Perverse Sheaves and the Decomposition Theorem

Delphine Dupont, Dragoş Frăţilă

May 26, 2010

Delphine Dupont, Dragos Frățilă () Perverse Sheaves and the Decomposition The

May 26, 2010 1 / 24

Throughout a variety will mean a quasi projective algebraic variety defined over the complex field. A topological space will be a paracompact, Hausdorff space.

Delphine Dupont, Dragos Frățilă () Perverse Sheaves and the Decomposition The

Definition

A *stratification* on a space X is a finite collection \mathfrak{X} of locally closed subspaces of X called *strata* such that $X = \coprod_{S \in \mathfrak{X}} S$ and the closure of

each stratum is a union of strata.

Definition

A *filtered space* X is a space together with a filtration by closed subsets $X = X_n \supseteq X_{n-1} \supseteq ... \supseteq X_0 \supseteq X_{-1} = \emptyset$.

Definition

A *stratification* on a space X is a finite collection \mathfrak{X} of locally closed subspaces of X called *strata* such that $X = \coprod_{S \in \mathfrak{X}} S$ and the closure of

each stratum is a union of strata.

Definition

A *filtered space* X is a space together with a filtration by closed subsets $X = X_n \supseteq X_{n-1} \supseteq ... \supseteq X_0 \supseteq X_{-1} = \emptyset$.

Definition

Definition of a Whitney stratification.

Definition

If $\mathfrak{X}, \mathfrak{Y}$ are stratifications of X we say that \mathfrak{Y} is a refinement of \mathfrak{X} and we write $\mathfrak{X} \leq \mathfrak{Y}$ if every stratum $S \in \mathfrak{X}$ is a union of strata from \mathfrak{Y} .

Proposition

Let X be an algebraic variety. For any algebraic stratification \mathfrak{X} of X there exists a refinement \mathfrak{Y} which is an algebraic Whitney stratification.

Definition

Definition of a Whitney stratification.

Definition

If $\mathfrak{X}, \mathfrak{Y}$ are stratifications of X we say that \mathfrak{Y} is a refinement of \mathfrak{X} and we write $\mathfrak{X} \leq \mathfrak{Y}$ if every stratum $S \in \mathfrak{X}$ is a union of strata from \mathfrak{Y} .

Proposition

Let X be an algebraic variety. For any algebraic stratification \mathfrak{X} of X there exists a refinement \mathfrak{Y} which is an algebraic Whitney stratification.

Definition

Definition of a Whitney stratification.

Definition

If $\mathfrak{X}, \mathfrak{Y}$ are stratifications of X we say that \mathfrak{Y} is a refinement of \mathfrak{X} and we write $\mathfrak{X} \leq \mathfrak{Y}$ if every stratum $S \in \mathfrak{X}$ is a union of strata from \mathfrak{Y} .

Proposition

Let *X* be an algebraic variety. For any algebraic stratification \mathfrak{X} of *X* there exists a refinement \mathfrak{Y} which is an algebraic Whitney stratification.

If not otherwise specified X will denote a complex algebraic variety with an algebraic Whitney stratification \mathfrak{X} . Throughout a sheaf will mean a sheaf of \mathbb{Q} -vector spaces.

Definition

A sheaf \mathcal{F} on X is called constructible if $\mathcal{F}|_S$ is locally constant with stalks of finite dimension over \mathbb{Q} for every $S \in \mathfrak{X}$.

Definition

The bounded derived category of constructible sheaves on X relative to \mathfrak{X} is defined to be the full subcategory of the bounded derived category of sheaves on X^{an} such that their cohomology (as complexes) is constructible. We will denote this category by $\mathcal{D}_{\mathfrak{X}-c}^{b}(X)$.

If not otherwise specified X will denote a complex algebraic variety with an algebraic Whitney stratification \mathfrak{X} . Throughout a sheaf will mean a sheaf of \mathbb{Q} -vector spaces.

Definition

A sheaf \mathcal{F} on X is called constructible if $\mathcal{F}|_S$ is locally constant with stalks of finite dimension over \mathbb{Q} for every $S \in \mathfrak{X}$.

Definition

The bounded derived category of constructible sheaves on X relative to \mathfrak{X} is defined to be the full subcategory of the bounded derived category of sheaves on X^{an} such that their cohomology (as complexes) is constructible. We will denote this category by $\mathcal{D}_{\mathfrak{X}-c}^{b}(X)$.

If not otherwise specified X will denote a complex algebraic variety with an algebraic Whitney stratification \mathfrak{X} . Throughout a sheaf will mean a sheaf of \mathbb{Q} -vector spaces.

Definition

A sheaf \mathcal{F} on X is called constructible if $\mathcal{F}|_S$ is locally constant with stalks of finite dimension over \mathbb{Q} for every $S \in \mathfrak{X}$.

Definition

The bounded derived category of constructible sheaves on X relative to \mathfrak{X} is defined to be the full subcategory of the bounded derived category of sheaves on X^{an} such that their cohomology (as complexes) is constructible. We will denote this category by $\mathcal{D}^{b}_{\mathfrak{X}-c}(X)$.

< ロ > < 同 > < 回 > < 回 > < 回 >

Let X be an algebraic variety with a filtration $\mathfrak{F}: X = X_n \supseteq ... \supseteq X_0 \supseteq X_{-1} = \emptyset$. We denote by

•
$$S_k = X_{n-k} \setminus X_{n-k-1}$$

•
$$U_k = X \setminus X_{n-k-1}, k = 0, ..., n.$$

We have inclusions

- $i_k: U_k \hookrightarrow U_{k+1}$ and
- $j_{k+1}: S_{k+1} \hookrightarrow U_{k+1}$

Remark that U_k is open in U_{k+1} and S_{k+1} is closed in U_{k+1} .

Let X be an algebraic variety with a filtration $\mathfrak{F}: X = X_n \supseteq ... \supseteq X_0 \supseteq X_{-1} = \emptyset$. We denote by • $S_k = X_{n-k} \setminus X_{n-k-1}$ • $U_k = X \setminus X_{n-k-1}, \ k = 0, ..., n$. We have inclusions • $i_k : U_k \hookrightarrow U_{k+1}$ and

• $j_{k+1}: S_{k+1} \hookrightarrow U_{k+1}$

Remark that U_k is open in U_{k+1} and S_{k+1} is closed in U_{k+1} .

Let X be an algebraic variety with a filtration $\mathfrak{F}: X = X_n \supseteq ... \supseteq X_0 \supseteq X_{-1} = \emptyset$. We denote by • $S_k = X_{n-k} \setminus X_{n-k-1}$ • $U_k = X \setminus X_{n-k-1}, k = 0, ..., n$. We have inclusions

- $i_k: U_k \hookrightarrow U_{k+1}$ and
- $j_{k+1}: S_{k+1} \hookrightarrow U_{k+1}$

Remark that U_k is open in U_{k+1} and S_{k+1} is closed in U_{k+1} .

Let X be an algebraic variety with a filtration $\mathfrak{F}: X = X_n \supseteq ... \supseteq X_0 \supseteq X_{-1} = \emptyset$. We denote by • $S_k = X_{n-k} \setminus X_{n-k-1}$ • $U_k = X \setminus X_{n-k-1}, \ k = 0, ..., n$. We have inclusions

- $i_k: U_k \hookrightarrow U_{k+1}$ and
- $j_{k+1}: S_{k+1} \hookrightarrow U_{k+1}$

Remark that U_k is open in U_{k+1} and S_{k+1} is closed in U_{k+1} .

