Today is Whiskey Day! We don't insist on elegantly completed, beautifully written and carefully texed solutions to all exercises.

3. EXERCISES (WEDNESDAY)

Exercise 3.1. Let \mathbb{Z} -mod denote the category of finitely generated \mathbb{Z} -modules and $D^b(\mathbb{Z}$ -mod) its bounded derived category. Consider the functor

$$\mathbb{D} = \operatorname{RHom}(-,\mathbb{Z}) : D^b(\mathbb{Z}\operatorname{-mod})^{op} \to D^b(\mathbb{Z}\operatorname{-mod})$$

and let $(D^{\leq 0}, D^{\geq 0})$ denote the standard *t*-structure on $D^b(\mathbb{Z}\text{-mod})$ with heart $\mathcal{C} = \mathbb{Z}\text{-mod}$.

- a) Describe the dual *t*-structure, obtained by applying \mathbb{D} to $(D^{\leq 0}, D^{\geq 0})$. Describe $\mathcal{C}' = \mathbb{D}(\mathcal{C}) \subset D^b(\mathbb{Z}\text{-mod})$ explicitly.
- b) Show that if we regard \mathbb{Z} as a complex concentrated in degree zero, then \mathbb{Z} belongs to $\mathcal{C} \cap \mathcal{C}'$. Describe the kernel and cokernel of the map $\mathbb{Z} \to \mathbb{Z} : 1 \mapsto n$, first in \mathcal{C} , then in \mathcal{C}' .

Exercise 3.2. Let us go back to the setting of Exercise 2.3.

a) Calculate the stalks of $IC(\mathbb{C}, \mathcal{L}_{\lambda})$.

Now let \mathcal{L}_A denote a rank *n* local system on \mathbb{C}^* with monodromy given by $A \in GL_n(\mathbb{C})$.

b*) Calculate the stalks of $j_!\mathcal{L}_A$, $j_*\mathcal{L}_A$ and $j_{!*}\mathcal{L}_A$ at 0. Deduce that $j_{!*}$ is not an exact functor in general.

Exercise 3.3. The intersection cohomology complex of the cone over a smooth projective variety.

Any projective algebraic variety $Z \subset \mathbb{P}^n$, is given by the vanishing of certain homogeneous polynomials in n + 1 variables. We obtain the cone X over Z as the zero set of these polynomials in \mathbb{A}^{n+1} . In this case $X \setminus \{0\}$ is a \mathbb{C}^* -bundle over Z, with Chern class equal to the pull-back of the Chern class of $\mathcal{O}(1)$ on \mathbb{P}^n .

Suppose that $Z \subset \mathbb{P}^n$ is smooth, and let X denote the cone over X. Calculate the stalk of $\mathbf{IC}(X)$ at 0 in terms of the action of $c_1(\mathcal{O}(1))$ on the cohomology of Z. (*Hint:* Use the Leray-Serre spectral sequence to relate the cohomology of X and Z.)

More generally, suppose that X is obtained by "contracting the zero section" of a vector bundle E on a smooth variety Z. This means that there is a morphism

$$\pi: E \to X$$

which is an isomorphism over $E \setminus Z$ (where we regard $Z \subset E$ as the zero section) and contracts Z to a point. Then X has a unique singular point x_0 . Calculate the stalk of $\mathbf{IC}(X)$ at x_0 .

Exercise 3.4. Let $\pi: \overline{X} \to X$ denote a surjective proper map. We say that π is *semi-small* if $\overline{X} \times_X \overline{X} \subset \overline{X} \times \overline{X}$ has dimension equal to $d_X = \dim X$. (Dimension always refers to complex dimension.)

(1) If π is semi-small, prove the inequality

$$\dim\{x \in X \mid \dim \pi^{-1}(x) \ge i\} \le d_X - 2i$$

for all $i \geq 0$.

(2) Show that $\pi_* \underline{\mathbb{Q}}_{\overline{X}}[\dim X]$ is perverse. (Hint: Prove that a sheaf F is perverse if (and only if)

dim supp $\mathcal{H}^{-i}F \leq i$ and dim supp $\mathcal{H}^{-i}\mathbb{D}F \leq i$).

(3) Can one give a condition to guarantee that $\pi_* \underline{\mathbb{Q}}_{\overline{X}}[\dim X]$ is an intersection cohomology complex?

Exercise 3.5. Consider the map $\pi : \mathbb{R} \to \text{pt.}$ Show that $\pi_!$ does not have a right adjoint $\pi^! : Sh(\text{pt}) \to Sh(\mathbb{R})$.