\mathcal{B}]) \\ &= h(\mathrm{IC}(\mathfrak{X}_w)) + \sum_{y < w} Q_y(t) h(\mathrm{IC}(\mathfrak{X}_y)), \end{split}$$

where Q_y is a Laurent polynomial such that $Q_y(t) = Q_y(t^{-1})$.

By induction, $h(\operatorname{IC}(\mathfrak{X}_y)) = t^{-\dim \mathcal{B}} C_y$ for any y < w. In particular, $t^{\dim \mathcal{B}} \cdot \sum_{y < w} Q_y(t) h(\operatorname{IC}(\mathfrak{X}_y))$ is stable under *i*.

$$\begin{split} h((\pi_{(s_1,\cdots,s_n)})_* \underline{\mathbb{Q}}_{\mathfrak{BG}_{(s_1,\cdots,s_n)}}[n+\dim\mathcal{B}]) \\ &= h(\mathrm{IC}(\mathfrak{X}_w)) + \sum_{y < w} Q_y(t) h(\mathrm{IC}(\mathfrak{X}_y)), \end{split}$$

where Q_y is a Laurent polynomial such that $Q_y(t) = Q_y(t^{-1})$.

By induction, $h(IC(\mathfrak{X}_y)) = t^{-\dim \mathcal{B}} C_y$ for any y < w. In particular, $t^{\dim \mathcal{B}} \cdot \sum_{y < w} Q_y(t) h(IC(\mathfrak{X}_y))$ is stable under *i*.

Hence $t^{\dim \mathcal{B}}h(\mathrm{IC}(\mathfrak{X}_w))$ is stable under *i*.

$$H^{i-\dim \mathcal{B}}(\mathrm{IC}(\mathfrak{X}_w)_y)=0 \quad ext{if } i \notin \llbracket -\ell(w), -\ell(y)-1
rbracket$$

by the support and co-support conditions on IC sheaves.

$$H^{i-\dim\mathcal{B}}(\mathrm{IC}(\mathfrak{X}_w)_y)=0 \quad ext{if } i \notin \llbracket -\ell(w), -\ell(y)-1
rbracket$$

by the support and co-support conditions on IC sheaves.

Hence $t^{\dim \mathcal{B}} h(\mathrm{IC}(\mathfrak{X}_w))$ satisfies the conditions which characterize C_w .

$$H^{i-\dim\mathcal{B}}(\mathrm{IC}(\mathfrak{X}_w)_y)=0 \quad ext{if } i \notin \llbracket -\ell(w), -\ell(y)-1
rbracket$$

by the support and co-support conditions on IC sheaves.

Hence $t^{\dim \mathcal{B}} h(\mathrm{IC}(\mathfrak{X}_w))$ satisfies the conditions which characterize C_w .

Hence $h(\mathrm{IC}(\mathfrak{X}_w)) = t^{-\dim \mathcal{B}} C_w$. \Box

$$H^{i-\dim\mathcal{B}}(\mathrm{IC}(\mathfrak{X}_w)_y)=0 \quad ext{if } i \notin \llbracket -\ell(w), -\ell(y)-1
rbracket$$

by the support and co-support conditions on IC sheaves.

Hence $t^{\dim \mathcal{B}} h(\mathrm{IC}(\mathfrak{X}_w))$ satisfies the conditions which characterize C_w .

Hence $h(\mathrm{IC}(\mathfrak{X}_w)) = t^{-\dim \mathcal{B}} C_w$. \Box

Corollary

The coefficients of $P_{y,w}$ are non-negative.

