Critical level representations of affine Kac–Moody algebras

Peter Fiebig

Emmy–Noether–Zentrum Universität Erlangen–Nürnberg

> Isle of Skye May 2010

Let ${\mathfrak g}$ be a complex simple Lie algebra of finite dimension. We define

$$\widetilde{\mathfrak{g}} = \mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$$
, the *loop algebra*,
 $\widehat{\mathfrak{g}} = \widetilde{\mathfrak{g}} \oplus \mathbb{C}K \oplus \mathbb{C}D$ the affine Kac–Moody algebra.

The bracket is given by

$$[K, \cdot] = 0$$

$$[D, x \otimes t^{n}] = nx \otimes t^{n}$$

$$[x \otimes t^{n}, y \otimes t^{m}] = [x, y] \otimes t^{m+n} + n\delta_{m, -n}\kappa(x, y)K,$$

where $\kappa \colon \mathfrak{g} \otimes \mathfrak{g} \to \mathbb{C}$ denotes the Killing-form.

We fix $\mathfrak{g} \supset \mathfrak{b} \supset \mathfrak{h}$, a Borel and a Cartan subalgebra. The corresponding affine Borel and Cartan subalgebras are

$$\widehat{\mathfrak{b}} := \mathfrak{g} \otimes t\mathbb{C}[t] \oplus \mathfrak{b} \oplus \mathbb{C}K \oplus \mathbb{C}D,$$

 $\widehat{\mathfrak{h}} := \mathfrak{h} \oplus \mathbb{C}K \oplus \mathbb{C}D.$

To any $\lambda \in \widehat{\mathfrak{h}}^{\star} = \operatorname{Hom}_{\mathbb{C}}(\widehat{\mathfrak{h}}, \mathbb{C})$ we associate the simple module $L(\lambda)$ with highest weight λ . We want to calculate its *character*

$$ext{char } L(\lambda) = \sum_{\mu \in \mathfrak{h}^{\star}} \dim_{\mathbb{C}} L(\lambda)_{\mu} e^{\mu}.$$

Here, $L(\lambda)_{\mu}$ denotes the μ -eigenspace of the $\hat{\mathfrak{h}}$ -action.

Simple highest weight modules

The affine Weyl group $\widehat{\mathcal{W}}$ acts on $\widehat{\mathfrak{h}}^{\star}$. Let $\rho \in \widehat{\mathfrak{h}}^{\star}$ be an element with

$$\langle \rho, \alpha^{\vee} \rangle = 1$$

for each simple coroot α^{\vee} . The *dot-action* of $\widehat{\mathcal{W}}$ on $\widehat{\mathfrak{h}}^{\star}$ is given by

$$w.\lambda = w(\lambda + \rho) - \rho.$$

It does not depend on the choice of ρ .

Definition

The critical hyperplane is

$$\{\lambda \in \widehat{\mathfrak{h}}^{\star} \mid \langle \lambda, \mathsf{K} \rangle = \langle -\rho, \mathsf{K} \rangle \}.$$

The character of $L(\lambda)$ is known if

- λ is non-critical (Kashiwara & Tanisaki),
- if $\lambda \in \widehat{\mathcal{W}}.(-\rho + \overline{\rho})$ (Frenkel & Gaitsgory),
- if λ is critical and generic (Feigin & Frenkel),
- if λ is subgeneric (Arakawa & –).

The category $\mathcal{O}\subset\widehat{\mathfrak{g}} ext{-mod}$ contains all modules M with

- a semisimple $\hat{\mathfrak{h}}$ -action,
- a locally finite $\widehat{\mathfrak{b}}$ -action.

We have an abstract block decomposition

$$\mathcal{O} = \prod_{\Lambda} \mathcal{O}_{\Lambda}.$$

We identify each index Λ with the set $\{\lambda \in \widehat{\mathfrak{h}}^* \mid L(\lambda) \in \mathcal{O}_{\Lambda}\}$.

We call \mathcal{O}_{Λ} critical if Λ contains a critical weight. This is the case if and only if each weight in Λ is critical. Let Λ be a block index and set

$$\widehat{\mathcal{W}}_{\Lambda} = \left\{ s_{\alpha} \middle| \begin{array}{c} \alpha \text{ is an affine real root with} \\ \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z} \text{ for some/all} \\ \lambda \in \Lambda \end{array} \right.$$

Theorem (Deodhar & Gabber & Kac, Kac & Kazhdan)

- If Λ is non-critical, then $\Lambda = \widehat{W}_{\Lambda}.\lambda$.
- If Λ is critical, then $\Lambda = \widehat{\mathcal{W}}_{\Lambda} \cdot \lambda + \mathbb{Z}\delta$.

