# Introduction to the equivariant world 

Gergely Bérczi (Oxford), Ben Elias (Columbia)<br>Isle of Skye

May 26, 2010.
"World" = cohomology, sheaves, derived category.

- Let $G$ be a topological group. A principal $G$-bundle is a map $E \rightarrow B$, which is locally a projection $U \times G \rightarrow U$.
"World" = cohomology, sheaves, derived category.
- Let $G$ be a topological group. A principal $G$-bundle is a map $E \rightarrow B$, which is locally a projection $U \times G \rightarrow U$.
- Fundamental principle in topology: finding universal objects which store all the information. Here a universal principal $G$-bundle is a bundle $\pi: E G \rightarrow B G$ s.t every principal $G$-bundle $E \rightarrow B$ is a pull-back via a map $B \rightarrow B G$, which is unique up to homotopy.
"World" = cohomology, sheaves, derived category.
- Let $G$ be a topological group. A principal $G$-bundle is a map $E \rightarrow B$, which is locally a projection $U \times G \rightarrow U$.
- Fundamental principle in topology: finding universal objects which store all the information. Here a universal principal $G$-bundle is a bundle $\pi: E G \rightarrow B G$ s.t every principal $G$-bundle $E \rightarrow B$ is a pull-back via a map $B \rightarrow B G$, which is unique up to homotopy.
- $E G$ is contractible. In fact, if $P$ is a contractible space with a free $G$-action then $P \rightarrow P / G$ is a universal principle $G$-bundle.
"World" = cohomology, sheaves, derived category.
- Let $G$ be a topological group. A principal $G$-bundle is a map $E \rightarrow B$, which is locally a projection $U \times G \rightarrow U$.
- Fundamental principle in topology: finding universal objects which store all the information. Here a universal principal $G$-bundle is a bundle $\pi: E G \rightarrow B G$ s.t every principal $G$-bundle $E \rightarrow B$ is a pull-back via a map $B \rightarrow B G$, which is unique up to homotopy.
- $E G$ is contractible. In fact, if $P$ is a contractible space with a free $G$-action then $P \rightarrow P / G$ is a universal principle $G$-bundle.
- Theorem: $E G$ exists for all topological group $G$, and unique up to equivariant homotopy.
"World" = cohomology, sheaves, derived category.
- Let $G$ be a topological group. A principal $G$-bundle is a map $E \rightarrow B$, which is locally a projection $U \times G \rightarrow U$.
- Fundamental principle in topology: finding universal objects which store all the information. Here a universal principal $G$-bundle is a bundle $\pi: E G \rightarrow B G$ s.t every principal $G$-bundle $E \rightarrow B$ is a pull-back via a map $B \rightarrow B G$, which is unique up to homotopy.
- $E G$ is contractible. In fact, if $P$ is a contractible space with a free $G$-action then $P \rightarrow P / G$ is a universal principle $G$-bundle.
- Theorem: $E G$ exists for all topological group $G$, and unique up to equivariant homotopy.
- Example: $\mathbb{C}^{\infty} \rightarrow \mathbb{P}^{\infty}(\mathbb{C})$ is a universal principle $\mathbb{C}^{*}$ bundle. Similarly, $B G L_{n}=\operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{\infty}\right) / G L_{n}=\operatorname{Gr}(n, \infty), B B_{n}=B T_{n}=\operatorname{Flag}(1,2, \ldots, n, \infty)$
- $E G L_{n} \times G L_{n} \mathbb{C}^{n} \rightarrow B G L_{n}$ is a universal vector bundle, any vector bundle can be pulled back from this.

Let $X$ be a $G$-space, i.e a top. space with a $G$-action. $G$-equivariant cohomology for free action is $H^{*}(X / G)$.

Let $X$ be a $G$-space, i.e a top. space with a $G$-action. $G$-equivariant cohomology for free action is $H^{*}(X / G)$.For non-free action the quotient $X / G$ is not well-behaved and $H^{*}(X / G)$ does not carries enough information.

Let $X$ be a $G$-space, i.e a top. space with a $G$-action. $G$-equivariant cohomology for free action is $H^{*}(X / G)$.For non-free action the quotient $X / G$ is not well-behaved and $H^{*}(X / G)$ does not carries enough information. We need to "resolve" the action by replacing $X$ with $X \times E G$.

