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Conventions

Throughout a variety will mean a quasi projective algebraic variety
defined over the complex field. A topological space will be a
paracompact, Hausdorff space.
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Review on stratifications and pseudomanifolds

Definition
A stratification on a space X is a finite collection X of locally closed
subspaces of X called strata such that X =

∐
S∈X

S and the closure of

each stratum is a union of strata.

Definition
A filtered space X is a space together with a filtration by closed
subsets X = Xn ⊇ Xn−1 ⊇ ... ⊇ X0 ⊇ X−1 = ∅.
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Review on stratifications and pseudomanifolds

Definition
Definition of a Whitney stratification.

Definition
If X,Y are stratifications of X we say that Y is a refinement of X and
we write X ≤ Y if every stratum S ∈ X is a union of strata from Y.

Proposition
Let X be an algebraic variety. For any algebraic stratification X of X
there exists a refinement Y which is an algebraic Whitney stratification.
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Review on stratifications and pseudomanifolds

If not otherwise specified X will denote a complex algebraic variety
with an algebraic Whitney stratification X. Throughout a sheaf will
mean a sheaf of Q-vector spaces.

Definition
A sheaf F on X is called constructible if F|S is locally constant with
stalks of finite dimension over Q for every S ∈ X.

Definition
The bounded derived category of constructible sheaves on X relative
to X is defined to be the full subcategory of the bounded derived
category of sheaves on X an such that their cohomology (as
complexes) is constructible. We will denote this category by Db

X−c(X ).
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Intermediate extension relative to a filtration

Let X be an algebraic variety with a filtration
F : X = Xn ⊇ ... ⊇ X0 ⊇ X−1 = ∅. We denote by

Sk = Xn−k \ Xn−k−1

Uk = X \ Xn−k−1, k = 0, ...,n.
We have inclusions

ik : Uk ↪→ Uk+1 and
jk+1 : Sk+1 ↪→ Uk+1

Remark that Uk is open in Uk+1 and Sk+1 is closed in Uk+1.
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Intermediate extension relative to a filtration

Definition
If X is an algebraic variety with a filtration F as above, we define the
intermediate extension relative to F to be the functor

ιF!∗ : Sh(S0)→ Db(X )

defined by
ιF!∗ := τ≤n−1Rin−1∗ ◦ ... ◦ τ≤0Ri0∗
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Intermediate extension relative to a filtration

ιF!∗ := τ≤n−1Rin−1∗ ◦ ... ◦ τ≤0Ri0∗

We have the following theorem of Deligne:

Theorem

The functor ιF!∗ establishes an equivalence of categories between the
category Sh(S0) of sheaves on S0 and the full subcategory
IC′F(X ) ⊆ Db(X ) of complexes of sheaves F• that satisfy the following
conditions

Hm(F•) = 0, ∀m < 0
Hm(F•)|S0 = 0, ∀m > 0 and for any k = 1, ...,n the support and
cosupport conditions
(S) Hm(F•)|Sk = 0,∀m ≥ k
(S’) Hm

Sk
(F•) = 0, ∀m ≤ k
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Intersection homology complexes

From now on we will denote by X a complex quasi-projective variety
and by X and F an algebraic Whitney stratification and the associated
filtration respectively. For a stratum S we will denote by dS the complex
dimension of the stratum.

Theorem

Using the above notations the intermediate extension functor ιF!∗[dX ]
establishes an equivalence of categories between Loc(S0) and the full
subcategory of complexes F• in Db

X−c(X ) verifying the following
conditions:

Hm(F•) = 0, ∀m < −dX

Hm(F•)|S0 = 0, ∀m > −dX and H−dX (F•)|S0 ∈ Loc(S0)

(S) Hm(F•)|S = 0, ∀m > −dS

(S’) Hm(DXF•)|S = 0, ∀m > −dS.
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Intersection homology complexes

We can depict the degrees/strata where we can have non-zero
cohomology for F•,DXF• as in the theorem. Namely

−dX − 1 −dX −dX + 1 −dX + 2 −dX + 3 −dX + 4 ....
Hm(F•)|S0 0 • 0 0 0 0 0
Hm(F•)|S1 0 • 0 0 0 0 0
Hm(F•)|S2 0 • • 0 0 0 0
Hm(F•)|S3 0 • • • 0 0 0
Hm(F•)|S4 0 • • • • 0 0
Hm(F•)|S5 0 • • • • • 0
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Intersection homology complexes

We will denote by IC•X(X ;L) the complex ιF!∗(L) where L is a local
system on S0. This is called the intersection homology complex of X
with coefficients in L.
We can now deduce some corollaries

Corollary
Let X < Y and let S0 respectively T0 be codimension one strata and
ι : T0 ↪→ S0 be the inclusion. Then we have ICX(X ) ⊆ ICY(X ) and
moreover the following diagram commutes:

Loc(S0)
ιX!∗ //

ι−1

��

ICX(X )

��
Loc(T0)

ιY!∗ // ICY(X )
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Intersection homology complexes

Corollary
Let X be a complex algebraic variety.