Here, $\delta \in \widehat{\mathfrak{h}}^*$ is the smallest positive imaginary root. It is given by $\delta(D) = 1$, $\delta(\mathfrak{h} \oplus \mathbb{C}K) = 0$.

Block indices

Let Λ be critical.

- Λ is not an orbit.
- There is no highest or lowest weight in Λ .
- The partial order on each orbit in Λ is not compatible with the Bruhat order.

We are going to address these problems.

Let $\mathcal A$ be the set of alcoves and $A_e\in \mathcal A$ the base alcove. We identify

$$\widehat{\mathcal{W}} \stackrel{\sim}{
ightarrow} \mathcal{A} \ w \mapsto w(A_e).$$

- $\widehat{\mathcal{W}}$ carries the Bruhat order \leq .
- \mathcal{A} carries the generic Bruhat order \succeq .
- The above map is not order preserving.

We now think of $\widehat{\mathcal{W}}$ and \mathcal{A} as partially ordered sets being acted upon by simple reflections from the right. The above map intertwines these actions.

We denote by $\widehat{\mathcal{H}} = \bigoplus_{w \in \widehat{\mathcal{W}}} \mathbb{Z}[v, v^{-1}] T_w$ the affine Hecke algebra. For any simple reflection we set $\underline{H}_s := vT_s + vT_e$. It satisfies

$$T_w \cdot \underline{H}_s = \begin{cases} v^{-1} T_{ws} + v^{-1} T_w, & \text{if } ws \le w, \\ v T_{ws} + v T_w, & \text{if } w \le ws. \end{cases}$$

We denote by $\widehat{\mathbf{M}} = \bigoplus_{A \in \mathcal{A}} \mathbb{Z}[v, v^{-1}]A$ the *periodic* $\widehat{\mathcal{H}}$ -module. It satisfies

$$A_{w} \cdot \underline{H}_{s} = \begin{cases} A_{ws} + v^{-1}A_{w}, & \text{if } A_{ws} \succeq A_{w}, \\ A_{ws} + vA_{w}, & \text{if } A_{w} \succeq A_{ws}. \end{cases}$$

The Hecke algebra governs

- Iwahori-constructible simple perverse sheaves with C-coefficients on the affine flag variety,
- Non-critical level representations of $\hat{\mathfrak{g}}$.
- The periodic module governs
 - restricted representations of g_k, char k ≫ 0 (conjecturally, char k > h),
 - representations of the small quantum group at an *l*-th root of unity for *l* > *h*,
 - critical level representations (conjecturally).

Block indices

The simple highest weight module $L(\delta)$ is one-dimensional and invertible, i.e.

$$L(\delta)\otimes L(-\delta)=\mathbb{C}_{triv}.$$

We define the *shift functor*

$$T: \mathcal{O} \to \mathcal{O}$$
$$M \mapsto M \otimes L(\delta).$$

It is an autoequivalence with inverse $T^{-1} = \cdot \otimes L(-\delta)$.

Observation

A block \mathcal{O}_{Λ} is critical if and only if it is preserved by T, i.e. if and only if $T(\mathcal{O}_{\Lambda}) \subset \mathcal{O}_{\Lambda}$.

Now we fix a critical block \mathcal{O}_{Λ} . For $n \in \mathbb{Z}$ we denote by Mor(id, T^n) the set of natural transformations between the functors id, $T^n : \mathcal{O}_{\Lambda} \to \mathcal{O}_{\Lambda}$. We define

$$\mathcal{A}_n := \left\{ z \in \mathsf{Mor}(\mathsf{id}, T^n) \, \middle| \begin{array}{c} \mathsf{for all } M \in \mathcal{O}_\Lambda \mathsf{ we have} \\ T^{\prime}(z^M) = z^{T^{\prime}M} \colon T^{\prime}M \to T^{n+\ell}M \end{array} \right\}$$

Then $\mathcal{A} := \bigoplus_{n \in \mathbb{Z}} \mathcal{A}_n$ carries a canonical \mathbb{C} -algebra structure. It is commutative and associative and *HUGE*.

