4. Exercises (Thursday)

Exercise 4.1. In the last exercise on Monday we gave an explicit realisation of a 2-dimensional (affine) Schubert variety X and constructed a resolution

$$
\pi: \widetilde{X} \rightarrow X
$$

In this exercise we will examine the parity sheaves on X with the help of the resolution \widetilde{X}.
a) Recall that we have chosen a basis e_{1}, e_{2} for V in order to define the action of a torus T on X. Consider the following filtration of $V_{-1} \oplus V_{0}$:

$$
0 \oplus V_{0} \subset \mathbb{C} e_{2} \oplus V_{0} \subset V_{-1} \oplus V_{0}
$$

Show that this induces a filtration $Z_{0} \subset Z_{1} \subset Z_{2}$ of X with $Z_{0}=\mathbb{A} 0$ and $Z_{i} \backslash Z_{i-1} \cong \mathbb{A}^{i}$ for $i=1,2$.
b) Construct a similar stratification of \widetilde{X} into affine spaces, so that π becomes a stratified even resolution.
c) Now let k be a field. From the above we know that $\pi_{*} k_{\tilde{X}}[2]$ is a parity complex on X. Use the decomposition theorem and the fact that X is rationally smooth to decompose $\pi_{*} k_{\tilde{X}}[2]$ if k is of characteristic zero.
$\left.\mathrm{d}^{*}\right)$ Let x_{0} denote the unique singular point of X. Calculate the selfintersection of $\pi^{-1}\left(x_{0}\right) \subset \widetilde{X}$, and conclude that $\pi_{*} k_{\tilde{X}}[2]$ splits as a direct sum of two (shifted) constant sheaves if char $k \neq 2$. What happens if char $k=2$? (Hint: It might help to consider the restriction of π to $\pi^{-1}(U)$, where U is the open set consisting of those $W \in X$ which are transverse to $V_{-1} \oplus 0$.)

Exercise 4.2. (In this exercise we see how the moment graph language can be used to obtain the result obtained topologically in Exercise 1.) Let X be as in Exercise 4.1. Recall that in Exercise 1.8 on Monday we considered an action of a rank 3 torus $T \times \mathbb{C}^{*}$ on X and (hopefully!) calulated the moment graph to be

where α and δ are two characters of $T \times \mathbb{C}^{*}$.
Conduct the Braden-MacPherson algorithm with coefficients in \mathbb{Z}_{ℓ} to deduce that the parity sheaf \mathcal{E} supported on X has a non-trivial stalk at x_{0} if $\ell=2$. Deduce that X is not 2 -smooth.

Exercise 4.3. Consider W of type D_{4} with generators

and simple roots $\alpha, \beta, \gamma, \zeta$ such that $a=s_{\alpha}, b=s_{\beta}, c=s_{\gamma}$ and $z=s_{\zeta}$.
Consider the Schubert variety $X_{a b c z} \subset G / P_{a, b, c}$.
a) Show that its moment graph is given by:

b) By performing the Braden-MacPherson algorithm over \mathbb{Q}, show that the Kazhdan-Lusztig polynomial $P_{a b c, a b c z a b c}=1+2 q$.
c) By performing the Braden-MacPherson alogorithm with coefficients in \mathbb{Z}_{2}, conclude that the parity sheaf corresponding supported on X is not isomorphic to the intersection cohomology complex. Is the parity sheaf perverse?
$\left.d^{*}\right)$ Can you describe the singularity of X at the T-fixed point $a b c z$ explicitly? (Hint: Use the Bott-Samelson resolution to identify X at $a b c z$ with the contraction of the zero section of a line bundle on $\left(\mathbb{P}^{1}\right)^{3}$.) Hence describe the stalks of the intersection cohomology complex on X over \mathbb{Z}.

Exercise 4.4. (This is a hard one)
Let \mathscr{F} be a sheaf on a moment graph. For a vertex x we define the costalk of \mathscr{F} at x as

$$
\mathscr{F}_{x}:=\left\{m \in \mathscr{F}^{x} \mid \rho_{x, E}(m)=0 \text { for any edge } E \text { adjacent to } x\right\} .
$$

Let \mathcal{G} be the Bruhat graph associated to a root system and \mathcal{W} the Weyl group, $l: \mathcal{W} \rightarrow \mathbb{N}$ the length function. For $w \in \mathcal{W}$ denote by $\mathscr{B}(w)$ the Braden-MacPherson sheaf on \mathcal{G} with parameter w, and by $\mathbf{C}(w)=\Gamma(\mathscr{B}(w))$ the global sections. Let k be a field and suppose that $\left(\mathcal{G}_{\leq w}, k\right)$ is a GKM-pair. One can show that $\mathbf{C}(w)$ is, up to a shift a self-dual module over the structure algebra \mathcal{Z}, i.e.

$$
\operatorname{Hom}^{\bullet}(\mathbf{C}(w), S) \cong \mathbf{C}(w)[2 l(w)]
$$

- Show that this induces an isomorphism $\operatorname{Hom}^{\bullet}\left(\mathscr{B}(w)^{x}, S\right) \cong$ $\mathscr{B}(w)_{x}[2 l(w)]$ of graded S-modules.
Now let $\gamma: \mathfrak{h} \rightarrow \mathcal{D}$ be a generic character and consider the unital algebra homomorphism $S_{k} \rightarrow k[t]$ that is given by $H \mapsto \gamma(H) t$. For any S-module M we set $\bar{M}=M \otimes_{S_{k}} k$. Suppose that the quotient $X=\overline{\mathscr{B}(w)^{x}} / \overline{\mathscr{B}(w)_{x}}$ satisfies the Lefschetz property, i.e. suppose that

$$
t^{n}: X_{[l(w)-n]} \rightarrow X_{[l(w)+n]}
$$

is an isomorphism for any $n \geq 0$.

- Deduce the Kazdhan-Lusztig conjecture.