1 For any algebraic Whitney stratification X we have that ICX(X ) is
abelian and stable under the action of the Verdier duality DX .

2 For any refinement of algebraic Whitney stratifications X < Y we
have that the inclusion ICX(X ) ⊆ ICY(X ) is faithfully full and exact.

3 For any local system L ∈ Loc(S0) we have a canonical
isomorphism

DX (IC•X(X ;L)) ' IC•X(X ;L )̌
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Deligne-Goresky-MacPherson Complexes

Let Z be a closed subset of X which is a union of strata.
For any local system L on an open dense Zarisky subset of Z we have
the complex IC•X(Z ,L) in Db

X−c(Z ) and we can consider its
pushforward iZ∗(IC•X(Z ,L)) ∈ Db

X−c(X ).
The following table illustrates/resumes the properties of the above
complex:

−dX −dX + 1 ... −dZ −dZ + 1 −dZ + 2 −dZ + 3

Hm(F•)|S0 0 0 ... 0 0 0 0
Hm(F•)|S1 0 0 ... 0 0 0 0

... ... ... ... ... ... ... ...
Hm(F•)|SdX−dZ

0 0 0 • 0 0 0
Hm(F•)|SdX−dZ +1 0 0 0 • 0 0 0
Hm(F•)|SdX−dZ +2 0 0 0 • • 0 0
Hm(F•)|SdX−dZ +3 0 0 0 • • • 0

where F• = iZ∗IC•X(Z ,L)[dZ ] or its Verdier dual.
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Deligne-Goresky-MacPherson Complexes

Definition

A complex F• ∈ Db
X−c(X ) is called a DGM-complex relative to X if

there exists some closed irreducible subvariety Z ⊆ X which is a union
of strata from X and an irreducible local system on a non-singular
dense open subset of Z such that F• ' iZ∗(IC•X(Z ,L))[dZ ]. We denote
them by DGMX(X ).
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X-perverse sheaves

Definition
Let X be a complex algebraic variety and X a stratification. A complex
of sheaves F• ∈ Db

X−c(X ) is called X-perverse if for each stratum
S ∈ X we have:

(S) Hm(F•)|S = 0, ∀m > −dS

(S) Hm(DX (F•))|S = 0, ∀m > −dS.
The full subcategory of X-perverse sheaves of Db

X−c is denoted
PervX(X ).

Remark
From the previous discussion we deduce that if Z ⊆ X is a closed set
which is a union of strata then

iZ∗(ICX(Z ))[dZ ] ⊆ PervX(X ).
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X-perverse sheaves

From the support and cosupport conditions we can prove that a
perverse sheaf has the cohomology concentrated in degrees [−dX ,0].
So we have the following picture:

−dX − 1 −dX −dX + 1 −dX + 2 −dX + 3 −dX + 4 ....
Hm(F•)|S0 0 • 0 0 0 0 0
Hm(F•)|S1 0 • • 0 0 0 0
Hm(F•)|S2 0 • • • 0 0 0
Hm(F•)|S3 0 • • • • 0 0
Hm(F•)|S4 0 • • • • • 0
Hm(F•)|S5 0 • • • • • •
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X-perverse sheaves

Proposition
Let Z be a locally closed subset of a variety X which is a union of
strata of X.

1 If Z is closed then iZ∗(PervX(Z )) ⊆ PervX(X )

2 If Z is open then i−1
Z (PervX(X )) ⊆ PervX(Z )

3 Let Z =
∐

i Si be a union of open strata of X. Then for any
F• ∈ PervX(X ) we have i−1

Z F
• = ⊕iLi [dSi ] where Li are local

systems on Si .
4 If F• ∈ PervX(X ) has the property that |F•| ⊆ Z then

i−1
Z F

• = i !ZF
• ∈ PervX(Z )

5 If Z is an open affine non-singular subvariety of X then
RiZ∗(Loc(Z )[dZ ]) ⊆ PervX(X ) and iZ !(Loc(Z )[dZ ]) ⊆ PervX(X ).
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X-perverse sheaves and perverse t-structures

Definition
For each Z ⊆ X a locally closed subset that is a union of strata we
define the following subcategories of Db

X−c(Z ):

D≤0
X,Z = {F• ∈ Db

X−c(Z ) : Hm(F•)|T = 0, ∀m > −dT ,
∀T ∈ X|Z}
D≥0

X,Z = {F• ∈ Db
X−c(Z ) : Hm(DZF•)|T = 0, ∀m > −dT ,

∀T ∈ X|Z}

Proposition

The pair (D≤0
X,Z ,D

≥0
X,Z ) is a t-structure on Db

X−c(Z ) for any Z as above.

