There are far too many exercises. Complete as many (or as few) as you wish!

1. Exercises (Monday)

Exercise 1.1. Let $m \geq 2$ and consider the Coxeter group

$$
W:=\left\langle s, t \mid(s t)^{m}=\mathrm{id}\right\rangle .
$$

a) Describe the Bruhat order on W.
b) Show that for all $x \leq y$ in W, the Kazhdan-Lusztig polynomial $P_{x, y}$ is equal to 1 .

Exercise 1.2. Let W denote the Weyl group S_{4} with simple reflections s, t and u such that $s u=u s$.
a) Calculate the the set $\{x \in W \mid x \leq t s u t\}$. How many elements are there of each length?
b) Calculate the Kazhdan-Lusztig polynomial $P_{t, t s u t}$.
c*) Can you find other examples of non-trivial Kazhdan-Lusztig polynomials in $W=S_{4}$?

Exercise 1.3. Let \mathfrak{g} be a finite dimensional, semisimple complex Lie algebra and fix a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ and a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{b}$. Denote by \mathfrak{h}^{*} the space of \mathbb{C}-linear forms on \mathfrak{h}. For $\lambda \in \mathfrak{h}^{*}$ let $M(\lambda)$ be the Verma module and $L(\lambda)$ the simple module of highest weight λ, and denote by $P(\lambda)$ the projective cover of $L(\lambda)$ in \mathcal{O}.

Show that $\operatorname{dim} \operatorname{Hom}(P(\lambda), M)=[M: L(\lambda)]$ for all modules M of \mathcal{O} and $\lambda \in \mathfrak{h}^{*}$.

Exercise 1.4. Let \sim be the equivalence relation on \mathfrak{h}^{*} that is generated by $\lambda \sim \mu$ if $[M(\lambda): L(\mu)] \neq 0$. For any equivalence class $\Lambda \in \mathfrak{h}^{*} / \sim$ let \mathcal{O}_{Λ} be the full subcategory of \mathcal{O} that contains all modules M with $[M: L(\lambda)] \neq 0$ only if $\lambda \in \Lambda$.

Show that

$$
\begin{aligned}
\bigoplus_{\Lambda \in \widehat{\mathfrak{h}^{\star}} / \sim} \mathcal{O}_{\Lambda} & \rightarrow \mathcal{O} \\
\quad\left(M_{\Lambda}\right) & \mapsto \bigoplus M_{\Lambda}
\end{aligned}
$$

is an equivalence of categories. Hint: Use the BGG-reciprocity: $(P(\lambda)$: $M(\mu))=[M(\mu): L(\lambda)]$.

Exercise 1.5. Let \mathscr{F} be a sheaf on the moment graph \mathcal{G}. Denote by \mathcal{V} its set of vertices. Show that the following are equivalent:
(1) The restriction map $\Gamma(\mathcal{V}, \mathscr{F}) \rightarrow \Gamma(U, \mathscr{F})$ is surjective for any open subset U of \mathcal{V}.
(2) The restriction map $\Gamma(\{\geqslant x\}, \mathscr{F}) \rightarrow \Gamma(\{>x\}, \mathscr{F})$ is surjective for any $x \in \mathcal{V}$.
(3) The map $\mathscr{F}^{x} \rightarrow \bigoplus_{E: x \rightarrow y} \mathscr{F}^{E}$ contains $\mathscr{F}^{\delta x}$ in its image.

Exercise 1.6. Let $V=\mathbb{C}^{n}$ equipped with the natural action of $T=$ $\left(\mathbb{C}^{*}\right)^{n}$. Let $\operatorname{Gr}(k, n)$ denote the Grassmannian of k-planes in \mathbb{C}^{n}. Show that T has finitely many zero and one-dimensional orbits on $\operatorname{Gr}(k, n)$ and describe the moment graph of this action. (You might like to do the case $k=1, \operatorname{Gr}(k, n)=\mathbb{P}^{n-1}$ as a warm up!)