Let $X$ be a $G$-space, i.e a top. space with a $G$-action. $G$-equivariant cohomology for free action is $H^{*}(X / G)$.For non-free action the quotient $X / G$ is not well-behaved and $H^{*}(X / G)$ does not carries enough information. We need to "resolve" the action by replacing $X$ with $X \times E G$. This has a free (diagonal) G-action, and

$$
H_{G}^{*}(X)=H^{*}\left(E G \times_{G} X\right)
$$

Let $X$ be a $G$-space, i.e a top. space with a $G$-action. $G$-equivariant cohomology for free action is $H^{*}(X / G)$.For non-free action the quotient $X / G$ is not well-behaved and $H^{*}(X / G)$ does not carries enough information. We need to "resolve" the action by replacing $X$ with $X \times E G$. This has a free (diagonal) G-action, and

$$
H_{G}^{*}(X)=H^{*}\left(E G \times_{G} X\right)
$$

## Properties

(1) $f: X \rightarrow Y$ G-map induces $H(f): H_{G}(Y) \rightarrow H_{G}(X)$
(2) $h: G \rightarrow H$ homomorphism, then $E H$ can serve as $E G$ and we have a projection $E H \times{ }_{G} X \rightarrow E H \times{ }_{H} X$ which induces $H(h): H_{H}(X) \rightarrow H_{G}(X)$
(3) $H_{G}^{*}(p t)=H^{*}(B G)=\mathbb{C}[\mathfrak{h}]^{W}$, and $H_{g}^{*}(X)$ is a $H_{G}^{*}(p t)$-module. For example $H_{G L_{n}}^{*}(p t)=S^{W}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$.

Let $X$ be a $G$-space.

- Restriction: If $H \subset G$ then $X$ is naturally a $H$-space, and there is an induced $\operatorname{map} H_{G}^{*}(p t) \rightarrow H_{H}^{*}(p t)$.

Let $X$ be a $G$-space.

- Restriction: If $H \subset G$ then $X$ is naturally a $H$-space, and there is an induced map $H_{G}^{*}(p t) \rightarrow H_{H}^{*}(p t)$.

$$
H_{H}^{*}(X)=H_{H}^{*}(p t) \otimes_{H_{G}^{*}(p t)} H_{G}^{*}(X)
$$

Let $X$ be a $G$-space.

- Restriction: If $H \subset G$ then $X$ is naturally a $H$-space, and there is an induced $\operatorname{map} H_{G}^{*}(p t) \rightarrow H_{H}^{*}(p t)$.

$$
H_{H}^{*}(X)=H_{H}^{*}(p t) \otimes_{H_{\mathbf{G}}^{*}(p t)} H_{G}^{*}(X)
$$

- Induction: If $G \subset K$ then $K \times{ }_{G} X$ is naturally a $K$-space, and there is an induced $\operatorname{map} H_{K}^{*}(p t) \rightarrow H_{G}^{*}(p t)$.

Let $X$ be a $G$-space.

- Restriction: If $H \subset G$ then $X$ is naturally a $H$-space, and there is an induced $\operatorname{map} H_{G}^{*}(p t) \rightarrow H_{H}^{*}(p t)$.

$$
H_{H}^{*}(X)=H_{H}^{*}(p t) \otimes_{H_{G}^{*}(p t)} H_{G}^{*}(X)
$$

- Induction: If $G \subset K$ then $K \times{ }_{G} X$ is naturally a $K$-space, and there is an induced $\operatorname{map} H_{K}^{*}(p t) \rightarrow H_{G}^{*}(p t)$.

$$
H_{K}\left(K \times_{G} X\right)=H_{G}(X)
$$

but as a $H_{K}(p t)$-module.

Let $X$ be a $G$-space.

- Restriction: If $H \subset G$ then $X$ is naturally a $H$-space, and there is an induced $\operatorname{map} H_{G}^{*}(p t) \rightarrow H_{H}^{*}(p t)$.

$$
H_{H}^{*}(X)=H_{H}^{*}(p t) \otimes_{H_{G}^{*}(p t)} H_{G}^{*}(X)
$$

- Induction: If $G \subset K$ then $K \times{ }_{G} X$ is naturally a $K$-space, and there is an induced $\operatorname{map} H_{K}^{*}(p t) \rightarrow H_{G}^{*}(p t)$.

$$
H_{K}\left(K \times_{G} X\right)=H_{G}(X)
$$

but as a $H_{K}(p t)$-module.
Example: We have an action $B \circlearrowleft G \times_{B} G \circlearrowright B$. Compute $H_{B \times B}\left(G \times_{B} G\right)$.

Let $X$ be a $G$-space.

- Restriction: If $H \subset G$ then $X$ is naturally a $H$-space, and there is an induced $\operatorname{map} H_{G}^{*}(p t) \rightarrow H_{H}^{*}(p t)$.

$$
H_{H}^{*}(X)=H_{H}^{*}(p t) \otimes_{H_{G}^{*}(p t)} H_{G}^{*}(X)
$$

- Induction: If $G \subset K$ then $K \times{ }_{G} X$ is naturally a $K$-space, and there is an induced $\operatorname{map} H_{K}^{*}(p t) \rightarrow H_{G}^{*}(p t)$.

$$
H_{K}\left(K \times_{G} X\right)=H_{G}(X)
$$

but as a $H_{K}(p t)$-module.
Example: We have an action $B \circlearrowleft G \times_{B} G \circlearrowright B$. Compute $H_{B \times B}\left(G \times_{B} G\right)$.

$$
H_{B \times B}^{*}(B)=H^{*}(B B)=S \rightsquigarrow^{\text {ind }} H_{G \times B}^{*}\left(G \times_{B} B\right)=S \in S^{w} \bmod S
$$

Let $X$ be a $G$-space.