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Definition

If X is an algebraic variety with a filtration \mathfrak{F} as above, we define the intermediate extension relative to \mathfrak{F} to be the functor

$$\iota^{\mathfrak{F}}_{!*}: \mathit{Sh}(S_0)
ightarrow \mathcal{D}^b(X)$$

defined by

$$\iota_{!*}^{\mathfrak{F}} := \tau_{\leq n-1} Ri_{n-1*} \circ ... \circ \tau_{\leq 0} Ri_{0*}$$

$$\iota_{!*}^{\mathfrak{F}} := \tau_{\leq n-1} Ri_{n-1*} \circ \ldots \circ \tau_{\leq 0} Ri_{0*}$$

We have the following theorem of Deligne:

Theorem

- $\mathcal{H}^m(\mathcal{F}^\bullet) = 0, \forall m < 0$
- *H^m*(*F*[•])|_{S0} = 0, ∀m > 0 and for any k = 1, ..., n the support and cosupport conditions
- (S) $\mathcal{H}^m(\mathcal{F}^{\bullet})|_{\mathcal{S}_k} = 0, \forall m \geq k$
- (S') $\mathcal{H}^m_{S_k}(\mathcal{F}^{\bullet}) = 0, \forall m \leq k$

$$\iota_{!*}^{\mathfrak{F}} := \tau_{\leq n-1} Ri_{n-1*} \circ \ldots \circ \tau_{\leq 0} Ri_{0*}$$

We have the following theorem of Deligne:

Theorem

•
$$\mathcal{H}^m(\mathcal{F}^{\bullet}) = 0, \forall m < 0$$

- *H^m*(*F*[•])|_{S0} = 0, ∀m > 0 and for any k = 1, ..., n the support and cosupport conditions
- (S) $\mathcal{H}^m(\mathcal{F}^\bullet)|_{S_k} = 0, \forall m \geq k$
- (S') $\mathcal{H}^m_{S_k}(\mathcal{F}^{\bullet}) = 0, \forall m \leq k$

$$\iota_{!*}^{\mathfrak{F}} := \tau_{\leq n-1} Ri_{n-1*} \circ \ldots \circ \tau_{\leq 0} Ri_{0*}$$

We have the following theorem of Deligne:

Theorem

- $\mathcal{H}^m(\mathcal{F}^{\bullet}) = 0, \forall m < 0$
- *H^m*(*F*[•])|_{S0} = 0, ∀*m* > 0 and for any *k* = 1, ..., *n* the support and cosupport conditions
- (S) $\mathcal{H}^m(\mathcal{F}^{\bullet})|_{\mathcal{S}_k} = 0, \forall m \geq k$
- (S') $\mathcal{H}^m_{S_k}(\mathcal{F}^{\bullet}) = \mathbf{0}, \forall m \leq k$

$$\iota_{!*}^{\mathfrak{F}} := \tau_{\leq n-1} Ri_{n-1*} \circ \ldots \circ \tau_{\leq 0} Ri_{0*}$$

We have the following theorem of Deligne:

Theorem

- $\mathcal{H}^m(\mathcal{F}^{\bullet}) = 0, \forall m < 0$
- *H^m*(*F*[•])|_{S0} = 0, ∀*m* > 0 and for any *k* = 1, ..., n the support and cosupport conditions
- (S) $\mathcal{H}^m(\mathcal{F}^{\bullet})|_{\mathcal{S}_k} = 0, \forall m \geq k$
- (S') $\mathcal{H}^m_{S_{\nu}}(\mathcal{F}^{\bullet}) = 0, \forall m \leq k$

$$\iota_{!*}^{\mathfrak{F}} := \tau_{\leq n-1} Ri_{n-1*} \circ \ldots \circ \tau_{\leq 0} Ri_{0*}$$

We have the following theorem of Deligne:

Theorem

- $\mathcal{H}^m(\mathcal{F}^{\bullet}) = 0, \forall m < 0$
- *H^m*(*F*[•])|_{S0} = 0, ∀*m* > 0 and for any *k* = 1, ..., *n* the support and cosupport conditions
- (S) $\mathcal{H}^m(\mathcal{F}^{\bullet})|_{\mathcal{S}_k} = 0, \forall m \geq k$
- (S') $\mathcal{H}^m_{S_k}(\mathcal{F}^{\bullet}) = 0, \forall m \leq k$

$$\iota_{!*}^{\mathfrak{F}} := \tau_{\leq n-1} Ri_{n-1*} \circ \ldots \circ \tau_{\leq 0} Ri_{0*}$$

We have the following theorem of Deligne:

Theorem

The functor $\iota_{l*}^{\mathfrak{F}}$ establishes an equivalence of categories between the category $Sh(S_0)$ of sheaves on S_0 and the full subcategory $\mathfrak{IC}'_{\mathfrak{F}}(X) \subseteq \mathcal{D}^b(X)$ of complexes of sheaves \mathcal{F}^{\bullet} that satisfy the following conditions

- $\mathcal{H}^m(\mathcal{F}^{\bullet}) = 0, \forall m < 0$
- *H^m*(*F*[•])|_{S0} = 0, ∀*m* > 0 and for any *k* = 1, ..., *n* the support and cosupport conditions

• (S)
$$\mathcal{H}^m(\mathcal{F}^ullet)|_{\mathcal{S}_k}=0, orall m\geq k$$

• (S') $\mathcal{H}^m_{S_k}(\mathcal{F}^{\bullet}) = 0, \forall m \leq k$

From now on we will denote by *X* a complex quasi-projective variety and by \mathfrak{X} and \mathfrak{F} an algebraic Whitney stratification and the associated filtration respectively. For a stratum *S* we will denote by d_S the complex dimension of the stratum.

Theorem

Using the above notations the intermediate extension functor $\iota_{1*}^{\mathfrak{F}}[d_X]$ establishes an equivalence of categories between $Loc(S_0)$ and the full subcategory of complexes \mathcal{F}^{\bullet} in $\mathcal{D}^b_{\mathfrak{X}-c}(X)$ verifying the following conditions:

•
$$\mathcal{H}^m(\mathcal{F}^\bullet) = \mathbf{0}, \forall m < -d_X$$

•
$$\mathcal{H}^m(\mathcal{F}^{ullet})|_{S_0} = 0, \forall m > -d_X \text{ and } \mathcal{H}^{-d_X}(\mathcal{F}^{ullet})|_{S_0} \in Loc(S_0)$$

• (S)
$$\mathcal{H}^m(\mathcal{F}^\bullet)|_S = 0, \forall m > -d_S$$

• (S') $\mathcal{H}^m(\mathbb{D}_X \mathcal{F}^\bullet)|_S = 0, \forall m > -d_S.$

From now on we will denote by *X* a complex quasi-projective variety and by \mathfrak{X} and \mathfrak{F} an algebraic Whitney stratification and the associated filtration respectively. For a stratum *S* we will denote by d_S the complex dimension of the stratum.

Theorem

Using the above notations the intermediate extension functor $\iota_{!*}^{\mathfrak{F}}[d_X]$ establishes an equivalence of categories between $Loc(S_0)$ and the full subcategory of complexes \mathcal{F}^{\bullet} in $\mathcal{D}^b_{\mathfrak{X}-c}(X)$ verifying the following conditions:

•
$$\mathcal{H}^m(\mathcal{F}^\bullet) = \mathbf{0}, \forall m < -d_X$$

•
$$\mathcal{H}^m(\mathcal{F}^{ullet})|_{S_0}=0, orall m>-d_X ext{ and } \mathcal{H}^{-d_X}(\mathcal{F}^{ullet})|_{S_0}\in Loc(S_0)$$

• (S)
$$\mathcal{H}^m(\mathcal{F}^{ullet})|_S = 0, \forall m > -d_S$$

• (S') $\mathcal{H}^m(\mathbb{D}_X\mathcal{F}^\bullet)|_S = 0, \forall m > -d_S.$

From now on we will denote by *X* a complex quasi-projective variety and by \mathfrak{X} and \mathfrak{F} an algebraic Whitney stratification and the associated filtration respectively. For a stratum *S* we will denote by d_S the complex dimension of the stratum.

