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Universal principal bundles

"World" = cohomology, sheaves, derived category.

Let G be a topological group. A principal G -bundle is a map E → B,
which is locally a projection U × G → U.

Fundamental principle in topology: finding universal objects which store all
the information. Here a universal principal G -bundle is a bundle
π : EG → BG s.t every principal G -bundle E → B is a pull-back via a map
B → BG , which is unique up to homotopy.

EG is contractible. In fact, if P is a contractible space with a free
G -action then P → P/G is a universal principle G -bundle.

Theorem: EG exists for all topological group G , and unique up to
equivariant homotopy.

Example: C∞ → P∞(C) is a universal principle C∗ bundle. Similarly,

BGLn = Hom(Cn,C∞)/GLn = Gr(n,∞),BBn = BTn = Flag(1, 2, . . . , n,∞)

.

EGLn ×GLn Cn → BGLn is a universal vector bundle, any vector bundle can
be pulled back from this.
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Equivariant cohomology

Let X be a G -space, i.e a top. space with a G -action. G -equivariant
cohomology for free action is H∗(X/G).

For non-free action the quotient X/G
is not well-behaved and H∗(X/G) does not carries enough information. We
need to "resolve" the action by replacing X with X × EG . This has a free
(diagonal) G -action, and

H∗G (X ) = H∗(EG ×G X )

Properties
1 f : X → Y G -map induces H(f ) : HG (Y )→ HG (X )

2 h : G → H homomorphism, then EH can serve as EG and we have a
projection EH ×G X → EH ×H X which induces H(h) : HH(X )→ HG (X )

3 H∗G (pt) = H∗(BG) = C[h]W , and H∗g (X ) is a H∗G (pt)-module. For
example H∗GLn (pt) = SW = C[x1, . . . , xn]Sn .
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Induction, Restriction

Let X be a G -space.

Restriction: If H ⊂ G then X is naturally a H-space, and there is an
induced map H∗G (pt)→ H∗H(pt).

H∗H(X ) = H∗H(pt)⊗H∗
G (pt) H

∗
G (X )

Induction: If G ⊂ K then K ×G X is naturally a K -space, and there is an
induced map H∗K (pt)→ H∗G (pt).

HK (K ×G X ) = HG (X )

but as a HK (pt)-module.

Example: We have an action B 	 G ×B G � B. Compute HB×B(G ×B G).

H∗B×B(B) = H∗(BB) = S  ind H∗G×B(G ×B B) = S ∈ SWmodS  

 res H∗B×B(G) = S ⊗SW S ∈ SmodS  ind H∗G×B(G ×B G) = S ⊗SW S ∈ SWmodS  

 res H∗B×B(G ×B G) = S ⊗SW S ⊗SW S ∈ SmodS
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The equivariant De Rham model

For a smooth manifold M we can define equivariant differential forms.

ΩG (M) = {α : g→ Ω(M) : α(gX ) = gα(X ), g ∈ G} = (C[g]⊗ Ω(M))G

where (g · α)(X ) = g · (α(g−1 · X )). Define

(dGα)(X ) = (d − ι(XM))α(X )

which increases the degree by one if the Z-grading is given by

deg(P ⊗ α) = 2 deg(P) + deg(α).

for P ∈ C[g], α ∈ Ω(M). Then

H∗G (M) = H∗dG

Note that α ∈ ΩG (M) is equivariantly closed if

α(X ) = α(X )0 + . . .+ α(X )n s.t ι(XM)α(X )i = dα(X )i−2
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Equivariant localization

We can integrate equivariant forms:∫
M

: ΩG (M)→ C[g]G

by the formula (∫
M
α

)
(X ) =

∫
M
α(X ) =

∫
M
α[n](X )

General principle: information is stored at the fixed points of the action.

Theorem (Atiyah/Bott/Berline/Vergne)

G = T. ∫
M
α = (2π)l

∑
p∈MT

α0(p)

EulerT (TpM)

In other words: ∫
M
α(X ) = (2π)l

∑
p∈MT

α(X )0(p)∏
i λi

where λi are the weights of the Lie action

X : ξ ∈ TpM → [XM(p), ξ] ∈ TpM.
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How many lines intersect 2 given lines and go through a point in C3?