- Restriction: If $H \subset G$ then $X$ is naturally a $H$-space, and there is an induced $\operatorname{map} H_{G}^{*}(p t) \rightarrow H_{H}^{*}(p t)$.

$$
H_{H}^{*}(X)=H_{H}^{*}(p t) \otimes_{H_{G}^{*}(p t)} H_{G}^{*}(X)
$$

- Induction: If $G \subset K$ then $K \times{ }_{G} X$ is naturally a $K$-space, and there is an induced $\operatorname{map} H_{K}^{*}(p t) \rightarrow H_{G}^{*}(p t)$.

$$
H_{K}\left(K \times_{G} X\right)=H_{G}(X)
$$

but as a $H_{K}(p t)$-module.
Example: We have an action $B \circlearrowleft G \times_{B} G \circlearrowright B$. Compute $H_{B \times B}\left(G \times_{B} G\right)$.

$$
H_{B \times B}^{*}(B)=H^{*}(B B)=S \rightsquigarrow^{\text {ind }} H_{G \times B}^{*}\left(G \times_{B} B\right)=S \in S^{W} \bmod S
$$

$$
\rightsquigarrow^{\text {res }} H_{B \times B}^{*}(G)=S \otimes_{S} w S \in S \bmod S \rightsquigarrow^{\text {ind }} H_{G \times B}^{*}\left(G \times_{B} G\right)=S \otimes_{S} w S \in S^{w} \bmod S
$$

Let $X$ be a $G$-space.

- Restriction: If $H \subset G$ then $X$ is naturally a $H$-space, and there is an induced $\operatorname{map} H_{G}^{*}(p t) \rightarrow H_{H}^{*}(p t)$.

$$
H_{H}^{*}(X)=H_{H}^{*}(p t) \otimes_{H_{G}^{*}(p t)} H_{G}^{*}(X)
$$

- Induction: If $G \subset K$ then $K \times{ }_{G} X$ is naturally a $K$-space, and there is an induced $\operatorname{map} H_{K}^{*}(p t) \rightarrow H_{G}^{*}(p t)$.

$$
H_{K}\left(K \times_{G} X\right)=H_{G}(X)
$$

but as a $H_{K}(p t)$-module.
Example: We have an action $B \circlearrowleft G \times_{B} G \circlearrowright B$. Compute $H_{B \times B}\left(G \times_{B} G\right)$.

$$
H_{B \times B}^{*}(B)=H^{*}(B B)=S \rightsquigarrow^{\text {ind }} H_{G \times B}^{*}\left(G \times_{B} B\right)=S \in S^{W} \bmod S
$$

$$
\rightsquigarrow^{\text {res }} H_{B \times B}^{*}(G)=S \otimes_{S} w S \in S \bmod S \rightsquigarrow^{\text {ind }} H_{G \times B}^{*}\left(G \times_{B} G\right)=S \otimes_{S} w S \in S^{W} \bmod S
$$

$$
\rightsquigarrow^{r e s} H_{B \times B}^{*}\left(G \times_{B} G\right)=S \otimes_{S} w S \otimes_{S} w S \in S m o
$$

For a smooth manifold $M$ we can define equivariant differential forms.

For a smooth manifold $M$ we can define equivariant differential forms.

$$
\Omega_{G}(M)=\{\alpha: \mathfrak{g} \rightarrow \Omega(M): \alpha(g X)=g \alpha(X), g \in G\}
$$

For a smooth manifold $M$ we can define equivariant differential forms.

$$
\Omega_{G}(M)=\{\alpha: \mathfrak{g} \rightarrow \Omega(M): \alpha(g X)=g \alpha(X), g \in G\}=(\mathbb{C}[\mathfrak{g}] \otimes \Omega(M))^{G}
$$

where $(g \cdot \alpha)(X)=g \cdot\left(\alpha\left(g^{-1} \cdot X\right)\right)$.

For a smooth manifold $M$ we can define equivariant differential forms.

$$
\Omega_{G}(M)=\{\alpha: \mathfrak{g} \rightarrow \Omega(M): \alpha(g X)=g \alpha(X), g \in G\}=(\mathbb{C}[\mathfrak{g}] \otimes \Omega(M))^{G}
$$

where $(g \cdot \alpha)(X)=g \cdot\left(\alpha\left(g^{-1} \cdot X\right)\right)$. Define

$$
\left(d_{G} \alpha\right)(X)=\left(d-\iota\left(X_{M}\right)\right) \alpha(X)
$$

which increases the degree by one if the $\mathbb{Z}$-grading is given by

$$
\operatorname{deg}(P \otimes \alpha)=2 \operatorname{deg}(P)+\operatorname{deg}(\alpha) .
$$

for $P \in \mathbb{C}[\mathfrak{g}], \alpha \in \Omega(M)$.