Theorem

Using the above notations the intermediate extension functor $\iota_{!*}^{\mathfrak{F}}[d_X]$ establishes an equivalence of categories between $Loc(S_0)$ and the full subcategory of complexes \mathcal{F}^{\bullet} in $\mathcal{D}^b_{\mathfrak{X}-c}(X)$ verifying the following conditions:

• $\mathcal{H}^m(\mathcal{F}^{\bullet}) = 0, \forall m < -d_X$

- $\mathcal{H}^m(\mathcal{F}^{\bullet})|_{S_0} = 0, \forall m > -d_X \text{ and } \mathcal{H}^{-d_X}(\mathcal{F}^{\bullet})|_{S_0} \in Loc(S_0)$
- (S) $\mathcal{H}^m(\mathcal{F}^\bullet)|_S = 0, \forall m > -d_S$
- (S') $\mathcal{H}^m(\mathbb{D}_X \mathcal{F}^\bullet)|_S = 0, \forall m > -d_S.$

From now on we will denote by *X* a complex quasi-projective variety and by \mathfrak{X} and \mathfrak{F} an algebraic Whitney stratification and the associated filtration respectively. For a stratum *S* we will denote by d_S the complex dimension of the stratum.

Theorem

Using the above notations the intermediate extension functor $\iota_{l*}^{\mathfrak{F}}[d_X]$ establishes an equivalence of categories between $Loc(S_0)$ and the full subcategory of complexes \mathcal{F}^{\bullet} in $\mathcal{D}^b_{\mathfrak{X}-c}(X)$ verifying the following conditions:

• $\mathcal{H}^m(\mathcal{F}^{\bullet}) = 0, \forall m < -d_X$

• $\mathcal{H}^m(\mathcal{F}^{\bullet})|_{\mathcal{S}_0} = 0, \forall m > -d_X \text{ and } \mathcal{H}^{-d_X}(\mathcal{F}^{\bullet})|_{\mathcal{S}_0} \in Loc(\mathcal{S}_0)$

• (S) $\mathcal{H}^m(\mathcal{F}^\bullet)|_S = 0, \forall m > -d_S$

• (S') $\mathcal{H}^m(\mathbb{D}_X \mathcal{F}^\bullet)|_S = 0, \forall m > -d_S.$

From now on we will denote by *X* a complex quasi-projective variety and by \mathfrak{X} and \mathfrak{F} an algebraic Whitney stratification and the associated filtration respectively. For a stratum *S* we will denote by d_S the complex dimension of the stratum.

Theorem

Using the above notations the intermediate extension functor $\iota_{!*}^{\mathfrak{F}}[d_X]$ establishes an equivalence of categories between $Loc(S_0)$ and the full subcategory of complexes \mathcal{F}^{\bullet} in $\mathcal{D}^b_{\mathfrak{X}-c}(X)$ verifying the following conditions:

•
$$\mathcal{H}^m(\mathcal{F}^{\bullet}) = 0, \forall m < -d_X$$

•
$$\mathcal{H}^m(\mathcal{F}^{ullet})|_{\mathcal{S}_0}=0, orall m>-d_X ext{ and } \mathcal{H}^{-d_X}(\mathcal{F}^{ullet})|_{\mathcal{S}_0}\in Loc(\mathcal{S}_0)$$

• (S)
$$\mathcal{H}^m(\mathcal{F}^{\bullet})|_{\mathcal{S}} = 0, \forall m > -d_S$$

• (S') $\mathcal{H}^m(\mathbb{D}_X\mathcal{F}^\bullet)|_S = 0, \forall m > -d_S.$

From now on we will denote by *X* a complex quasi-projective variety and by \mathfrak{X} and \mathfrak{F} an algebraic Whitney stratification and the associated filtration respectively. For a stratum *S* we will denote by d_S the complex dimension of the stratum.

Theorem

Using the above notations the intermediate extension functor $\iota_{l*}^{\mathfrak{F}}[d_X]$ establishes an equivalence of categories between $Loc(S_0)$ and the full subcategory of complexes \mathcal{F}^{\bullet} in $\mathcal{D}^b_{\mathfrak{X}-c}(X)$ verifying the following conditions:

•
$$\mathcal{H}^m(\mathcal{F}^{\bullet}) = 0, \forall m < -d_X$$

•
$$\mathcal{H}^m(\mathcal{F}^{ullet})|_{\mathcal{S}_0}=0, orall m>-d_X ext{ and } \mathcal{H}^{-d_X}(\mathcal{F}^{ullet})|_{\mathcal{S}_0}\in Loc(\mathcal{S}_0)$$

• (S)
$$\mathcal{H}^m(\mathcal{F}^{\bullet})|_{\mathcal{S}} = 0, \forall m > -d_{\mathcal{S}}$$

• (S')
$$\mathcal{H}^m(\mathbb{D}_X \mathcal{F}^{\bullet})|_{\mathcal{S}} = 0, \forall m > -d_{\mathcal{S}}.$$

We can depict the degrees/strata where we can have non-zero cohomology for \mathcal{F}^{\bullet} , $\mathbb{D}_{X}\mathcal{F}^{\bullet}$ as in the theorem. Namely

	$-d_X - 1$	$-d_X$	$-d_{X} + 1$	$-d_X + 2$	$-d_X + 3$	$-d_X + 4$	
$ \mathcal{H}^m(\mathcal{F}^{ullet}) _{\mathcal{S}_0}$	0	•	0	0	0	0	0
$\mathcal{H}^m(\mathcal{F}^{\bullet}) _{\mathcal{S}_1}$	0	•	0	0	0	0	0
$\mathcal{H}^m(\mathcal{F}^{ullet}) _{\mathcal{S}_2}$	0	•	•	0	0	0	0
$ \mathcal{H}^m(\mathcal{F}^{ullet}) _{S_3}$	0	•	•	•	0	0	0
$\mathcal{H}^m(\mathcal{F}^{\bullet}) _{S_4}$	0	•	•	•	•	0	0
$ \mathcal{H}^m(\mathcal{F}^{\bullet}) _{S_5}$	0	•	•	•	•	•	0

We will denote by $IC^{\bullet}_{\mathfrak{X}}(X; \mathcal{L})$ the complex $\iota^{\mathfrak{F}}_{\mathfrak{I}*}(\mathcal{L})$ where \mathcal{L} is a local system on S_0 . This is called the *intersection homology complex* of X with coefficients in \mathcal{L} .

We can now deduce some corollaries

Corollary

Let $\mathfrak{X} < \mathfrak{Y}$ and let S_0 respectively T_0 be codimension one strata and $\iota : T_0 \hookrightarrow S_0$ be the inclusion. Then we have $\Im C_{\mathfrak{X}}(X) \subseteq \Im C_{\mathfrak{Y}}(X)$ and moreover the following diagram commutes:

We will denote by $IC^{\bullet}_{\mathfrak{X}}(X; \mathcal{L})$ the complex $\iota^{\mathfrak{F}}_{\mathfrak{I}*}(\mathcal{L})$ where \mathcal{L} is a local system on S_0 . This is called the *intersection homology complex* of X with coefficients in \mathcal{L} .