Remark
From the above discussions we have that

PervX(X ) = D≤0
X,Z ∩ D

≥0
X,Z
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Structure theorems for X-perverse sheaves

Theorem (BBD)
For any variety X and any algebraic Whitney stratification X the full
subcategory PervX(X ) of Db

X−c(X ) is an abelian, admissible category
that is stable by extensions and by Verdier duality.
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Structure theorems for X-perverse sheaves

Recall that a DGM-complex relative to a stratification X is a complex
isomorphic to iZ∗IC•X(Z ,L) where Z is an irreducible closed subvariety
of X union of strata and L is an irreducible local system on a dense
open subset of Z . We have the following theorem

Theorem
The DGM-complexes are simple objects in the category PervX(X ).

Delphine Dupont, Dragoş Frăţilă () Perverse Sheaves and the Decomposition Theorem May 26, 2010 20 / 24



Structure theorems for X-perverse sheaves

Recall that a DGM-complex relative to a stratification X is a complex
isomorphic to iZ∗IC•X(Z ,L) where Z is an irreducible closed subvariety
of X union of strata and L is an irreducible local system on a dense
open subset of Z . We have the following theorem

Theorem
The DGM-complexes are simple objects in the category PervX(X ).
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Structure theorems for perverse sheaves

Definition
The category of perverse sheaves on X is the full subcategory of
Db(X ) consisting of objects that are X-perverse for some algebraic
Whitney stratification X. We denote it by Perv(X ). In other words

Perv(X ) = lim
−→
X

PervX(X ).

Definition
A DGM-complex on X is a perverse sheaf that is a DGM-complex
relative to X for an algebraic Whitney stratification. Again, we can
express this by

DGM(X ) = lim
−→
X

DGMX(X )
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Structure theorems for perverse sheaves

Theorem (BBD)
Let X be a variety. We have

The category Perv(X ) is a full subcategory of Db
c (X ) that is

abelian, stable by extensions and by Verdier duality.
The simple objects of Perv(X ) are precisely the DGM-complexes.
All the objects of Perv(X ) are finite successive extensions of
simple objects: the category of perverse sheaves is artinian and
noetherian.
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Delphine Dupont, Dragoş Frăţilă () Perverse Sheaves and the Decomposition Theorem May 26, 2010 22 / 24



Structure theorems for perverse sheaves

Theorem (BBD)
Let X be a variety. We have

The category Perv(X ) is a full subcategory of Db
c (X ) that is

abelian, stable by extensions and by Verdier duality.
The simple objects of Perv(X ) are precisely the DGM-complexes.
All the objects of Perv(X ) are finite successive extensions of
simple objects: the category of perverse sheaves is artinian and
noetherian.

Delphine Dupont, Dragoş Frăţilă () Perverse Sheaves and the Decomposition Theorem May 26, 2010 22 / 24



Stratified morphisms

Proposition

Let (X ,X), (Y ,Y) be algebraic varieties with Whitney stratifications
and f : X → Y a stratified map. Then the following hold:

f−1Db
Y−c(Y ) ⊆ Db

X−c , f !Db
Y−c(Y ) ⊆ Db

X−c

Rf∗Db
X−c(X ) ⊆ Db

Y−c , Rf!Db
X−c(Y ) ⊆ Db

Y−c

Therefore, we have all the above stability properties for Db
c (X ) and

Db
c (Y ).
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The Decomposition Theorem

Theorem
Let X ,Y be two complex algebraic varieties and f : X → Y a proper
algebraic map. For any simple∗ perverse sheaf iZ∗(IC•(Z ,L)) on X
there exist a finite number of irreducible closed sets Zi ⊆ Y , irreducible
local systems Li on open subsets of Zi and integers ci such that

Rf∗(iZ∗IC•(Z ,L)[dZ ]) =
⊕

i

iZi∗(IC
•(Zi ,Li))[ci ].

Remark
If the map is stratified with respect to the stratifications (X,Y) then we
can choose Zi to be strata from Y.
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