For a smooth manifold $M$ we can define equivariant differential forms.

$$
\Omega_{G}(M)=\{\alpha: \mathfrak{g} \rightarrow \Omega(M): \alpha(g X)=g \alpha(X), g \in G\}=(\mathbb{C}[\mathfrak{g}] \otimes \Omega(M))^{G}
$$

where $(g \cdot \alpha)(X)=g \cdot\left(\alpha\left(g^{-1} \cdot X\right)\right)$. Define

$$
\left(d_{G} \alpha\right)(X)=\left(d-\iota\left(X_{M}\right)\right) \alpha(X)
$$

which increases the degree by one if the $\mathbb{Z}$-grading is given by

$$
\operatorname{deg}(P \otimes \alpha)=2 \operatorname{deg}(P)+\operatorname{deg}(\alpha) .
$$

for $P \in \mathbb{C}[\mathfrak{g}], \alpha \in \Omega(M)$. Then

$$
H_{G}^{*}(M)=H_{d_{G}}^{*}
$$

For a smooth manifold $M$ we can define equivariant differential forms.

$$
\Omega_{G}(M)=\{\alpha: \mathfrak{g} \rightarrow \Omega(M): \alpha(g X)=g \alpha(X), g \in G\}=(\mathbb{C}[\mathfrak{g}] \otimes \Omega(M))^{G}
$$

where $(g \cdot \alpha)(X)=g \cdot\left(\alpha\left(g^{-1} \cdot X\right)\right)$. Define

$$
\left(d_{G} \alpha\right)(X)=\left(d-\iota\left(X_{M}\right)\right) \alpha(X)
$$

which increases the degree by one if the $\mathbb{Z}$-grading is given by

$$
\operatorname{deg}(P \otimes \alpha)=2 \operatorname{deg}(P)+\operatorname{deg}(\alpha) .
$$

for $P \in \mathbb{C}[\mathfrak{g}], \alpha \in \Omega(M)$. Then

$$
H_{G}^{*}(M)=H_{d_{G}}^{*}
$$

Note that $\alpha \in \Omega_{G}(M)$ is equivariantly closed if

$$
\alpha(X)=\alpha(X)_{0}+\ldots+\alpha(X)_{n} \text { s.t } \iota\left(X_{M}\right) \alpha(X)_{i}=d \alpha(X)_{i-2}
$$

For a smooth manifold $M$ we can define equivariant differential forms.

$$
\Omega_{G}(M)=\{\alpha: \mathfrak{g} \rightarrow \Omega(M): \alpha(g X)=g \alpha(X), g \in G\}=(\mathbb{C}[\mathfrak{g}] \otimes \Omega(M))^{G}
$$

where $(g \cdot \alpha)(X)=g \cdot\left(\alpha\left(g^{-1} \cdot X\right)\right)$. Define

$$
\left(d_{G} \alpha\right)(X)=\left(d-\iota\left(X_{M}\right)\right) \alpha(X)
$$

which increases the degree by one if the $\mathbb{Z}$-grading is given by

$$
\operatorname{deg}(P \otimes \alpha)=2 \operatorname{deg}(P)+\operatorname{deg}(\alpha) .
$$

for $P \in \mathbb{C}[\mathfrak{g}], \alpha \in \Omega(M)$. Then

$$
H_{G}^{*}(M)=H_{d_{G}}^{*}
$$

Note that $\alpha \in \Omega_{G}(M)$ is equivariantly closed if

$$
\alpha(X)=\alpha(X)_{0}+\ldots+\alpha(X)_{n} \text { s.t } \iota\left(X_{M}\right) \alpha(X)_{i}=d \alpha(X)_{i-2}
$$

## Equivariant localization

We can integrate equivariant forms:

$$
\int_{M}: \Omega_{G}(M) \rightarrow \mathbb{C}[\mathfrak{g}]^{G}
$$

We can integrate equivariant forms:

$$
\int_{M}: \Omega_{G}(M) \rightarrow \mathbb{C}[\mathfrak{g}]^{G}
$$

by the formula

$$
\left(\int_{M} \alpha\right)(X)=\int_{M} \alpha(X)=\int_{M} \alpha_{[n]}(X)
$$

We can integrate equivariant forms:

$$
\int_{M}: \Omega_{G}(M) \rightarrow \mathbb{C}[\mathfrak{g}]^{G}
$$

by the formula

$$
\left(\int_{M} \alpha\right)(X)=\int_{M} \alpha(X)=\int_{M} \alpha_{[n]}(X)
$$

General principle: information is stored at the fixed points of the action.

We can integrate equivariant forms:

$$
\int_{M}: \Omega_{G}(M) \rightarrow \mathbb{C}[\mathfrak{g}]^{G}
$$

by the formula

$$
\left(\int_{M} \alpha\right)(X)=\int_{M} \alpha(X)=\int_{M} \alpha_{[n]}(X)
$$

General principle: information is stored at the fixed points of the action.