We can now deduce some corollaries

Corollary

Let $\mathfrak{X} < \mathfrak{Y}$ and let S_0 respectively T_0 be codimension one strata and $\iota : T_0 \hookrightarrow S_0$ be the inclusion. Then we have $\Im C_{\mathfrak{X}}(X) \subseteq \Im C_{\mathfrak{Y}}(X)$ and moreover the following diagram commutes:

Corollary

Let X be a complex algebraic variety.

- For any algebraic Whitney stratification \mathfrak{X} we have that $\Im C_{\mathfrak{X}}(X)$ is abelian and stable under the action of the Verdier duality \mathbb{D}_X .
- ② For any refinement of algebraic Whitney stratifications X < D we have that the inclusion C_X(X) ⊆ C_D(X) is faithfully full and exact.
- I For any local system L ∈ Loc(S₀) we have a canonical isomorphism

 $\mathbb{D}_X(\mathit{IC}^{\bullet}_{\mathfrak{X}}(X;\mathcal{L})) \simeq \mathit{IC}^{\bullet}_{\mathfrak{X}}(X;\mathcal{L})$

Corollary

Let X be a complex algebraic variety.

- For any algebraic Whitney stratification \mathfrak{X} we have that $\mathfrak{IC}_{\mathfrak{X}}(X)$ is abelian and stable under the action of the Verdier duality \mathbb{D}_X .
- **②** For any refinement of algebraic Whitney stratifications $\mathfrak{X} < \mathfrak{Y}$ we have that the inclusion $\mathfrak{IC}_{\mathfrak{X}}(X) \subseteq \mathfrak{IC}_{\mathfrak{Y}}(X)$ is faithfully full and exact.
- I For any local system L ∈ Loc(S₀) we have a canonical isomorphism

 $\mathbb{D}_X(\mathit{IC}^{\bullet}_{\mathfrak{X}}(X;\mathcal{L})) \simeq \mathit{IC}^{\bullet}_{\mathfrak{X}}(X;\mathcal{L})$

Corollary

Let X be a complex algebraic variety.

- For any algebraic Whitney stratification \mathfrak{X} we have that $\mathfrak{IC}_{\mathfrak{X}}(X)$ is abelian and stable under the action of the Verdier duality \mathbb{D}_X .
- **②** For any refinement of algebraic Whitney stratifications $\mathfrak{X} < \mathfrak{Y}$ we have that the inclusion $\Im C_{\mathfrak{X}}(X) \subseteq \Im C_{\mathfrak{Y}}(X)$ is faithfully full and exact.
- I For any local system L ∈ Loc(S₀) we have a canonical isomorphism

 $\mathbb{D}_X(\mathit{IC}^{\bullet}_{\mathfrak{X}}(X;\mathcal{L})) \simeq \mathit{IC}^{\bullet}_{\mathfrak{X}}(X;\mathcal{L})$

Corollary

Let X be a complex algebraic variety.

- For any algebraic Whitney stratification \mathfrak{X} we have that $\mathfrak{IC}_{\mathfrak{X}}(X)$ is abelian and stable under the action of the Verdier duality \mathbb{D}_X .
- **②** For any refinement of algebraic Whitney stratifications $\mathfrak{X} < \mathfrak{Y}$ we have that the inclusion $\Im C_{\mathfrak{X}}(X) \subseteq \Im C_{\mathfrak{Y}}(X)$ is faithfully full and exact.
- § For any local system $\mathcal{L} \in Loc(S_0)$ we have a canonical isomorphism

$$\mathbb{D}_{X}(IC^{\bullet}_{\mathfrak{X}}(X;\mathcal{L})) \simeq IC^{\bullet}_{\mathfrak{X}}(X;\mathcal{L})$$

Deligne-Goresky-MacPherson Complexes

Let Z be a closed subset of X which is a union of strata.

For any local system \mathcal{L} on an open dense Zarisky subset of Z we have the complex $IC^{\bullet}_{\mathfrak{X}}(Z, \mathcal{L})$ in $\mathcal{D}^{b}_{\mathfrak{X}-c}(Z)$ and we can consider its pushforward $i_{Z*}(IC^{\bullet}_{\mathfrak{X}}(Z, \mathcal{L})) \in \mathcal{D}^{b}_{\mathfrak{X}-c}(X)$.

The following table illustrates/resumes the properties of the above complex:

		$-d_X + 1$			$-d_{Z} + 1$		
$ \mathcal{H}^m(\mathcal{F}^ullet) _{S_0}$		0		0	0	0	0
$\mathcal{H}^m(\mathcal{F}^ullet) _{S_1}$	0			0	0	0	0
$\mathcal{H}^m(\mathcal{F}^ullet) _{\mathcal{S}_{d_X-d_Z}}$	0	0	0	•	0	0	0
$\mathcal{H}^m(\mathcal{F}^ullet) _{\mathcal{S}_{d_X-d_Z+1}}$	0	0	0	•		0	0
$ \mathcal{H}^m(\mathcal{F}^ullet) _{S_{d_X-d_7+2}}$	0	0	0	•	٠		0
$\mathcal{H}^m(\mathcal{F}^ullet) _{\mathcal{S}_{d_X-d_Z+3}}$	0	0	0	•	٠	٠	

Delphine Dupont, Dragoş Frăţilă ()

Perverse Sheaves and the Decomposition The

Deligne-Goresky-MacPherson Complexes

Let *Z* be a closed subset of *X* which is a union of strata. For any local system \mathcal{L} on an open dense Zarisky subset of *Z* we have the complex $IC^{\bullet}_{\mathfrak{X}}(Z, \mathcal{L})$ in $\mathcal{D}^{b}_{\mathfrak{X}-c}(Z)$ and we can consider its pushforward $i_{Z*}(IC^{\bullet}_{\mathfrak{X}}(Z, \mathcal{L})) \in \mathcal{D}^{b}_{\mathfrak{X}-c}(X)$.

The following table illustrates/resumes the properties of the above complex:

		$-d_X + 1$			$-d_{Z} + 1$		
$ \mathcal{H}^m(\mathcal{F}^ullet) _{S_0}$		0		0	0	0	0
$\mathcal{H}^m(\mathcal{F}^ullet) _{S_1}$	0			0	0	0	0
$\mathcal{H}^m(\mathcal{F}^ullet) _{\mathcal{S}_{d_X-d_Z}}$	0	0	0	•	0	0	0
$\mathcal{H}^m(\mathcal{F}^ullet) _{\mathcal{S}_{d_X-d_Z+1}}$	0	0	0	•		0	0
$ \mathcal{H}^m(\mathcal{F}^{ullet}) _{\mathcal{S}_{d_X-d_Z+2}}$	0	0	0	•	٠		0
$\mathcal{H}^m(\mathcal{F}^ullet) _{\mathcal{S}_{d_X-d_Z+3}}$	0	0	0	•	٠	٠	

Delphine Dupont, Dragoş Frăţilă ()

Perverse Sheaves and the Decomposition The

Deligne-Goresky-MacPherson Complexes

Let *Z* be a closed subset of *X* which is a union of strata. For any local system \mathcal{L} on an open dense Zarisky subset of *Z* we have the complex $IC^{\bullet}_{\mathfrak{X}}(Z, \mathcal{L})$ in $\mathcal{D}^{b}_{\mathfrak{X}-c}(Z)$ and we can consider its pushforward $i_{Z*}(IC^{\bullet}_{\mathfrak{X}}(Z, \mathcal{L})) \in \mathcal{D}^{b}_{\mathfrak{X}-c}(X)$.