 $\begin{array}{c} \mbox{Reminder and notation} \\ \mbox{Perverse sheaves on \mathcal{B} and the Hecke algebra} \\ \mbox{Examples} \end{array}$

Example: type B₂

Consider $w = s_1 s_2 s_1$, and the resolution

$$\pi:\mathfrak{BG}_{(s_1,s_2,s_1)}\to\mathfrak{X}_w.$$

< /i>

Example: type B₂

Consider $w = s_1 s_2 s_1$, and the resolution

$$\pi:\mathfrak{BG}(\mathfrak{s}_{(\mathfrak{s}_1,\mathfrak{s}_2,\mathfrak{s}_1)}\to\mathfrak{X}_w.$$

 π is an isomorphism over $\mathfrak{X}_w - \mathfrak{X}_{s_1}$, and the non trivial fibers are isomorphic to \mathbb{P}^1 . For example we have

$$\pi^{-1}(B/B,B/B) = \{(B/B,gB/B,gB/B,B/B), g \in P_{\mathfrak{s}_1}\}.$$

b) 4 (E) b)

Example: type B₂

Consider $w = s_1 s_2 s_1$, and the resolution

$$\pi:\mathfrak{BG}(\mathfrak{s}_{(\mathfrak{s}_1,\mathfrak{s}_2,\mathfrak{s}_1)}\to\mathfrak{X}_w.$$

 π is an isomorphism over $\mathfrak{X}_w - \mathfrak{X}_{s_1}$, and the non trivial fibers are isomorphic to \mathbb{P}^1 . For example we have

$$\pi^{-1}(B/B, B/B) = \{(B/B, gB/B, gB/B, B/B), g \in P_{s_1}\}.$$

We have

$$H^*(\mathbb{P}^1) = \mathbb{Q} \oplus \mathbb{Q}[-2].$$

・ 同 ト ・ 三 ト ・

The fibers of $\pi_* \mathrm{IC}(\mathfrak{BS}) = \pi_* \underline{\mathbb{Q}}_{\mathfrak{BS}}[7]$ are given by:

$\dim(\mathfrak{X}_v)$	v	-7	-6	-5
7	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₁	\mathbb{Q}	0	0
6	<i>s</i> ₂ <i>s</i> ₁	\mathbb{Q}	0	0
6	<i>s</i> ₁ <i>s</i> ₂	\mathbb{Q}	0	0
5	s 2	Q	0	0
5	<i>s</i> ₁	\mathbb{Q}	0	Q
4	1	Q	0	Q

э

< /₽ > < E >

The fibers of $\pi_* \mathrm{IC}(\mathfrak{BS}) = \pi_* \underline{\mathbb{Q}}_{\mathfrak{BS}}[7]$ are given by:

$\dim(\mathfrak{X}_v)$	V	-7	-6	-5
7	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₁	\mathbb{Q}	0	0
6	<i>s</i> ₂ <i>s</i> ₁	\mathbb{Q}	0	0
6	<i>s</i> ₁ <i>s</i> ₂	\mathbb{Q}	0	0
5	s 2	Q	0	0
5	<i>s</i> ₁	Q	0	Q
4	1	Q	0	Q

Hence

$$\pi_*\mathrm{IC}(\mathfrak{BS}) \;\cong\; \mathrm{IC}(\mathfrak{X}_{s_1s_2s_1}) \oplus \mathrm{IC}(\mathfrak{X}_{s_1}).$$

Moreover,

$$\mathrm{IC}(\mathfrak{X}_{s_1s_2s_1}) = \underline{\mathbb{Q}}_{\mathfrak{X}_{s_1s_2s_1}}[7].$$

< A

▶ ∢ ≣ ▶

$$C_{s_1}C_{s_2}C_{s_1} = t^{-3}(1+T_{s_1})(1+T_{s_2})(1+T_{s_1})$$

(日) (同) (三)

3 k 3

$$C_{s_1}C_{s_2}C_{s_1} = t^{-3}(1+T_{s_1})(1+T_{s_2})(1+T_{s_1})$$

= $t^{-3}(T_{s_1s_2s_1}+T_{s_1s_2}+T_{s_2s_1}+T_{s_2}+(t^2+1)T_{s_1}+(t^2+1)T_1)$