## Theorem (Atiyah/Bott/Berline/Vergne)

$G=T$.

$$
\int_{M} \alpha=(2 \pi)^{\prime} \sum_{p \in M^{T}} \frac{\alpha_{0}(p)}{\operatorname{Euler}^{T}\left(T_{p} M\right)}
$$

We can integrate equivariant forms:

$$
\int_{M}: \Omega_{G}(M) \rightarrow \mathbb{C}[\mathfrak{g}]^{G}
$$

by the formula

$$
\left(\int_{M} \alpha\right)(X)=\int_{M} \alpha(X)=\int_{M} \alpha_{[n]}(X)
$$

General principle: information is stored at the fixed points of the action.

## Theorem (Atiyah/Bott/Berline/Vergne)

$G=T$.

$$
\int_{M} \alpha=(2 \pi)^{\prime} \sum_{p \in M^{T}} \frac{\alpha_{0}(p)}{\operatorname{Euler}^{T}\left(T_{p} M\right)}
$$

In other words:

$$
\int_{M} \alpha(X)=(2 \pi)^{\prime} \sum_{p \in M^{T}} \frac{\alpha(X)_{0}(p)}{\prod_{i} \lambda_{i}}
$$

where $\lambda_{i}$ are the weights of the Lie action

$$
X: \xi \in T_{p} M \rightarrow\left[X_{M}(p), \xi\right] \in T_{p} M
$$

$$
C_{2}(R)=\{V \in \operatorname{Gr}(2,4): V \subset R\}, C_{1}(L)=\{V \in \operatorname{Gr}(2,4): L \subset V\}
$$

$$
C_{2}(R)=\{V \in \operatorname{Gr}(2,4): V \subset R\}, C_{1}(L)=\{V \in \operatorname{Gr}(2,4): L \subset V\}
$$

Answer:

$$
C_{1}\left(L_{1}\right) \cap C_{1}\left(L_{2}\right) \cap C_{2}(R)=\int_{G r(2,4)} c_{1}(\tau)^{2} c_{2}(\tau)
$$

where $\tau$ is the tautological rank 2 bundle over $\operatorname{Gr}(2,4)$.

$$
C_{2}(R)=\{V \in \operatorname{Gr}(2,4): V \subset R\}, C_{1}(L)=\{V \in \operatorname{Gr}(2,4): L \subset V\}
$$

Answer:

$$
C_{1}\left(L_{1}\right) \cap C_{1}\left(L_{2}\right) \cap C_{2}(R)=\int_{G r(2,4)} c_{1}(\tau)^{2} c_{2}(\tau)
$$

where $\tau$ is the tautological rank 2 bundle over $\operatorname{Gr}(2,4)$.
Apply equivariant localization!

$$
C_{2}(R)=\{V \in \operatorname{Gr}(2,4): V \subset R\}, C_{1}(L)=\{V \in \operatorname{Gr}(2,4): L \subset V\}
$$

Answer:

$$
C_{1}\left(L_{1}\right) \cap C_{1}\left(L_{2}\right) \cap C_{2}(R)=\int_{G r(2,4)} c_{1}(\tau)^{2} c_{2}(\tau)
$$

where $\tau$ is the tautological rank 2 bundle over $\operatorname{Gr}(2,4)$.
Apply equivariant localization!

- $T^{4} \subset G L(4)$ acts on $\mathbb{C}^{4}$ with weights $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4} \in \mathfrak{t}^{*} \subset H_{T}^{*}(p t)$.

$$
C_{2}(R)=\{V \in \operatorname{Gr}(2,4): V \subset R\}, C_{1}(L)=\{V \in \operatorname{Gr}(2,4): L \subset V\}
$$

Answer:

$$
C_{1}\left(L_{1}\right) \cap C_{1}\left(L_{2}\right) \cap C_{2}(R)=\int_{G r(2,4)} c_{1}(\tau)^{2} c_{2}(\tau)
$$

where $\tau$ is the tautological rank 2 bundle over $\operatorname{Gr}(2,4)$.
Apply equivariant localization!

- $T^{4} \subset G L(4)$ acts on $\mathbb{C}^{4}$ with weights $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4} \in \mathfrak{t}^{*} \subset H_{T}^{*}(p t)$.
- The induced action on $\operatorname{Gr}(2,4)$ has $\binom{4}{2}$ fixed points, the coordinate subspaces indexed by $(i, j)$

$$
C_{2}(R)=\{V \in \operatorname{Gr}(2,4): V \subset R\}, C_{1}(L)=\{V \in \operatorname{Gr}(2,4): L \subset V\}
$$

Answer:

$$
C_{1}\left(L_{1}\right) \cap C_{1}\left(L_{2}\right) \cap C_{2}(R)=\int_{G r(2,4)} c_{1}(\tau)^{2} c_{2}(\tau)
$$

where $\tau$ is the tautological rank 2 bundle over $\operatorname{Gr}(2,4)$.
Apply equivariant localization!

