2. EXERCISES (TUESDAY)

Exercise 2.1. Let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ with standard Cartan and Borel subalgebras $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}$. Let $S = S(\mathfrak{h})$ and consider the corresponding deformed category \mathcal{O}_S . Let $M_S(\lambda)$ be the deformed Verma module with highest weight λ .

- Describe $M_S(\lambda)$ as explicitly as possible.
- Show that $\operatorname{Hom}_{\mathcal{O}_S}(M_S(\lambda), M_S(\mu)) = 0$ for $\lambda \neq \mu$.

Exercise 2.2. For i = 0, 1, 2 consider the ray

$$R_i := \{ \lambda e^{2\pi i/3} \mid \lambda \in \mathbb{R}_{\geq 0} \} \subset \mathbb{C}.$$

Set $Z = R_1 \cup R_2 \cup R_3$ and let $i : Z \hookrightarrow \mathbb{C}$ denote the inclusion. Calculate $i^! \mathbb{Q}_{\mathbb{C}}$, where $\mathbb{Q}_{\mathbb{C}}$ denotes the constant sheaf on \mathbb{C} .

Exercise 2.3. Let $j : \mathbb{C}^* \to \mathbb{C}$ denote the open immersion. Compute the stalk $(j_*\underline{k}_{\mathbb{C}^*})_0$ and compare it with $H^*(j^{-1}(\{0\},k))$. Same question for $(j_!\underline{k}_{\mathbb{C}^*})_0$.

Exercise 2.4. More generally, let \mathcal{L}_{λ} denote a rank one local system on \mathbb{C}^* with monodromy given by $\lambda \in \mathbb{C}^*$. Let $j : \mathbb{C}^* \hookrightarrow \mathbb{C}$ denote the inclusion. Describe the graded rank of the stalks of $j_!\mathcal{L}_{\lambda}$ and $j_*\mathcal{L}_{\lambda}$ at $0 \in \mathbb{C}$.

Exercise 2.5. Consider \mathbb{R}^2 with coordinates (x, y), let $\pi : \mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto x$ denote the first projection, and $i : \{0\} \hookrightarrow \mathbb{R}$ the inclusion. Consider the Cartesian diagram

$$\begin{array}{c} \mathbb{R} \xrightarrow{i'} \mathbb{R}^2 \\ \downarrow_{\pi'} & \downarrow_{\pi} \\ \{0\} \xrightarrow{i} \mathbb{R} \end{array}$$

Let $H = \{(x, y) \mid xy = 1\} \subset \mathbb{R}^2$ denote a hyperbola in \mathbb{R}^2 and let \mathbb{Q}_H denote the constant sheaf on H, extended by zero to \mathbb{R}^2 .

- a) Describe the sheaves $\pi_* \mathbb{Q}_H$ and $\pi_! \mathbb{Q}_H$.
- b) Show that $i^! \pi_* \mathbb{Q}_H \cong \pi'_*(i')^! \mathbb{Q}_H$ but that $i^* \pi_* \mathbb{Q}_H \ncong \pi'_*(i')^* \mathbb{Q}_H$.
- c) If you did the above example without deriving your functors, redo it with derived functors! Why does nothing change in this case?

Exercise 2.6. Let $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ denote the natural projection.

a) Show that π is a locally trivial fibration with fibre \mathbb{C}^* .

b) Is $\pi_* \underline{k}$ the direct sum of its cohomology sheaves? Hint: consider the "Leray-Serre spectral sequence" associated to this fibration.

Exercise 2.7. Let X be a variety endowed with a free action of a finite group H.

- a) Convince yourself that $R\Gamma(X, k)$ is a perfect complex of kH-modules (it can be represented by a bounded complex of projective kH-modules), and that $R\Gamma(X/H, k)$ is obtained from that of X by taking derived fixed points.
- b) Recover the cohomology of the real projective space.

2