The following table illustrates/resumes the properties of the above complex:

	$-d_X$	$-d_{X} + 1$		$-d_Z$	- <i>d</i> _Z + 1	- <i>d</i> _Z + 2	$-d_{Z} + 3$
$\mathcal{H}^m(\mathcal{F}^{ullet}) _{S_0}$	0	0		0	0	0	0
$\mathcal{H}^m(\mathcal{F}^{ullet}) _{\mathcal{S}_1}$	0	0		0	0	0	0
$\mathcal{H}^m(\mathcal{F}^ullet) _{\mathcal{S}_{d_X-d_Z}}$	0	0	0	•	0	0	0
$ \mathcal{H}^m(\mathcal{F}^{\bullet}) _{\mathcal{S}_{d_X-d_Z+1}}$	0	0	0	•	0	0	0
$ \mathcal{H}^m(\mathcal{F}^{\bullet}) _{\mathcal{S}_{d_X-d_Z+2}}$	0	0	0	•	•	0	0
$\mathcal{H}^m(\mathcal{F}^{ullet}) _{\mathcal{S}_{d_X-d_Z+3}}$	0	0	0	•	•	•	0

where $\mathcal{F}^{\bullet} = i_{Z*} IC^{\bullet}_{\mathfrak{X}}(Z, \mathcal{L})[d_Z]$ or its Verdier dual.

Delphine Dupont, Dragoş Frăţilă ()

Perverse Sheaves and the Decomposition The

Deligne-Goresky-MacPherson Complexes

Definition

A complex $\mathcal{F}^{\bullet} \in \mathcal{D}^{b}_{\mathfrak{X}-c}(X)$ is called a *DGM-complex relative to* \mathfrak{X} if there exists some closed irreducible subvariety $Z \subseteq X$ which is a union of strata from \mathfrak{X} and an **irreducible** local system on a non-singular dense open subset of Z such that $\mathcal{F}^{\bullet} \simeq i_{Z*}(IC^{\bullet}_{\mathfrak{X}}(Z, \mathcal{L}))[d_{Z}]$. We denote them by $DGM_{\mathfrak{X}}(X)$.

Delphine Dupont, Dragoş Frățilă () Perverse Sheaves and the Decomposition The

Definition

Let X be a complex algebraic variety and \mathfrak{X} a stratification. A complex of sheaves $\mathcal{F}^{\bullet} \in \mathcal{D}^{b}_{\mathfrak{X}-c}(X)$ is called \mathfrak{X} -perverse if for each stratum $S \in \mathfrak{X}$ we have:

• (S)
$$\mathcal{H}^m(\mathcal{F}^{\bullet})|_{\mathcal{S}} = 0, \ \forall m > -d_{\mathcal{S}}$$

• (S)
$$\mathcal{H}^m(\mathbb{D}_X(\mathcal{F}^{\bullet}))|_{\mathcal{S}} = 0, \forall m > -d_{\mathcal{S}}.$$

The full subcategory of \mathfrak{X} -perverse sheaves of $\mathcal{D}^b_{\mathfrak{X}-c}$ is denoted $\mathcal{P}erv_{\mathfrak{X}}(X)$.

Remark

From the previous discussion we deduce that if $Z \subseteq X$ is a closed set which is a union of strata then

$i_{Z*}(\mathfrak{IC}_{\mathfrak{X}}(Z))[d_Z] \subseteq \mathcal{P}erv_{\mathfrak{X}}(X).$

Definition

Let X be a complex algebraic variety and \mathfrak{X} a stratification. A complex of sheaves $\mathcal{F}^{\bullet} \in \mathcal{D}^{b}_{\mathfrak{X}-c}(X)$ is called \mathfrak{X} -perverse if for each stratum $S \in \mathfrak{X}$ we have:

• (S)
$$\mathcal{H}^m(\mathcal{F}^{\bullet})|_{\mathcal{S}} = 0, \ \forall m > -d_{\mathcal{S}}$$

• (S)
$$\mathcal{H}^m(\mathbb{D}_X(\mathcal{F}^{\bullet}))|_{\mathcal{S}} = 0, \ \forall m > -d_{\mathcal{S}}.$$

The full subcategory of \mathfrak{X} -perverse sheaves of $\mathcal{D}^{b}_{\mathfrak{X}-c}$ is denoted $\mathcal{P}erv_{\mathfrak{X}}(X)$.

Remark

From the previous discussion we deduce that if $Z \subseteq X$ is a closed set which is a union of strata then

$i_{Z*}(\mathfrak{IC}_{\mathfrak{X}}(Z))[d_Z] \subseteq \mathcal{P}erv_{\mathfrak{X}}(X).$

Definition

Let X be a complex algebraic variety and \mathfrak{X} a stratification. A complex of sheaves $\mathcal{F}^{\bullet} \in \mathcal{D}^{b}_{\mathfrak{X}-c}(X)$ is called \mathfrak{X} -perverse if for each stratum $S \in \mathfrak{X}$ we have:

• (S)
$$\mathcal{H}^m(\mathcal{F}^{\bullet})|_{\mathcal{S}} = 0, \ \forall m > -d_{\mathcal{S}}$$

• (S)
$$\mathcal{H}^m(\mathbb{D}_X(\mathcal{F}^{\bullet}))|_{\mathcal{S}} = 0, \ \forall m > -d_{\mathcal{S}}.$$

The full subcategory of \mathfrak{X} -perverse sheaves of $\mathcal{D}^{b}_{\mathfrak{X}-c}$ is denoted $\mathcal{P}erv_{\mathfrak{X}}(X)$.

Remark

From the previous discussion we deduce that if $Z \subseteq X$ is a closed set which is a union of strata then

$$i_{Z*}(\mathfrak{IC}_{\mathfrak{X}}(Z))[d_Z] \subseteq \mathcal{P}erv_{\mathfrak{X}}(X).$$

From the support and cosupport conditions we can prove that a perverse sheaf has the cohomology concentrated in degrees $[-d_X, 0]$. So we have the following picture:

	$-d_X - 1$		$-d_X + 1$			$-d_{X} + 4$	
$ \mathcal{H}^m(\mathcal{F}^ullet) _{S_0}$	0	•	0	0	0	0	0
$ \mathcal{H}^m(\mathcal{F}^{\bullet}) _{S_1}$	0	•	•	0	0	0	0
$ \mathcal{H}^m(\mathcal{F}^{ullet}) _{S_2}$	0	•	•	•	0	0	0
$ \mathcal{H}^m(\mathcal{F}^ullet) _{S_3}$	0	•	•	•	•	0	0
$\mathcal{H}^m(\mathcal{F}^{ullet}) _{S_4}$	0	•	•	•	•	•	0
$ \mathcal{H}^m(\mathcal{F}^ullet) _{S_5}$	0	•	•	•	•	•	•

From the support and cosupport conditions we can prove that a perverse sheaf has the cohomology concentrated in degrees $[-d_X, 0]$. So we have the following picture:

	$-d_X - 1$	$-d_X$	$-d_{X} + 1$	$-d_X + 2$	$-d_X + 3$	$-d_X + 4$	
$ \mathcal{H}^m(\mathcal{F}^{ullet}) _{\mathcal{S}_0}$	0	•	0	0	0	0	0
$ \mathcal{H}^m(\mathcal{F}^{\bullet}) _{S_1}$	0	•	•	0	0	0	0
$ \mathcal{H}^m(\mathcal{F}^{\bullet}) _{\mathcal{S}_2}$	0	•	•	•	0	0	0
$ \mathcal{H}^m(\mathcal{F}^{ullet}) _{\mathcal{S}_3}$	0	•	•	•	•	0	0
$ \mathcal{H}^m(\mathcal{F}^{ullet}) _{S_4}$	0	•	•	•	•	•	0
$ \mathcal{H}^m(\mathcal{F}^{ullet}) _{\mathcal{S}_5}$	0	•	•	•	•	•	•

Proposition

Let Z be a locally closed subset of a variety X which is a union of strata of \mathfrak{X} .