- $T^{4} \subset G L(4)$ acts on $\mathbb{C}^{4}$ with weights $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4} \in \mathfrak{t}^{*} \subset H_{T}^{*}(p t)$.
- The induced action on $\operatorname{Gr}(2,4)$ has $\binom{4}{2}$ fixed points, the coordinate subspaces indexed by $(i, j)$
- The weights on $T_{(i, j)} G r$ are $\mu_{s}-\mu_{i}, \mu_{s}-\mu_{j}$ with $s \neq i, j$.

$$
C_{2}(R)=\{V \in \operatorname{Gr}(2,4): V \subset R\}, C_{1}(L)=\{V \in \operatorname{Gr}(2,4): L \subset V\}
$$

Answer:

$$
C_{1}\left(L_{1}\right) \cap C_{1}\left(L_{2}\right) \cap C_{2}(R)=\int_{G r(2,4)} c_{1}(\tau)^{2} c_{2}(\tau)
$$

where $\tau$ is the tautological rank 2 bundle over $\operatorname{Gr}(2,4)$.
Apply equivariant localization!

- $T^{4} \subset G L(4)$ acts on $\mathbb{C}^{4}$ with weights $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4} \in \mathfrak{t}^{*} \subset H_{T}^{*}(p t)$.
- The induced action on $\operatorname{Gr}(2,4)$ has $\binom{4}{2}$ fixed points, the coordinate subspaces indexed by $(i, j)$
- The weights on $T_{(i, j)} G r$ are $\mu_{s}-\mu_{i}, \mu_{s}-\mu_{j}$ with $s \neq i, j$. ABBV localization gives

$$
\int_{G r(2,4)} c_{1}^{2} c_{2}=\sum_{\sigma \in S_{4} / S_{2}} \sigma \cdot \frac{\left(\mu_{1}+\mu_{2}\right)^{2} \mu_{1} \mu_{2}}{\left(\mu_{3}-\mu_{1}\right)\left(\mu_{4}-\mu_{1}\right)\left(\mu_{3}-\mu_{2}\right)\left(\mu_{4}-\mu_{2}\right)}=2
$$

## Equivariant sheaves

Goal: Categorification of equivariant cohomology.

## Equivariant sheaves

Goal: Categorification of equivariant cohomology.
(1) Introduction of equivariant sheaves

Goal: Categorification of equivariant cohomology.
(1) Introduction of equivariant sheaves
(2) Extension of category of equivariant sheaves to equivariant derived category

Goal: Categorification of equivariant cohomology.
(1) Introduction of equivariant sheaves
(2) Extension of category of equivariant sheaves to equivariant derived category
Suppose a Lie group $G$ acts on $X$,

- Consider the maps

$$
X<\frac{m}{\leftarrow} G \times X \xrightarrow{\pi} X: m(g, x)=g x, \pi(g, x)=x
$$

Goal: Categorification of equivariant cohomology.
(1) Introduction of equivariant sheaves
(2) Extension of category of equivariant sheaves to equivariant derived category
Suppose a Lie group $G$ acts on $X$,

- Consider the maps

$$
X<\frac{m}{\leftarrow} G \times X \xrightarrow{\pi} X: m(g, x)=g x, \pi(g, x)=x
$$

Crucial observation: For a function $f: X \rightarrow \mathbb{C}$

$$
f(g x)=f(x) \Leftrightarrow m^{*} f=\pi^{*} f
$$

Goal: Categorification of equivariant cohomology.
(1) Introduction of equivariant sheaves
(2) Extension of category of equivariant sheaves to equivariant derived category
Suppose a Lie group $G$ acts on $X$,

- Consider the maps

$$
X<\frac{m}{\leftarrow} G \times X \xrightarrow{\pi} X: m(g, x)=g x, \pi(g, x)=x
$$

Crucial observation: For a function $f: X \rightarrow \mathbb{C}$

$$
f(g x)=f(x) \Leftrightarrow m^{*} f=\pi^{*} f
$$

- Consider the maps

$$
G \times X \stackrel{m \times i d_{X}}{\longleftrightarrow} G \times G \times X \xrightarrow{i d_{G} \times \pi} G \times X
$$

Goal: Categorification of equivariant cohomology.
(1) Introduction of equivariant sheaves
(2) Extension of category of equivariant sheaves to equivariant derived category
Suppose a Lie group $G$ acts on $X$,

- Consider the maps

$$
X<\frac{m}{\leftarrow} G \times X \xrightarrow{\pi} X: m(g, x)=g x, \pi(g, x)=x
$$

Crucial observation: For a function $f: X \rightarrow \mathbb{C}$

$$
f(g x)=f(x) \Leftrightarrow m^{*} f=\pi^{*} f
$$

- Consider the maps

$$
G \times X \stackrel{m \times i d_{X}}{\longleftrightarrow} G \times G \times X \xrightarrow{i d_{G} \times \pi} G \times X
$$

Then

$$
f\left(g_{1}\left(g_{2}(x)\right)\right)=f(x)=f\left(\left(g_{1} g_{2}\right) x\right) \Leftrightarrow\left(m \times i d_{x}\right)^{*}\left(p^{*} f\right)=\left(i d_{G} \times \pi\right)^{*}\left(\pi^{*} f\right)
$$