▲ 同 ▶ | ▲ 国 ▶

注▶ 注

$$C_{s_1}C_{s_2}C_{s_1} = t^{-3}(1+T_{s_1})(1+T_{s_2})(1+T_{s_1})$$

= $t^{-3}(T_{s_1s_2s_1}+T_{s_1s_2}+T_{s_2s_1}+T_{s_2}+(t^2+1)T_{s_1}+(t^2+1)T_1)$
= $C_{s_1s_2s_1}+C_{s_1}$

▲ 同 ▶ | ▲ 国 ▶

注▶ 注

$$C_{s_1}C_{s_2}C_{s_1} = t^{-3}(1+T_{s_1})(1+T_{s_2})(1+T_{s_1})$$

= $t^{-3}(T_{s_1s_2s_1}+T_{s_1s_2}+T_{s_2s_1}+T_{s_2}+(t^2+1)T_{s_1}+(t^2+1)T_1)$
= $C_{s_1s_2s_1}+C_{s_1}$

with

$$C_{s_1s_2s_1} = t^{-3} \big(T_{s_1s_2s_1} + T_{s_1s_2} + T_{s_2s_1} + T_{s_2} + T_{s_1} + T_1 \big).$$

æ

 $\begin{array}{c} \mbox{Reminder and notation} \\ \mbox{Perverse sheaves on \mathcal{B} and the Hecke algebra} \\ \mbox{Examples} \end{array}$

Example: type A_3

Consider $w = s_1 s_3 s_2 s_3 s_1$, and the resolution

$$\pi:\mathfrak{BS}_{(s_1,s_3,s_2,s_3,s_1)}\to\mathfrak{X}_w.$$

< ロ > < 同 > < 回 > .

 $\begin{array}{c} \mbox{Reminder and notation} \\ \mbox{Perverse sheaves on \mathcal{B} and the Hecke algebra} \\ \mbox{Examples} \end{array}$

Example: type A_3

Consider $w = s_1 s_3 s_2 s_3 s_1$, and the resolution

$$\pi:\mathfrak{BG}_{(s_1,s_3,s_2,s_3,s_1)}\to\mathfrak{X}_w.$$

 π is an isomorphism over $\mathfrak{X}_w - \mathfrak{X}_{s_1s_3}$, and all the non-trivial fibers are isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$. For example, we have

 $\pi^{-1}(B/B, B/B) = \{(B/B, gB/B, ghB/B, ghB/B, gB/B, B/B), g \in P_{s_3}, h \in P_{s_1}\}.$

Example: type A_3

Consider $w = s_1 s_3 s_2 s_3 s_1$, and the resolution

$$\pi:\mathfrak{BS}_{(s_1,s_3,s_2,s_3,s_1)}\to\mathfrak{X}_w.$$

 π is an isomorphism over $\mathfrak{X}_w - \mathfrak{X}_{s_1s_3}$, and all the non-trivial fibers are isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$. For example, we have

$$\pi^{-1}(B/B, B/B) = \{(B/B, gB/B, ghB/B, ghB/B, gB/B, B/B), g \in P_{s_3}, h \in P_{s_1}\}.$$

We have

$$H^*(\mathbb{P}^1 \times \mathbb{P}^1) = \mathbb{Q} \oplus \mathbb{Q}^2[-2] \oplus \mathbb{Q}[-4].$$

(b) (4) (2) (4)

The fibers of $\pi_* \mathrm{IC}(\mathfrak{BS}) = \pi_* \underline{\mathbb{Q}}_{\mathfrak{BS}}[11]$ are given by:

$\dim(\mathfrak{X}_v)$	V	-11	-10	-9	-8	-7
	$\mathcal{B}^2 - \mathfrak{X}_w$	0	0	0	0	0
11–7	$\mathfrak{X}_w - \mathfrak{X}_{s_1 s_3}$	Q	0	0	0	0
8	<i>s</i> ₁ <i>s</i> ₃	Q	0	\mathbb{Q}^2	0	Q
7	<i>s</i> 1	\mathbb{Q}	0	\mathbb{Q}^2	0	Q
7	<i>s</i> 3	Q	0	\mathbb{Q}^2	0	Q
6	1	Q	0	\mathbb{Q}^2	0	Q

・ 同 ト ・ ヨ ト ・ ヨ ト

э

The fibers of $\pi_* \mathrm{IC}(\mathfrak{BS}) = \pi_* \underline{\mathbb{Q}}_{\mathfrak{BS}}[11]$ are given by:

$\dim(\mathfrak{X}_v)$	V	-11	-10	-9	-8	-7
	$\mathcal{B}^2 - \mathfrak{X}_w$	0	0	0	0	0
11–7	$\mathfrak{X}_w - \mathfrak{X}_{s_1 s_3}$	Q	0	0	0	0
8	<i>s</i> ₁ <i>s</i> ₃	\mathbb{Q}	0	\mathbb{Q}^2	0	Q
7	<i>s</i> 1	\mathbb{Q}	0	\mathbb{Q}^2	0	Q
7	<i>s</i> 3	Q	0	\mathbb{Q}^2	0	Q
6	1	Q	0	\mathbb{Q}^2	0	Q

Hence

 $\pi_*\mathrm{IC}(\mathfrak{BS}) \ = \ \mathrm{IC}(\mathfrak{X}_w) \oplus \mathrm{IC}(\mathfrak{X}_{s_1s_3})[1] \oplus \mathrm{IC}(\mathfrak{X}_{s_1s_3})[-1].$

イロト イポト イヨト イヨト

э

Moreover, the fibers of $IC(\mathfrak{X}_w)$ are given by:

$\dim(\mathfrak{X}_v)$	V	-11	-10	-9
	$\mathcal{B}^2 - \mathfrak{X}_w$	0	0	0
11–7	$\mathfrak{X}_w - \mathfrak{X}_{s_1 s_3}$	Q	0	0
8	<i>s</i> ₁ <i>s</i> ₃	\mathbb{Q}	0	Q
7	<i>s</i> ₁	Q	0	\mathbb{Q}
7	<i>s</i> 3	Q	0	\mathbb{Q}
6	1	Q	0	\mathbb{Q}

▶ ∢ ≣ ▶

Moreover, the fibers of $IC(\mathfrak{X}_w)$ are given by:

$\dim(\mathfrak{X}_v)$	V	-11	-10	-9
	$\mathcal{B}^2 - \mathfrak{X}_w$	0	0	0
11–7	$\mathfrak{X}_w - \mathfrak{X}_{s_1 s_3}$	Q	0	0
8	<i>s</i> ₁ <i>s</i> ₃	\mathbb{Q}	0	Q
7	<i>s</i> 1	Q	0	Q
7	<i>s</i> 3	\mathbb{Q}	0	Q
6	1	\mathbb{Q}	0	Q

In particular, \mathfrak{X}_w is not rationally smooth, and π is not semi-small.

- A - E - N

Geometric realization of \mathcal{H}_W

Consider the subcategory \mathcal{D} of $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$ whose objects are the semisimple complexes, i.e. the complexes of the form

$$\bigoplus_{x\in W} \operatorname{IC}(\mathfrak{X}_x) \otimes_{\mathbb{Q}} V_x.$$

Geometric realization of \mathcal{H}_W

Consider the subcategory \mathcal{D} of $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$ whose objects are the semisimple complexes, i.e. the complexes of the form

$$\bigoplus_{x\in W} \operatorname{IC}(\mathfrak{X}_x) \otimes_{\mathbb{Q}} V_x.$$

