Today is Whiskey Day! We don't insist on elegantly completed, beautifully written and carefully texed solutions to all exercises.

3. Exercises (Wednesday)

Exercise 3.1. Let \mathbb{Z}-mod denote the category of finitely generated \mathbb{Z} modules and $D^{b}(\mathbb{Z}$-mod) its bounded derived category. Consider the functor

$$
\mathbb{D}=\operatorname{RHom}(-, \mathbb{Z}): D^{b}(\mathbb{Z} \text {-mod })^{o p} \rightarrow D^{b}(\mathbb{Z} \text {-mod })
$$

and let ($D^{\leq 0}, D^{\geq 0}$) denote the standard t-structure on $D^{b}(\mathbb{Z}$-mod) with heart $\mathcal{C}=\mathbb{Z}$-mod.
a) Describe the dual t-structure, obtained by applying \mathbb{D} to $\left(D^{\leq 0}, D^{\geq 0}\right)$. Describe $\mathcal{C}^{\prime}=\mathbb{D}(\mathcal{C}) \subset D^{b}(\mathbb{Z}$-mod $)$ explicitly.
b) Show that if we regard \mathbb{Z} as a complex concentrated in degree zero, then \mathbb{Z} belongs to $\mathcal{C} \cap \mathcal{C}^{\prime}$. Describe the kernel and cokernel of the map $\mathbb{Z} \rightarrow \mathbb{Z}: 1 \mapsto n$, first in \mathcal{C}, then in \mathcal{C}^{\prime}.

Exercise 3.2. Let us go back to the setting of Exercise 2.3.
a) Calculate the stalks of $\operatorname{IC}\left(\mathbb{C}, \mathcal{L}_{\lambda}\right)$.

Now let \mathcal{L}_{A} denote a rank n local system on \mathbb{C}^{*} with monodromy given by $A \in G L_{n}(\mathbb{C})$.
$\left.\mathrm{b}^{*}\right)$ Calculate the stalks of $j_{!} \mathcal{L}_{A}, j_{*} \mathcal{L}_{A}$ and $j_{!*} \mathcal{L}_{A}$ at 0 . Deduce that $j_{!*}$ is not an exact functor in general.

Exercise 3.3. The intersection cohomology complex of the cone over a smooth projective variety.

Any projective algebraic variety $Z \subset \mathbb{P}^{n}$, is given by the vanishing of certain homogeneous polynomials in $n+1$ variables. We obtain the cone X over Z as the zero set of these polynomials in \mathbb{A}^{n+1}. In this case $X \backslash\{0\}$ is a \mathbb{C}^{*}-bundle over Z, with Chern class equal to the pull-back of the Chern class of $\mathcal{O}(1)$ on \mathbb{P}^{n}.

Suppose that $Z \subset \mathbb{P}^{n}$ is smooth, and let X denote the cone over X. Calculate the stalk of $\mathbf{I C}(X)$ at 0 in terms of the action of $c_{1}(\mathcal{O}(1))$ on the cohomology of Z. (Hint: Use the Leray-Serre spectral sequence to relate the cohomology of X and Z.)

More generally, suppose that X is obtained by "contracting the zero section" of a vector bundle E on a smooth variety Z. This means that there is a morphism

$$
\pi: E \rightarrow X
$$

which is an isomorphism over $E \backslash Z$ (where we regard $Z \subset E$ as the zero section) and contracts Z to a point. Then X has a unique singular point x_{0}. Calculate the stalk of $\mathbf{I C}(X)$ at x_{0}.

Exercise 3.4. Let $\pi: \bar{X} \rightarrow X$ denote a surjective proper map. We say that π is semi-small if $\bar{X} \times_{X} \bar{X} \subset \bar{X} \times \bar{X}$ has dimension equal to $d_{X}=\operatorname{dim} X$. (Dimension always refers to complex dimension.)
(1) If π is semi-small, prove the inequality

$$
\operatorname{dim}\left\{x \in X \mid \operatorname{dim} \pi^{-1}(x) \geq i\right\} \leq d_{X}-2 i
$$

for all $i \geq 0$.
(2) Show that $\pi_{*} \mathbb{Q}_{\bar{X}}[\operatorname{dim} X]$ is perverse. (Hint: Prove that a sheaf F is perverse if (and only if)
$\operatorname{dim} \operatorname{supp} \mathcal{H}^{-i} F \leq i$ and $\left.\operatorname{dim} \operatorname{supp} \mathcal{H}^{-i} \mathbb{D} F \leq i\right)$.
(3) Can one give a condition to guarantee that $\pi_{*} \underline{\mathbb{Q}} \overline{\bar{X}}[\operatorname{dim} X]$ is an intersection cohomology complex?

Exercise 3.5. Consider the map $\pi: \mathbb{R} \rightarrow$ pt. Show that $\pi_{!}$does not have a right adjoint $\pi^{!}: S h(\mathrm{pt}) \rightarrow \operatorname{Sh}(\mathbb{R})$.