## Here come equivariant sheaves

Hint: " $G$-equivariant sheaf $\mathcal{F}$ on $X=$ sheaf whose sections over an open set are G-invariant"

Hint: " $G$-equivariant sheaf $\mathcal{F}$ on $X=$ sheaf whose sections over an open set are G-invariant"

## Definition

A sheaf $\mathcal{F}$ of $\mathcal{O}_{X}$-modules on a $G$-variety $X$ (or a sheaf of vector spaces on a topological $G$-space $X$ ) is $G$-equivariant if
(1) There is a given isomorphism of sheaves on $G \times X I: \pi^{*} \mathcal{F} \simeq m^{*} \mathcal{F}$
(2) $\left(m \times i d_{X}\right)^{*} I=p_{23}^{*} I \circ\left(i d_{G} \times \pi\right)^{*} I$ where $p_{23}: G \times G \times X \rightarrow G \times X$ is a the projection along the first factor.

Hint: " $G$-equivariant sheaf $\mathcal{F}$ on $X=$ sheaf whose sections over an open set are G-invariant"

## Definition

A sheaf $\mathcal{F}$ of $\mathcal{O}_{X}$-modules on a $G$-variety $X$ (or a sheaf of vector spaces on a topological $G$-space $X$ ) is $G$-equivariant if
(1) There is a given isomorphism of sheaves on $G \times X I: \pi^{*} \mathcal{F} \simeq m^{*} \mathcal{F}$
(2) $\left(m \times i d_{X}\right)^{*} I=p_{23}^{*} I \circ\left(i d_{G} \times \pi\right)^{*} I$ where $p_{23}: G \times G \times X \rightarrow G \times X$ is a the projection along the first factor.

## Remark

- The equivariant structure is given by $(\mathcal{F}, I)$, so asking if a sheaf $\mathcal{F}$ is equivariant is meaningless. I is not necessarily unique.

Hint: " $G$-equivariant sheaf $\mathcal{F}$ on $X=$ sheaf whose sections over an open set are G-invariant"

## Definition

A sheaf $\mathcal{F}$ of $\mathcal{O}_{X}$-modules on a $G$-variety $X$ (or a sheaf of vector spaces on a topological $G$-space $X$ ) is $G$-equivariant if
(1) There is a given isomorphism of sheaves on $G \times X I: \pi^{*} \mathcal{F} \simeq m^{*} \mathcal{F}$
(2) $\left(m \times i d_{X}\right)^{*} I=p_{23}^{*} I \circ\left(i d_{G} \times \pi\right)^{*} I$ where $p_{23}: G \times G \times X \rightarrow G \times X$ is a the projection along the first factor.

## Remark

- The equivariant structure is given by $(\mathcal{F}, I)$, so asking if a sheaf $\mathcal{F}$ is equivariant is meaningless. I is not necessarily unique.
- does not follows from as for invariant functions.

Hint: " $G$-equivariant sheaf $\mathcal{F}$ on $X=$ sheaf whose sections over an open set are G-invariant"

## Definition

A sheaf $\mathcal{F}$ of $\mathcal{O}_{X}$-modules on a $G$-variety $X$ (or a sheaf of vector spaces on a topological $G$-space $X$ ) is $G$-equivariant if
(1) There is a given isomorphism of sheaves on $G \times X I: \pi^{*} \mathcal{F} \simeq m^{*} \mathcal{F}$
(2) $\left(m \times i d_{X}\right)^{*} I=p_{23}^{*} I \circ\left(i d_{G} \times \pi\right)^{*} I$ where $p_{23}: G \times G \times X \rightarrow G \times X$ is a the projection along the first factor.

## Remark

- The equivariant structure is given by $(\mathcal{F}, I)$, so asking if a sheaf $\mathcal{F}$ is equivariant is meaningless. I is not necessarily unique.
- does not follows from as for invariant functions.
- If $\mathcal{F}$ is locally free, i.e $\mathcal{F}$ is a vector bundle, then the equivariant structure is equivalent to a linear fiberwise action of $G$ on $\mathcal{F}$.

Hint: " $G$-equivariant sheaf $\mathcal{F}$ on $X=$ sheaf whose sections over an open set are G-invariant"

## Definition

A sheaf $\mathcal{F}$ of $\mathcal{O}_{X}$-modules on a $G$-variety $X$ (or a sheaf of vector spaces on a topological $G$-space $X$ ) is $G$-equivariant if
(1) There is a given isomorphism of sheaves on $G \times X I: \pi^{*} \mathcal{F} \simeq m^{*} \mathcal{F}$
(2) $\left(m \times i d_{X}\right)^{*} I=p_{23}^{*} I \circ\left(i d_{G} \times \pi\right)^{*} I$ where $p_{23}: G \times G \times X \rightarrow G \times X$ is a the projection along the first factor.