- If *Z* is closed then $i_{Z*}(\mathcal{P}erv_{\mathfrak{X}}(Z)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$
- If *Z* is open then $i_Z^{-1}(\mathcal{P}erv_{\mathfrak{X}}(X)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(Z)$
- **③** Let $Z = \coprod_i S_i$ be a union of open strata of \mathfrak{X} . Then for any $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ we have $i_Z^{-1}\mathcal{F}^{\bullet} = \oplus_i \mathcal{L}_i[d_{S_i}]$ where \mathcal{L}_i are local systems on S_i .
- If $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ has the property that $|\mathcal{F}^{\bullet}| \subseteq Z$ then $i_Z^{-1}\mathcal{F}^{\bullet} = i_Z^!\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(Z)$

③ If *Z* is an **open affine non-singular** subvariety of *X* then $Ri_{Z*}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$ and $i_{Z!}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$.

< ロ > < 同 > < 回 > < 回 >

Proposition

Let Z be a locally closed subset of a variety X which is a union of strata of \mathfrak{X} .

- If Z is closed then $i_{Z*}(\mathcal{P}erv_{\mathfrak{X}}(Z)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$
- ② If *Z* is open then $i_Z^{-1}(\mathcal{P}erv_{\mathfrak{X}}(X)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(Z)$
- **③** Let $Z = \coprod_i S_i$ be a union of open strata of \mathfrak{X} . Then for any $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ we have $i_Z^{-1}\mathcal{F}^{\bullet} = \bigoplus_i \mathcal{L}_i[d_{S_i}]$ where \mathcal{L}_i are local systems on S_i .
- If $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ has the property that $|\mathcal{F}^{\bullet}| \subseteq Z$ then $i_Z^{-1}\mathcal{F}^{\bullet} = i_Z^!\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(Z)$

③ If *Z* is an **open affine non-singular** subvariety of *X* then $Ri_{Z*}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$ and $i_{Z!}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$.

Proposition

Let Z be a locally closed subset of a variety X which is a union of strata of \mathfrak{X} .

- If Z is closed then $i_{Z*}(\mathcal{P}erv_{\mathfrak{X}}(Z)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$
- **2** If *Z* is open then $i_Z^{-1}(\mathcal{P}erv_{\mathfrak{X}}(X)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(Z)$
- 3 Let $Z = \coprod_i S_i$ be a union of open strata of \mathfrak{X} . Then for any $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ we have $i_Z^{-1}\mathcal{F}^{\bullet} = \bigoplus_i \mathcal{L}_i[d_{S_i}]$ where \mathcal{L}_i are local systems on S_i .
- If $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ has the property that $|\mathcal{F}^{\bullet}| \subseteq Z$ then $i_Z^{-1}\mathcal{F}^{\bullet} = i_Z^!\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(Z)$

③ If *Z* is an **open affine non-singular** subvariety of *X* then $Ri_{Z*}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$ and $i_{Z!}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$.

Proposition

Let Z be a locally closed subset of a variety X which is a union of strata of \mathfrak{X} .

- If Z is closed then $i_{Z_*}(\mathcal{P}erv_{\mathfrak{X}}(Z)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$
- ② If *Z* is open then $i_Z^{-1}(\mathcal{P}erv_{\mathfrak{X}}(X)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(Z)$
- Let $Z = \coprod_i S_i$ be a union of open strata of \mathfrak{X} . Then for any $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ we have $i_Z^{-1}\mathcal{F}^{\bullet} = \bigoplus_i \mathcal{L}_i[d_{S_i}]$ where \mathcal{L}_i are local systems on S_i .
- If $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ has the property that $|\mathcal{F}^{\bullet}| \subseteq Z$ then $i_Z^{-1}\mathcal{F}^{\bullet} = i_Z^!\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(Z)$

③ If *Z* is an **open affine non-singular** subvariety of *X* then $Ri_{Z*}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$ and $i_{Z!}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$.

Proposition

Let Z be a locally closed subset of a variety X which is a union of strata of \mathfrak{X} .

- If Z is closed then $i_{Z_*}(\mathcal{P}erv_{\mathfrak{X}}(Z)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$
- ② If *Z* is open then $i_Z^{-1}(\mathcal{P}erv_{\mathfrak{X}}(X)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(Z)$
- Let $Z = \coprod_i S_i$ be a union of open strata of \mathfrak{X} . Then for any $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ we have $i_Z^{-1}\mathcal{F}^{\bullet} = \bigoplus_i \mathcal{L}_i[d_{S_i}]$ where \mathcal{L}_i are local systems on S_i .
- If $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ has the property that $|\mathcal{F}^{\bullet}| \subseteq Z$ then $i_Z^{-1}\mathcal{F}^{\bullet} = i_Z^!\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(Z)$

③ If *Z* is an **open affine non-singular** subvariety of *X* then $Ri_{Z*}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$ and $i_{Z!}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$.

Proposition

Let Z be a locally closed subset of a variety X which is a union of strata of \mathfrak{X} .

- If Z is closed then $i_{Z_*}(\mathcal{P}erv_{\mathfrak{X}}(Z)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$
- **2** If *Z* is open then $i_Z^{-1}(\mathcal{P}erv_{\mathfrak{X}}(X)) \subseteq \mathcal{P}erv_{\mathfrak{X}}(Z)$
- Let $Z = \coprod_i S_i$ be a union of open strata of \mathfrak{X} . Then for any $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ we have $i_Z^{-1}\mathcal{F}^{\bullet} = \bigoplus_i \mathcal{L}_i[d_{S_i}]$ where \mathcal{L}_i are local systems on S_i .
- If $\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(X)$ has the property that $|\mathcal{F}^{\bullet}| \subseteq Z$ then $i_Z^{-1}\mathcal{F}^{\bullet} = i_Z^!\mathcal{F}^{\bullet} \in \mathcal{P}erv_{\mathfrak{X}}(Z)$
- If *Z* is an **open affine non-singular** subvariety of *X* then $Ri_{Z*}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$ and $i_{Z!}(Loc(Z)[d_Z]) \subseteq \mathcal{P}erv_{\mathfrak{X}}(X)$.

Definition

For each $Z \subseteq X$ a locally closed subset that is a union of strata we define the following subcategories of $\mathcal{D}^b_{\mathfrak{X}-c}(Z)$:

•
$$\mathcal{D}_{\mathfrak{X},Z}^{\leq 0} = \{\mathcal{F}^{\bullet} \in \mathcal{D}_{\mathfrak{X}-c}^{b}(Z) : \mathcal{H}^{m}(\mathcal{F}^{\bullet})|_{T} = 0, \forall m > -d_{T}, \forall T \in \mathfrak{X}|_{Z}\}$$

•
$$\mathcal{D}_{\mathfrak{X},Z}^{\geq 0} = \{\mathcal{F}^{\bullet} \in \mathcal{D}_{\mathfrak{X}-c}^{b}(Z) : \mathcal{H}^{m}(\mathbb{D}_{Z}\mathcal{F}^{\bullet})|_{T} = 0, \forall m > -d_{T}, \forall T \in \mathfrak{X}|_{Z}\}$$

Proposition

The pair $(\mathcal{D}_{\mathfrak{X},Z}^{\leq 0}, \mathcal{D}_{\mathfrak{X},Z}^{\geq 0})$ is a *t*-structure on $\mathcal{D}_{\mathfrak{X}-c}^{b}(Z)$ for any Z as above.