Definition

We say that $M \in \mathcal{O}_{\Lambda}$ is restricted if $z^{M} = 0$ for all $z \in \mathcal{A}_{n}$, $n \neq 0$. We denote by $\overline{\mathcal{O}}_{\Lambda} \subset \mathcal{O}_{\Lambda}$ the subcategory of restricted modules. Each $M \in \mathcal{O}_{\Lambda}$ has

- a largest restricted quotient $M \to \overline{M}$,
- a largest restricted submodule $\underline{M} \rightarrow M$.

Let $\Delta(\lambda)$ and $\nabla(\lambda)$ be the Verma and the dual Verma module associated to $\lambda \in \Lambda$. The *restricted* Verma and the *restricted* dual Verma module are

 $\overline{\Delta}(\lambda)$ and $\underline{\nabla}(\lambda)$.

The subgeneric situation

Suppose that Λ is subgeneric, i.e. $\widehat{\mathcal{W}}_{\Lambda}$ is isomorphic to the affine Weyl group of type A_1 , and regular. In this case, each $\widehat{\mathcal{W}}_{\Lambda}$ -orbit is a totally ordered set and we can define the successor bijection $\alpha \uparrow \cdot : \Lambda \to \Lambda$.

Theorem (with T. Arakawa)

Each L(λ), λ ∈ Λ, admits a projective cover P
(λ) in O
Λ. It fits into a short exact sequence

$$0 o \overline{\Delta}(lpha \uparrow \lambda) o \overline{P}(\lambda) o \overline{\Delta}(\lambda) o 0.$$

We have

$$[\overline{\Delta}(\lambda): L(\mu)] = egin{cases} 1, & \textit{if } \lambda \in \{\mu, lpha \uparrow \mu\}, \ 0, & \textit{else.} \end{cases}$$

Let $\overline{\mathcal{O}} \subset \mathcal{O}$ be the full critical restricted subcategory and denote by

$$\overline{\mathcal{O}} = \prod_{\Gamma} \overline{\mathcal{O}}_{\Gamma}$$

the abstract block decomposition. Again, we identify Γ with the set $\{\gamma \in \widehat{\mathfrak{h}}^* \mid L(\gamma) \in \overline{\mathcal{O}}_{\Gamma}\}$. For any $\mathcal{J} \subset \widehat{\mathfrak{h}}^*$ that is *open*, i.e.

$$\mathcal{J} = \bigcup_{\gamma \in \mathcal{J}} \{ \leq \gamma \},$$

we define $\overline{\mathcal{O}}_{\Gamma}^{\mathcal{J}} \subset \overline{\mathcal{O}}_{\Gamma}$ as the full subcategory of objects that have weights only in $\mathcal{J}.$

Theorem (with T. Arakawa)

Let Γ be a restricted index, let \mathcal{J} be open and fix $\gamma \in \Gamma \cap \mathcal{J}$.

- The simple object $L(\gamma)$ has a projective cover $\overline{P}^{\mathcal{J}}(\gamma)$ in $\overline{\mathcal{O}}_{\Gamma}^{\mathcal{J}}$.
- Each projective in $\overline{\mathcal{O}}_{\Gamma}^{\mathcal{J}}$ has a restricted Verma flag and we have

$$(\overline{P}^{\mathcal{J}}(\gamma):\overline{\Delta}(\nu)) = [\overline{\Delta}(\nu):L(\gamma)]$$

for all $\nu \in \Gamma \cap \mathcal{J}$ (Restricted BGG-reciprocity).

► $[\overline{\Delta}(\lambda) : L(\nu)] \neq 0$ implies $\nu \in \widehat{\mathcal{W}}_{\Gamma}.\lambda$ (Restricted Linkage principle).

Restricted blocks are orbits

Each restricted critical index Γ is now a \mathcal{W}_{Γ} -orbit. As a partially ordered set it carries a variant of the generic Bruhat order.

 Hence, we expect the representation theory to be governed by the periodic module.

Conjecture

Suppose that Γ is sufficiently generic. Let $\gamma \in \Gamma$ be dominant for the finite Weyl group action. For any $x, y \in \widehat{W}_{\Gamma}$ we have

$$[\overline{\Delta}(x.\gamma):L(y.\gamma)]=p_{A_x,A_y}(1),$$

where $p_{-,-}$ denotes the periodic polynomial associated to \widehat{W}_{Γ} . Known for $\gamma = 0$ (Frenkel & Gaitsgory) and in the subgeneric cases (Arakawa & —).

Conjectural links