Exercise 1.7. Let $\langle\cdot \mid \cdot\rangle$ denote a symplectic form on a four dimensional vector space V and let $G=\operatorname{Sp}(V)$ denote the corresponding symplectic group.
a) Show that the variety X of isotropic 2-planes in V is a partial flag variety for G.
b) Fix an isotropic 2-plane L and consider

$$
X_{1}:=\left\{L^{\prime} \in X \mid \operatorname{dim}\left(L^{\prime} \cap L\right) \geq 1\right\} .
$$

Show that X_{1} is a Schubert variety in X.
c) Show that X_{1} is singular.
d^{*}) Describe the singularity of X_{1} explicitly as a quotient singularity and deduce that it is rationally smooth.

Exercise 1.8. Let V denote a two dimensional complex vector space, set $V_{-1}=V_{0}=V$ and consider $V_{-1} \oplus V_{0}$ equipped with a nilpotent endomorphism

$$
t: V_{-1} \oplus V_{0} \rightarrow V_{-1} \oplus V_{0}:\left(v_{-1}, v_{0}\right) \mapsto\left(0, v_{-1}\right) .
$$

Consider the variety

$$
X=\left\{W \subset V_{-1} \oplus V_{0} \left\lvert\, \begin{array}{c}
W \text { is a } t \text {-stable subspace, } \\
\operatorname{dim} W=2
\end{array}\right.\right\}
$$

a) Show that X is naturally a closed subvariety of the Grassmannian of 2-planes in $V_{-1} \oplus V_{0}$, and is hence a projective variety.
b) Show that X is a projective variety and that an open neighbourhood of the point $W=0 \oplus V_{0} \in X$ is a singularity of type A_{1} (i.e. the singularity given by the equation $x^{2}=y z$ inside \mathbb{A}^{3}). (Hint: consider subspaces $W \subset V_{-1} \oplus V_{0}$ which are transversal to V_{-1} as graphs of linear maps $V_{0} \rightarrow V_{-1}$. What is the condition to be t-stable?)
c) We now define a torus action on X. Let us assume $V \cong \mathbb{C}^{2}$ with the standard action of a rank two torus T. Let \mathbb{C}^{*} act on $V_{-1} \otimes V$ by $\lambda \cdot\left(v_{-1}, v_{0}\right)=\left(\lambda v_{-1}, v_{0}\right)$. Show that we get an induced action of $T \times \mathbb{C}^{*}$ on X. Show that $T \times \mathbb{C}^{*}$ has finitely
many zero and one dimensional orbits on X and compute the moment graph.
d) Consider the space

$$
\tilde{X}=\left\{\begin{array}{ll}
W_{1} \subset W \subset V_{-1} \oplus V_{0} \mid & \begin{array}{c}
W_{1}, W t \text {-stable subspaces, } \\
\operatorname{dim} W_{1}=1, \operatorname{dim} W=2
\end{array}
\end{array}\right\}
$$

Show that \widetilde{X} is a smooth projective variety and that the map

$$
\pi: \widetilde{X} \rightarrow X:\left(W_{1}, W\right) \mapsto W
$$

is a resolution of singularities. Show that $T \times \mathbb{C}^{*}$ also acts naturally on \widetilde{X} and describe the map $\widetilde{X} \rightarrow W$ in terms of moment graphs.
(In fact, X is an example of a Schubert variety in the "affine Grassmannian" for $G L_{2}$ and π is its Bott-Samelson resolution.)

Exercise 1.9. Compute the cohomology with integer coefficients of a sphere, of a compact surface of genus g, of a real or complex projective space (particularly $\mathbb{R P}^{3}$).
Exercise 1.10. ${ }^{1}$ Let \dot{S} denote a sphere minus three points, and \dot{T} denote a torus minus one point. Show that \dot{S} and \dot{T} are homotopic, but not homeomorphic.

Hints (two methods; you can try to find your own):
(1) try to remove something; ${ }^{2}$
(2) consider the morphism from H_{c}^{1} to H^{1} and use Hodge structures.

[^0]
[^0]: ${ }^{1}$ This exercise is not very relevant, it is there just for fun. We thank Luca Migliorini for sharing it with us.
 ${ }^{2}$ Model: see that \mathbb{R} and \mathbb{R}^{2} are not hemeomorphic by removing one point.