Remark

 $\mathcal{P}erv_{\mathfrak{X}}(X) = \mathcal{D}_{\mathfrak{X},Z}^{\leq 0} \cap \mathcal{D}_{\mathfrak{X},Z}^{\geq 0}$

Definition

For each $Z \subseteq X$ a locally closed subset that is a union of strata we define the following subcategories of $\mathcal{D}^b_{\mathfrak{X}-c}(Z)$:

•
$$\mathcal{D}_{\mathfrak{X},Z}^{\leq 0} = \{\mathcal{F}^{\bullet} \in \mathcal{D}_{\mathfrak{X}-c}^{b}(Z) : \mathcal{H}^{m}(\mathcal{F}^{\bullet})|_{T} = 0, \forall m > -d_{T}, \forall T \in \mathfrak{X}|_{Z}\}$$

•
$$\mathcal{D}_{\mathfrak{X},Z}^{\geq 0} = \{\mathcal{F}^{\bullet} \in \mathcal{D}_{\mathfrak{X}-c}^{b}(Z) : \mathcal{H}^{m}(\mathbb{D}_{Z}\mathcal{F}^{\bullet})|_{T} = 0, \forall m > -d_{T}, \forall T \in \mathfrak{X}|_{Z}\}$$

Proposition

The pair $(\mathcal{D}_{\mathfrak{X},Z}^{\leq 0}, \mathcal{D}_{\mathfrak{X},Z}^{\geq 0})$ is a *t*-structure on $\mathcal{D}_{\mathfrak{X}-c}^{b}(Z)$ for any Z as above.

Remark

 $\mathcal{P}erv_{\mathfrak{X}}(X) = \mathcal{D}_{\mathfrak{X},Z}^{\leq 0} \cap \mathcal{D}_{\mathfrak{X},Z}^{\geq 0}$

Definition

For each $Z \subseteq X$ a locally closed subset that is a union of strata we define the following subcategories of $\mathcal{D}^b_{\mathfrak{X}-c}(Z)$:

•
$$\mathcal{D}_{\mathfrak{X},Z}^{\leq 0} = \{\mathcal{F}^{\bullet} \in \mathcal{D}_{\mathfrak{X}-c}^{b}(Z) : \mathcal{H}^{m}(\mathcal{F}^{\bullet})|_{T} = 0, \forall m > -d_{T}, \forall T \in \mathfrak{X}|_{Z}\}$$

•
$$\mathcal{D}_{\mathfrak{X},Z}^{\geq 0} = \{\mathcal{F}^{\bullet} \in \mathcal{D}_{\mathfrak{X}-c}^{b}(Z) : \mathcal{H}^{m}(\mathbb{D}_{Z}\mathcal{F}^{\bullet})|_{T} = 0, \forall m > -d_{T}, \forall T \in \mathfrak{X}|_{Z}\}$$

Proposition

The pair $(\mathcal{D}_{\mathfrak{X},Z}^{\leq 0}, \mathcal{D}_{\mathfrak{X},Z}^{\geq 0})$ is a *t*-structure on $\mathcal{D}_{\mathfrak{X}-c}^{b}(Z)$ for any Z as above.

Remark

Definition

For each $Z \subseteq X$ a locally closed subset that is a union of strata we define the following subcategories of $\mathcal{D}^b_{\mathfrak{X}-c}(Z)$:

•
$$\mathcal{D}_{\mathfrak{X},Z}^{\leq 0} = \{\mathcal{F}^{\bullet} \in \mathcal{D}_{\mathfrak{X}-c}^{b}(Z) : \mathcal{H}^{m}(\mathcal{F}^{\bullet})|_{T} = 0, \forall m > -d_{T}, \forall T \in \mathfrak{X}|_{Z}\}$$

•
$$\mathcal{D}_{\mathfrak{X},Z}^{\geq 0} = \{\mathcal{F}^{\bullet} \in \mathcal{D}_{\mathfrak{X}-c}^{b}(Z) : \mathcal{H}^{m}(\mathbb{D}_{Z}\mathcal{F}^{\bullet})|_{T} = 0, \forall m > -d_{T}, \forall T \in \mathfrak{X}|_{Z}\}$$

Proposition

The pair $(\mathcal{D}_{\mathfrak{X},Z}^{\leq 0}, \mathcal{D}_{\mathfrak{X},Z}^{\geq 0})$ is a *t*-structure on $\mathcal{D}_{\mathfrak{X}-c}^{b}(Z)$ for any *Z* as above.

Remark

Definition

For each $Z \subseteq X$ a locally closed subset that is a union of strata we define the following subcategories of $\mathcal{D}^b_{\mathfrak{X}-c}(Z)$:

•
$$\mathcal{D}_{\mathfrak{X},Z}^{\leq 0} = \{\mathcal{F}^{\bullet} \in \mathcal{D}_{\mathfrak{X}-c}^{b}(Z) : \mathcal{H}^{m}(\mathcal{F}^{\bullet})|_{T} = 0, \forall m > -d_{T}, \forall T \in \mathfrak{X}|_{Z}\}$$

•
$$\mathcal{D}_{\mathfrak{X},Z}^{\geq 0} = \{\mathcal{F}^{\bullet} \in \mathcal{D}_{\mathfrak{X}-c}^{b}(Z) : \mathcal{H}^{m}(\mathbb{D}_{Z}\mathcal{F}^{\bullet})|_{T} = 0, \forall m > -d_{T}, \forall T \in \mathfrak{X}|_{Z}\}$$

Proposition

The pair $(\mathcal{D}_{\mathfrak{X},Z}^{\leq 0}, \mathcal{D}_{\mathfrak{X},Z}^{\geq 0})$ is a *t*-structure on $\mathcal{D}_{\mathfrak{X}-c}^{b}(Z)$ for any *Z* as above.

Remark

From the above discussions we have that

$$\mathcal{P}\textit{erv}_{\mathfrak{X}}(X) = \mathcal{D}_{\mathfrak{X},Z}^{\leq 0} \cap \mathcal{D}_{\mathfrak{X},Z}^{\geq 0}$$

Delphine Dupont, Dragos Frățilă () Perverse Sheaves and the Decomposition The

Structure theorems for \mathfrak{X} -perverse sheaves

Theorem (BBD)

For any variety X and any algebraic Whitney stratification \mathfrak{X} the full subcategory $\mathcal{P}erv_{\mathfrak{X}}(X)$ of $\mathcal{D}^{b}_{\mathfrak{X}-c}(X)$ is an *abelian*, *admissible category* that is *stable by extensions and by Verdier duality*.

Structure theorems for \mathfrak{X} -perverse sheaves

Recall that a DGM-complex relative to a stratification \mathfrak{X} is a complex isomorphic to $i_{Z*}IC^{\bullet}_{\mathfrak{X}}(Z, \mathcal{L})$ where Z is an irreducible closed subvariety of X union of strata and \mathcal{L} is an irreducible local system on a dense open subset of Z. We have the following theorem

Theorem

The DGM-complexes are simple objects in the category $\mathcal{P}\textit{erv}_{\mathfrak{X}}(X)$.

Structure theorems for \mathfrak{X} -perverse sheaves

Recall that a DGM-complex relative to a stratification \mathfrak{X} is a complex isomorphic to $i_{Z*}IC^{\bullet}_{\mathfrak{X}}(Z, \mathcal{L})$ where Z is an irreducible closed subvariety of X union of strata and \mathcal{L} is an irreducible local system on a dense open subset of Z. We have the following theorem

Theorem

The DGM-complexes are simple objects in the category $\mathcal{P}erv_{\mathfrak{X}}(X)$.

