There are far too many exercises. Complete as many (or as few) as you wish!

1. EXERCISES (MONDAY)

Exercise 1.1. Let $m \geq 2$ and consider the Coxeter group

$$W := \langle s, t \mid (st)^m = \mathrm{id} \rangle.$$

- a) Describe the Bruhat order on W.
- b) Show that for all $x \leq y$ in W, the Kazhdan-Lusztig polynomial $P_{x,y}$ is equal to 1.

Exercise 1.2. Let W denote the Weyl group S_4 with simple reflections s, t and u such that su = us.

- a) Calculate the set $\{x \in W \mid x \leq tsut\}$. How many elements are there of each length?
- b) Calculate the Kazhdan-Lusztig polynomial $P_{t,tsut}$.
- c^{*}) Can you find other examples of non-trivial Kazhdan-Lusztig polynomials in $W = S_4$?

Exercise 1.3. Let \mathfrak{g} be a finite dimensional, semisimple complex Lie algebra and fix a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ and a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{b}$. Denote by \mathfrak{h}^* the space of \mathbb{C} -linear forms on \mathfrak{h} . For $\lambda \in \mathfrak{h}^*$ let $M(\lambda)$ be the Verma module and $L(\lambda)$ the simple module of highest weight λ , and denote by $P(\lambda)$ the projective cover of $L(\lambda)$ in \mathcal{O} .

Show that dim Hom $(P(\lambda), M) = [M : L(\lambda)]$ for all modules M of \mathcal{O} and $\lambda \in \mathfrak{h}^*$.

Exercise 1.4. Let \sim be the equivalence relation on \mathfrak{h}^* that is generated by $\lambda \sim \mu$ if $[M(\lambda) : L(\mu)] \neq 0$. For any equivalence class $\Lambda \in \mathfrak{h}^* / \sim$ let \mathcal{O}_{Λ} be the full subcategory of \mathcal{O} that contains all modules M with $[M : L(\lambda)] \neq 0$ only if $\lambda \in \Lambda$.

Show that

$$\bigoplus_{\Lambda \in \widehat{\mathfrak{h}}^{\star}/\sim} \mathcal{O}_{\Lambda} \to \mathcal{O}$$
$$(M_{\Lambda}) \mapsto \bigoplus M_{\Lambda}$$

is an equivalence of categories. Hint: Use the *BGG-reciprocity:* $(P(\lambda) : M(\mu)) = [M(\mu) : L(\lambda)].$

Exercise 1.5. Let \mathscr{F} be a sheaf on the moment graph \mathcal{G} . Denote by \mathcal{V} its set of vertices. Show that the following are equivalent:

(1) The restriction map $\Gamma(\mathcal{V}, \mathscr{F}) \to \Gamma(U, \mathscr{F})$ is surjective for any open subset U of \mathcal{V} .

- (2) The restriction map $\Gamma(\{ \geq x\}, \mathscr{F}) \to \Gamma(\{ > x\}, \mathscr{F})$ is surjective for any $x \in \mathcal{V}$.
- (3) The map $\mathscr{F}^x \to \bigoplus_{E: x \to y} \mathscr{F}^E$ contains $\mathscr{F}^{\delta x}$ in its image.

Exercise 1.6. Let $V = \mathbb{C}^n$ equipped with the natural action of $T = (\mathbb{C}^*)^n$. Let $\operatorname{Gr}(k, n)$ denote the Grassmannian of k-planes in \mathbb{C}^n . Show that T has finitely many zero and one-dimensional orbits on $\operatorname{Gr}(k, n)$ and describe the moment graph of this action. (You might like to do the case k = 1, $\operatorname{Gr}(k, n) = \mathbb{P}^{n-1}$ as a warm up!)

Exercise 1.7. Let $\langle \cdot | \cdot \rangle$ denote a symplectic form on a four dimensional vector space V and let $G = \operatorname{Sp}(V)$ denote the corresponding symplectic group.

- a) Show that the variety X of isotropic 2-planes in V is a partial flag variety for G.
- b) Fix an isotropic 2-plane L and consider

 $X_1 := \{ L' \in X \mid \dim(L' \cap L) \ge 1 \}.$

Show that X_1 is a Schubert variety in X.

- c) Show that X_1 is singular.
- d*) Describe the singularity of X_1 explicitly as a quotient singularity and deduce that it is rationally smooth.

Exercise 1.8. Let V denote a two dimensional complex vector space, set $V_{-1} = V_0 = V$ and consider $V_{-1} \oplus V_0$ equipped with a nilpotent endomorphism

$$t: V_{-1} \oplus V_0 \to V_{-1} \oplus V_0: (v_{-1}, v_0) \mapsto (0, v_{-1}).$$

Consider the variety

$$X = \{ W \subset V_{-1} \oplus V_0 \mid \begin{array}{c} W \text{ is a } t \text{-stable subspace,} \\ \dim W = 2 \end{array} \}$$

- a) Show that X is naturally a closed subvariety of the Grassmannian of 2-planes in $V_{-1} \oplus V_0$, and is hence a projective variety.
- b) Show that X is a projective variety and that an open neighbourhood of the point $W = 0 \oplus V_0 \in X$ is a singularity of type A_1 (i.e. the singularity given by the equation $x^2 = yz$ inside \mathbb{A}^3). (*Hint:* consider subspaces $W \subset V_{-1} \oplus V_0$ which are transversal to V_{-1} as graphs of linear maps $V_0 \to V_{-1}$. What is the condition to be t-stable?)
- c) We now define a torus action on X. Let us assume $V \cong \mathbb{C}^2$ with the standard action of a rank two torus T. Let \mathbb{C}^* act on $V_{-1} \otimes V$ by $\lambda \cdot (v_{-1}, v_0) = (\lambda v_{-1}, v_0)$. Show that we get an induced action of $T \times \mathbb{C}^*$ on X. Show that $T \times \mathbb{C}^*$ has finitely

 $\mathbf{2}$

many zero and one dimensional orbits on X and compute the moment graph.

d) Consider the space

$$\widetilde{X} = \left\{ W_1 \subset W \subset V_{-1} \oplus V_0 \mid \begin{array}{c} W_1, W \text{ } t \text{-stable subspaces,} \\ \dim W_1 = 1, \dim W = 2 \end{array} \right\}$$

Show that \widetilde{X} is a smooth projective variety and that the map

$$\pi: X \to X: (W_1, W) \mapsto W$$

is a resolution of singularities. Show that $T \times \mathbb{C}^*$ also acts naturally on \widetilde{X} and describe the map $\widetilde{X} \to W$ in terms of moment graphs.

(In fact, X is an example of a Schubert variety in the "affine Grassmannian" for GL_2 and π is its Bott-Samelson resolution.)

Exercise 1.9. Compute the cohomology with integer coefficients of a sphere, of a compact surface of genus g, of a real or complex projective space (particularly \mathbb{RP}^3).

Exercise 1.10. ¹ Let \dot{S} denote a sphere minus three points, and \dot{T} denote a torus minus one point. Show that \dot{S} and \dot{T} are homotopic, but not homeomorphic.

Hints (two methods; you can try to find your own):

- (1) try to remove something; 2
- (2) consider the morphism from H_c^1 to H^1 and use Hodge structures.

 $^{^1}$ This exercise is not very relevant, it is there just for fun. We thank Luca Migliorini for sharing it with us.

² Model: see that \mathbb{R} and \mathbb{R}^2 are not hemeomorphic by removing one point.