## Remark

- The equivariant structure is given by $(\mathcal{F}, I)$, so asking if a sheaf $\mathcal{F}$ is equivariant is meaningless. I is not necessarily unique.
- does not follows from as for invariant functions.
- If $\mathcal{F}$ is locally free, i.e $\mathcal{F}$ is a vector bundle, then the equivariant structure is equivalent to a linear fiberwise action of $G$ on $\mathcal{F}$.
- If $G$ acts (topologically) freely on $X$ (i.e an open neighbourhood looks like $G \times U$ acted on by $G$ on the first factor) then

$$
G \text {-equivariant sheaves on } X=\text { sheaves on } X / G
$$

First idea: Take the derived category of equivariant sheaves on X .

First idea: Take the derived category of equivariant sheaves on X. Problem: We loose too much information...Example: take $S^{1}$ acting on $S^{1}$ and the point. The categories of equivariant sheaves on these are equivalent, so their derived categories are equivalent.

First idea: Take the derived category of equivariant sheaves on X. Problem: We loose too much information...Example: take $S^{1}$ acting on $S^{1}$ and the point. The categories of equivariant sheaves on these are equivalent, so their derived categories are equivalent.
For $X$ a free $G$-space we can define $D_{G}^{+}(X)=D^{+}(X / G)$.

First idea: Take the derived category of equivariant sheaves on X. Problem: We loose too much information...Example: take $S^{1}$ acting on $S^{1}$ and the point. The categories of equivariant sheaves on these are equivalent, so their derived categories are equivalent.
For $X$ a free $G$-space we can define $D_{G}^{+}(X)=D^{+}(X / G)$.
If the action is not free, we resolve it by taking $X \times E G$ as a substitute. Then $X \times E G \rightarrow X \times{ }_{G} E G$ is a liberation of $X \rightarrow X / G$.

First idea: Take the derived category of equivariant sheaves on X. Problem: We loose too much information...Example: take $S^{1}$ acting on $S^{1}$ and the point. The categories of equivariant sheaves on these are equivalent, so their derived categories are equivalent.
For $X$ a free $G$-space we can define $D_{G}^{+}(X)=D^{+}(X / G)$.
If the action is not free, we resolve it by taking $X \times E G$ as a substitute. Then $X \times E G \rightarrow X \times{ }_{G} E G$ is a liberation of $X \rightarrow X / G$.

## Definition

Bernstein and Lunts-topological version Consider the diagram

$$
X<\stackrel{p}{\bullet} X \times E G \xrightarrow{q} X_{G}=E G \times{ }_{G} X
$$

$D_{G}^{+, b}(X)$ is the full subcategory of $D^{+, b}\left(E G \times_{G} X\right)$ consisting of complexes $\mathcal{F} \in D^{+, b}\left(E G \times{ }_{G} X\right)$ such that $q^{*} \mathcal{F} \simeq p^{*} \mathcal{G}$ for some $\mathcal{G} \in D^{+, b}(X)$.

## Remark

(1) In other words, an equivariant sheaf is a triple $(\mathcal{G}, \mathcal{F}, \alpha)$ where

$$
\mathcal{G} \in D^{b,+}(X), \mathcal{F} \in D^{b}\left(E G \times_{G} X\right), \alpha: p^{*} \mathcal{G} \xrightarrow{\simeq} q^{*} \mathcal{F}
$$

The functor that remembers $\mathcal{G}$ is an equivalence of categories.

## Remark

(1) In other words, an equivariant sheaf is a triple $(\mathcal{G}, \mathcal{F}, \alpha)$ where

$$
\mathcal{G} \in D^{b,+}(X), \mathcal{F} \in D^{b}\left(E G \times_{G} X\right), \alpha: p^{*} \mathcal{G} \xrightarrow{\simeq} q^{*} \mathcal{F} .
$$

The functor that remembers $\mathcal{G}$ is an equivalence of categories.
(2) This definition does not work in the algebraic category because EG is infinite dimensional. Technical problem: There is no G-variety $P$ with free action such that $P \rightarrow X$ is $\infty$-acyclic, i.e the fibers have trivial cohomology.

## Remark

(1) In other words, an equivariant sheaf is a triple $(\mathcal{G}, \mathcal{F}, \alpha)$ where

$$
\mathcal{G} \in D^{b,+}(X), \mathcal{F} \in D^{b}\left(E G \times_{G} X\right), \alpha: p^{*} \mathcal{G} \xrightarrow{\simeq} q^{*} \mathcal{F} .
$$

The functor that remembers $\mathcal{G}$ is an equivalence of categories.
(2) This definition does not work in the algebraic category because EG is infinite dimensional. Technical problem: There is no $G$-variety $P$ with free action such that $P \rightarrow X$ is $\infty$-acyclic, i.e the fibers have trivial cohomology. Solution: Approximation of EG with finite dimensional varieties $E G_{n}$ where $E G_{n} \times{ }_{G} X \rightarrow X$ is n-acyclic.