4 E N 4 E N

Definition

The category of *perverse sheaves* on X is the full subcategory of $\mathcal{D}^{b}(X)$ consisting of objects that are \mathfrak{X} -perverse for some algebraic Whitney stratification \mathfrak{X} . We denote it by $\mathcal{P}erv(X)$. In other words

$$\mathcal{P}erv(X) = \lim_{\stackrel{\longrightarrow}{\mathfrak{X}}} \mathcal{P}erv_{\mathfrak{X}}(X).$$

Definition

A *DGM*-complex on X is a perverse sheaf that is a *DGM*-complex relative to \mathfrak{X} for an algebraic Whitney stratification. Again, we can express this by

 $DGM(X) = \lim_{\to \to} DGM_{\mathfrak{X}}(X)$

A D N A B N A B N A B N

Definition

The category of *perverse sheaves* on *X* is the full subcategory of $\mathcal{D}^{b}(X)$ consisting of objects that are \mathfrak{X} -perverse for some algebraic Whitney stratification \mathfrak{X} . We denote it by $\mathcal{P}erv(X)$. In other words

$$\mathcal{P}erv(X) = \lim_{\stackrel{\longrightarrow}{\mathfrak{X}}} \mathcal{P}erv_{\mathfrak{X}}(X).$$

Definition

A *DGM*-complex on *X* is a perverse sheaf that is a *DGM*-complex relative to \mathfrak{X} for an algebraic Whitney stratification. Again, we can express this by

 $DGM(X) = \lim_{\to \infty} DGM_{\mathfrak{X}}(X)$

A D N A B N A B N A B N

Definition

The category of *perverse sheaves* on X is the full subcategory of $\mathcal{D}^{b}(X)$ consisting of objects that are \mathfrak{X} -perverse for some algebraic Whitney stratification \mathfrak{X} . We denote it by $\mathcal{P}erv(X)$. In other words

$$\mathcal{P}erv(X) = \lim_{\stackrel{\longrightarrow}{\mathfrak{X}}} \mathcal{P}erv_{\mathfrak{X}}(X).$$

Definition

A *DGM*-complex on X is a perverse sheaf that is a *DGM*-complex relative to \mathfrak{X} for an algebraic Whitney stratification. Again, we can express this by

$DGM(X) = \lim DGM_{\mathfrak{X}}(X)$

Definition

The category of *perverse sheaves* on X is the full subcategory of $\mathcal{D}^{b}(X)$ consisting of objects that are \mathfrak{X} -perverse for some algebraic Whitney stratification \mathfrak{X} . We denote it by $\mathcal{P}erv(X)$. In other words

$$\mathcal{P}erv(X) = \lim_{\stackrel{\longrightarrow}{\mathfrak{X}}} \mathcal{P}erv_{\mathfrak{X}}(X).$$

Definition

A *DGM*-complex on *X* is a perverse sheaf that is a *DGM*-complex relative to \mathfrak{X} for an algebraic Whitney stratification. Again, we can express this by

$$DGM(X) = \lim_{\stackrel{\longrightarrow}{\mathfrak{T}}} DGM_{\mathfrak{X}}(X)$$

Theorem (BBD)

Let X be a variety. We have

- The category $\mathcal{P}erv(X)$ is a full subcategory of $\mathcal{D}_c^b(X)$ that is abelian, stable by extensions and by Verdier duality.
- The simple objects of $\mathcal{P}erv(X)$ are precisely the *DGM*-complexes.
- All the objects of *Perv(X)* are finite successive extensions of simple objects: the category of perverse sheaves is artinian and noetherian.

< ロ > < 同 > < 回 > < 回 >

Theorem (BBD)

Let X be a variety. We have

- The category *Perv(X)* is a full subcategory of *D^b_c(X)* that is abelian, stable by extensions and by Verdier duality.
- The simple objects of $\mathcal{P}erv(X)$ are precisely the *DGM*-complexes.
- All the objects of *Perv(X)* are finite successive extensions of simple objects: the category of perverse sheaves is artinian and noetherian.

Theorem (BBD)

Let X be a variety. We have

- The category *Perv(X)* is a full subcategory of *D^b_c(X)* that is abelian, stable by extensions and by Verdier duality.
- The simple objects of $\mathcal{P}erv(X)$ are precisely the *DGM*-complexes.

 All the objects of *Perv(X)* are finite successive extensions of simple objects: the category of perverse sheaves is artinian and noetherian.

イロト イポト イラト イラト

Theorem (BBD)

Let X be a variety. We have

- The category *Perv(X)* is a full subcategory of *D^b_c(X)* that is abelian, stable by extensions and by Verdier duality.
- The simple objects of $\mathcal{P}erv(X)$ are precisely the *DGM*-complexes.
- All the objects of *Perv(X)* are finite successive extensions of simple objects: the category of perverse sheaves is artinian and noetherian.

BA 4 BA

Proposition

Let $(X, \mathfrak{X}), (Y, \mathfrak{Y})$ be algebraic varieties with Whitney stratifications and $f : X \to Y$ a stratified map. Then the following hold:

$$f^{-1}\mathcal{D}^{b}_{\mathfrak{Y}-c}(Y) \subseteq \mathcal{D}^{b}_{\mathfrak{X}-c}, \quad f^{!}\mathcal{D}^{b}_{\mathfrak{Y}-c}(Y) \subseteq \mathcal{D}^{b}_{\mathfrak{X}-c}$$
$$Rf_{*}\mathcal{D}^{b}_{\mathfrak{X}-c}(X) \subseteq \mathcal{D}^{b}_{\mathfrak{Y}-c}, \quad Rf_{!}\mathcal{D}^{b}_{\mathfrak{X}-c}(Y) \subseteq \mathcal{D}^{b}_{\mathfrak{Y}-c}$$

Therefore, we have all the above stability properties for $\mathcal{D}_c^b(X)$ and $\mathcal{D}_c^b(Y)$.

The Decomposition Theorem

Theorem

Let *X*, *Y* be two complex algebraic varieties and $f : X \to Y$ a **proper** algebraic map. For any simple^{*} perverse sheaf $i_{Z*}(IC^{\bullet}(Z, \mathcal{L}))$ on *X* there exist a finite number of irreducible closed sets $Z_i \subseteq Y$, irreducible local systems \mathcal{L}_i on open subsets of Z_i and integers c_i such that

$$Rf_*(i_{Z*}IC^{\bullet}(Z,\mathcal{L})[d_Z]) = \bigoplus_i i_{Z_i*}(IC^{\bullet}(Z_i,\mathcal{L}_i))[c_i].$$

Remark

If the map is stratified with respect to the stratifications $(\mathfrak{X}, \mathfrak{Y})$ then we can choose Z_i to be strata from \mathfrak{Y} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

May 26, 2010

24/24

The Decomposition Theorem

Theorem

Let *X*, *Y* be two complex algebraic varieties and $f : X \to Y$ a **proper** algebraic map. For any simple^{*} perverse sheaf $i_{Z*}(IC^{\bullet}(Z, \mathcal{L}))$ on *X* there exist a finite number of irreducible closed sets $Z_i \subseteq Y$, irreducible local systems \mathcal{L}_i on open subsets of Z_i and integers c_i such that

$$Rf_*(i_{Z*}IC^{\bullet}(Z,\mathcal{L})[d_Z]) = \bigoplus_i i_{Z_i*}(IC^{\bullet}(Z_i,\mathcal{L}_i))[c_i].$$

Remark

If the map is stratified with respect to the stratifications $(\mathfrak{X}, \mathfrak{Y})$ then we can choose Z_i to be strata from \mathfrak{Y} .

< ロ > < 同 > < 回 > < 回 >