2. Exercises (Tuesday)

Exercise 2.1. Let $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C})$ with standard Cartan and Borel subalgebras $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}$. Let $S=S(\mathfrak{h})$ and consider the corresponding deformed category \mathcal{O}_{S}. Let $M_{S}(\lambda)$ be the deformed Verma module with highest weight λ.

- Describe $M_{S}(\lambda)$ as explicitly as possible.
- Show that $\operatorname{Hom}_{\mathcal{O}_{S}}\left(M_{S}(\lambda), M_{S}(\mu)\right)=0$ for $\lambda \neq \mu$.

Exercise 2.2. For $i=0,1,2$ consider the ray

$$
R_{i}:=\left\{\lambda e^{2 \pi i / 3} \mid \lambda \in \mathbb{R}_{\geq 0}\right\} \subset \mathbb{C} .
$$

Set $Z=R_{1} \cup R_{2} \cup R_{3}$ and let $i: Z \hookrightarrow \mathbb{C}$ denote the inclusion. Calculate $i!\underline{\mathbb{Q}}_{\mathbb{C}}$, where $\underline{\mathbb{Q}}_{\mathbb{C}}$ denotes the constant sheaf on \mathbb{C}.
Exercise 2.3. Let $j: \mathbb{C}^{*} \rightarrow \mathbb{C}$ denote the open immersion. Compute the stalk $\left(j_{*}{\underline{\mathbb{C}^{*}}}\right)_{0}$ and compare it with $H^{*}\left(j^{-1}(\{0\}, k)\right.$. Same question for $\left(j!\underline{k}_{\mathbb{C}^{*}}\right)_{0}$.
Exercise 2.4. More generally, let \mathcal{L}_{λ} denote a rank one local system on \mathbb{C}^{*} with monodromy given by $\lambda \in \mathbb{C}^{*}$. Let $j: \mathbb{C}^{*} \hookrightarrow \mathbb{C}$ denote the inclusion. Describe the graded rank of the stalks of $j_{!} \mathcal{L}_{\lambda}$ and $j_{*} \mathcal{L}_{\lambda}$ at $0 \in \mathbb{C}$.

Exercise 2.5. Consider \mathbb{R}^{2} with coordinates (x, y), let $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$: $(x, y) \mapsto x$ denote the first projection, and $i:\{0\} \hookrightarrow \mathbb{R}$ the inclusion. Consider the Cartesian diagram

Let $H=\{(x, y) \mid x y=1\} \subset \mathbb{R}^{2}$ denote a hyperbola in \mathbb{R}^{2} and let \mathbb{Q}_{H} denote the constant sheaf on H, extended by zero to \mathbb{R}^{2}.
a) Describe the sheaves $\pi_{*} \mathbb{Q}_{H}$ and $\pi_{!} \mathbb{Q}_{H}$.
b) Show that $i^{!} \pi_{*} \mathbb{Q}_{H} \cong \pi_{*}^{\prime}\left(i^{\prime}\right)^{!} \mathbb{Q}_{H}$ but that $i^{*} \pi_{*} \mathbb{Q}_{H} \not \equiv \pi_{*}^{\prime}\left(i^{\prime}\right)^{*} \mathbb{Q}_{H}$.
c) If you did the above example without deriving your functors, redo it with derived functors! Why does nothing change in this case?

Exercise 2.6. Let $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C P}^{n}$ denote the natural projection.
a) Show that π is a locally trivial fibration with fibre \mathbb{C}^{*}.
b) Is $\pi_{*} \underline{k}$ the direct sum of its cohomology sheaves? Hint: consider the "Leray-Serre spectral sequence" associated to this fibration.

Exercise 2.7. Let X be a variety endowed with a free action of a finite group H.
a) Convince yourself that $\mathrm{R} \Gamma(X, k)$ is a perfect complex of $k H$ modules (it can be represented by a bounded complex of projective $k H$-modules), and that $\mathrm{R} \Gamma(X / H, k)$ is obtained from that of X by taking derived fixed points.
b) Recover the cohomology of the real projective space.