C2(R) = {V ∈ Gr(2, 4) : V ⊂ R}, C1(L) = {V ∈ Gr(2, 4) : L ⊂ V }

Answer:
C1(L1) ∩ C1(L2) ∩ C2(R) =

∫
Gr(2,4)

c1(τ)2c2(τ)

where τ is the tautological rank 2 bundle over Gr(2, 4).
Apply equivariant localization!

T 4 ⊂ GL(4) acts on C4 with weights µ1, µ2, µ3, µ4 ∈ t∗ ⊂ H∗T (pt).

The induced action on Gr(2, 4) has
(4
2

)
fixed points, the coordinate

subspaces indexed by (i , j)

The weights on T(i,j)Gr are µs − µi , µs − µj with s 6= i , j . ABBV
localization gives∫

Gr(2,4)

c2
1 c2 =

∑
σ∈S4/S2

σ · (µ1 + µ2)2µ1µ2

(µ3 − µ1)(µ4 − µ1)(µ3 − µ2)(µ4 − µ2)
= 2
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Equivariant sheaves

Goal: Categorification of equivariant cohomology.

1 Introduction of equivariant sheaves
2 Extension of category of equivariant sheaves to equivariant derived

category

Suppose a Lie group G acts on X ,

Consider the maps

X G × X
moo π // X : m(g , x) = gx , π(g , x) = x

Crucial observation: For a function f : X → C

f (gx) = f (x)⇔ m∗f = π∗f

Consider the maps

G × X G × G × X
m×idXoo idG×π // G × X

Then
f (g1(g2(x))) = f (x) = f ((g1g2)x)⇔ (m × idX )∗(p∗f ) = (idG × π)∗(π∗f )
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Here come equivariant sheaves

Hint: "G -equivariant sheaf F on X= sheaf whose sections over an open set are
G -invariant"

Definition

A sheaf F of OX -modules on a G-variety X (or a sheaf of vector spaces on a
topological G-space X) is G-equivariant if

1 There is a given isomorphism of sheaves on G × X I : π∗F ' m∗F
2 (m × idX )∗I = p∗23I ◦ (idG × π)∗I where p23 : G × G × X → G × X is a

the projection along the first factor.

Remark

The equivariant structure is given by (F , I ), so asking if a sheaf F is
equivariant is meaningless. I is not necessarily unique.

does not follows from as for invariant functions.

If F is locally free, i.e F is a vector bundle, then the equivariant structure
is equivalent to a linear fiberwise action of G on F .
If G acts (topologically) freely on X (i.e an open neighbourhood looks like
G × U acted on by G on the first factor) then

G-equivariant sheaves on X = sheaves on X/G

This is not true for G-spaces with nontrivial stabilisers! Example: C∗ act
on C.
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Equivariant derived category of Bernstein and Lunts

First idea: Take the derived category of equivariant sheaves on X.

Problem: We
loose too much information...Example: take S1 acting on S1 and the point.The
categories of equivariant sheaves on these are equivalent, so their derived
categories are equivalent.
For X a free G -space we can define D+

G (X ) = D+(X/G).
If the action is not free, we resolve it by taking X × EG as a substitute. Then
X × EG → X ×G EG is a liberation of X → X/G .

Definition

Bernstein and Lunts-topological version Consider the diagram

X X × EG
poo q // XG = EG ×G X

D+,b
G (X ) is the full subcategory of D+,b(EG ×G X ) consisting of complexes
F ∈ D+,b(EG ×G X ) such that q∗F ' p∗G for some G ∈ D+,b(X ).
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Remark
1 In other words, an equivariant sheaf is a triple (G,F , α) where

G ∈ Db,+(X ),F ∈ Db(EG ×G X ), α : p∗G ' // q∗F .

The functor that remembers G is an equivalence of categories.

2 This definition does not work in the algebraic category because EG is
infinite dimensional. Technical problem: There is no G-variety P with free
action such that P → X is ∞-acyclic, i.e the fibers have trivial
cohomology. Solution: Approximation of EG with finite dimensional
varieties EGn where EGn ×G X → X is n-acyclic.
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