We have

 $h: \operatorname{Obj}(\mathcal{D}) \to \mathcal{H}_W.$

Geometric realization of \mathcal{H}_W

Consider the subcategory \mathcal{D} of $D^b_{\mathcal{S}}(\mathcal{B} \times \mathcal{B})$ whose objects are the semisimple complexes, i.e. the complexes of the form

$$\bigoplus_{x\in W} \operatorname{IC}(\mathfrak{X}_x) \otimes_{\mathbb{Q}} V_x.$$

We have

$$h: \operatorname{Obj}(\mathcal{D}) \to \mathcal{H}_W.$$

One can check that $\ensuremath{\mathcal{D}}$ is stable under the convolution, and that

$$h(\mathcal{A}_1 \star \mathcal{A}_2) = h(\mathcal{A}_1) \cdot h(\mathcal{A}_2)$$

for any \mathcal{A}_1 , \mathcal{A}_2 in \mathcal{D} .

 $\ensuremath{\mathcal{D}}$ is stable under shifts, and

$$h(\mathcal{A}[1]) = t^{-1}h(\mathcal{A})$$

for \mathcal{A} in \mathcal{D} .

< A

- ∢ ≣ ▶

æ

 $\ensuremath{\mathcal{D}}$ is stable under shifts, and

$$h(\mathcal{A}[1]) = t^{-1}h(\mathcal{A})$$

for \mathcal{A} in \mathcal{D} .

 ${\mathcal D}$ is also stable under ${\mathbb D},$ and

$$h(\mathbb{D}(\mathcal{A})) = t^{-2\dim \mathcal{B}} \cdot i(h(\mathcal{A}))$$

for any \mathcal{A} in \mathcal{D} .

 $\ensuremath{\mathcal{D}}$ is stable under shifts, and

$$h(\mathcal{A}[1]) = t^{-1}h(\mathcal{A})$$

for \mathcal{A} in \mathcal{D} .

 ${\mathcal D}$ is also stable under ${\mathbb D},$ and

$$h(\mathbb{D}(\mathcal{A})) = t^{-2\dim \mathcal{B}} \cdot i(h(\mathcal{A}))$$

for any \mathcal{A} in \mathcal{D} . Finally, the image of h is

$$\bigoplus_{w\in W} \mathbb{Z}_{\geq 0}[t,t^{-1}] \cdot C_w.$$

 $\ensuremath{\mathcal{D}}$ is stable under shifts, and

$$h(\mathcal{A}[1]) = t^{-1}h(\mathcal{A})$$

for \mathcal{A} in \mathcal{D} .

 ${\mathcal D}$ is also stable under ${\mathbb D},$ and

$$h(\mathbb{D}(\mathcal{A})) = t^{-2\dim \mathcal{B}} \cdot i(h(\mathcal{A}))$$

for any \mathcal{A} in \mathcal{D} . Finally, the image of h is

$$\bigoplus_{w\in W} \mathbb{Z}_{\geq 0}[t,t^{-1}] \cdot C_w.$$

Hence \mathcal{D} gives a geometric realization of \mathcal{H}_W .

 $\ensuremath{\mathcal{D}}$ is stable under shifts, and

$$h(\mathcal{A}[1]) = t^{-1}h(\mathcal{A})$$

for \mathcal{A} in \mathcal{D} .

 ${\mathcal D}$ is also stable under ${\mathbb D},$ and

$$h(\mathbb{D}(\mathcal{A})) = t^{-2\dim \mathcal{B}} \cdot i(h(\mathcal{A}))$$

for any \mathcal{A} in \mathcal{D} . Finally, the image of h is

$$\bigoplus_{w\in W} \mathbb{Z}_{\geq 0}[t,t^{-1}] \cdot C_w.$$

Hence \mathcal{D} gives a geometric realization of \mathcal{H}_W .

Remark: It follows that for $x, y \in W$,

$$C_x \cdot C_y \in \bigoplus_{w \in W} \mathbb{Z}_{\geq 0}[t, t^{-1}] \cdot C_w.$$