Hypertoric category \mathcal{O}

Tom Braden with Anthony Licata Nicholas Proudfoot Ben Webster

Sheaves in Representation Theory, Skye May 28, 2010

Hypertoric category O

A ►

Let (\mathfrak{M}, ω) be a smooth variety over \mathbb{C} with an algebraic symplectic form. Assume that

- The map $\mathfrak{M} \to \mathfrak{M}_0 := \operatorname{Spec} \Gamma(\mathfrak{M}, \mathcal{O}_{\mathfrak{M}})$ is a resolution of singularities.
- There is an action of S = C^{*} on M acting on ω and on nonconstant functions with positive weight. (contracts M₀ to 0)

 ω induces a Poisson structure $\{\cdot, \cdot\}$ on $\mathbb{C}[\mathfrak{M}_0]$. A quantization of \mathfrak{M}_0 is an \mathbb{N} -filtered algebra U equipped with an isomorphism gr $U \cong \mathbb{C}[\mathfrak{M}_0]$ so that

$$\text{if } x \in F_k U, y \in F_\ell U, \text{ then } [x,y] = \{f,g\} \mod F_{k+\ell-2} U.$$

There will in general be many different quantizations U_{λ} , parametrized by $\lambda \in H^2(\mathfrak{M}; \mathbb{C})$.

(4回) (注) (注) (注) (注)

Examples satisfying these hypotheses include many varieties and algebras of interest in representation theory:

•
$$\mathfrak{M} = T^*(G/B)$$
, $\mathfrak{M}_0 =$ the nilcone;
 $U_{\chi} = U(\mathfrak{g})/I_{\chi}$, $\chi \colon Z(U(\mathfrak{g})) \to \mathbb{C}$.

- M = C²/Γ, a crepant resolution of C²/Γ, for Γ ⊂ SL₂(C) finite, or more generally the Hilbert scheme M = Hilb_n(C²/Γ);
 U_λ = a spherical rational Cherednik algebra of S_n ≥ Γ
- M is a quiver variety, à la Nakajima;
 U =?.
- M is a hypertoric variety;
 U is an algebra we call the hypertoric enveloping algebra.

向下 イヨト イヨト

Hypertoric varieties

Standard action of $T^n = (\mathbb{C}^*)^n$ on \mathbb{C}^n induces action on $T^*\mathbb{C}^n$. Take a connected subtorus $K \subset T^n$. For a character $\lambda \colon K \to \mathbb{C}^*$, define

$$\mathfrak{M}_{\lambda} = (T^* \mathbb{C}^n) / \hspace{-1.5mm} / \hspace{$$

where $\mu: T^*\mathbb{C}^n \to \mathfrak{k}^*$ is the moment map of the *K*-action:

$$T^*\mathbb{C}^n \longrightarrow (\mathfrak{t}^n)^* \longrightarrow \mathfrak{k}^*$$

 $(z_i, w_i) \mapsto (z_i w_i)$

For general λ , \mathfrak{M}_{λ} is (Q-)smooth and symplectic; at the other extreme,

$$\mathfrak{M}_{0} = \operatorname{Spec}\left(\mathbb{C}[z_{i}, w_{i}]^{K} / \mu^{*}(\mathfrak{k})\right)$$

is affine and highly singular. There is a natural resolution $\mathfrak{M}_{\lambda} \to \mathfrak{M}_{0}$.

The geometry of \mathfrak{M}_{λ} is governed by the hyperplane arrangement $\mathcal{H}_{\lambda} := (V_{\lambda}, \{H_1, \ldots, H_n\})$, where

 $V_{\lambda} = \text{inverse image of } \lambda \text{ under } (\mathfrak{t}^{n}_{\mathbb{R}})^{*} \to \mathfrak{k}^{*}_{\mathbb{R}}, \ H_{i} = V_{\lambda} \cap \{x_{i} = 0\}.$

Each chamber gives a Lagrangian toric subvariety: set $z_i = 0$ or $w_i = 0$ depending on which side of H_i you're on.

Quantizing the hypertoric variety

The Weyl algebra $\mathbb{D} = \mathbb{D}(\mathbb{C}^n)$ quantizes $T^*\mathbb{C}^n$. Define

$$U := \mathbb{D}^{K}$$
 "enveloping algebra"
 $H := \mathbb{D}^{T^{n}}$ "Cartan subalgebra"

H is a polynomial algebra over $h_i^+ = z_i \partial_i$ (or $h_i^- = \partial_i z_i = h_i^+ + 1$). Define $\mu_q : \mathfrak{k} \to H$ by

$$(a_1,\ldots,a_n)\mapsto \sum a_ih_i^+.$$

Its image generates the center Z(U), and

$$U_{\lambda} := U/U\langle (\mu_{q} - \lambda)(\mathfrak{k}) \rangle$$

is a quantization of \mathfrak{M}_0 .

白 ト イヨト イヨト

Weight modules

A weight module is fin. gen. U_{λ} -module on which H acts locally finitely. (assume integral weights: i.e., in $\Lambda = \{v \in V_{\lambda} \mid \text{ all } h_i^+(v) \in \mathbb{Z}\})$

Musson and van den Bergh computed category of weight modules.

Simples L_{α} are indexed by "feasible chambers" $\alpha \in \mathcal{F}$: regions given by $h_i^+ \ge 0$ or $h_i^- \le 0$ which contain a lattice point.

All such lattice points have one-dimensional weight spaces.

- 4 回 2 - 4 □ 2 - 4 □

Say that λ is "generic" if \mathcal{H}_{λ} is simple (no point is on more than dim V_{λ} hyperplanes) and $\mathcal{F} =$ set of regions of \mathcal{H}_{λ} .

category \mathcal{O}

Take $\xi : \mathbb{C}^* \to T^n/K$; gives linear function on affine space V_{λ} . Assume ξ generic: not constant on any 1-flat of arrangement. Let $U_{\lambda}^+ \subset \mathbb{D}$ be span of elements of nonneg ξ -weight.

Definition

 $\mathcal{O}(K, \lambda, \xi)$ = the category of (integral) weight modules for U_{λ} which are U_{λ}^+ -locally finite.

Simples are L_{α} for α in subset $\mathcal{B} \subset \mathcal{F}$ of ξ -bounded chambers.

Lagrangian toric varieties for $\alpha \in \mathcal{B}$ are closures of cells $C_{\alpha} := \{q \in \mathfrak{M} \mid \lim_{t \to 0} \xi(t) \cdot q = p_{\alpha}\},\ p_{\alpha} \in \mathfrak{M}^{T^{n}/K}$ is the fixed point corresponding to the ξ -maximal point of the chamber.

The hypertoric category $\mathcal{O}(K, \lambda, \xi)$ is more correctly analogous to a variant \mathcal{O}' of category \mathcal{O}

Category $\mathcal{O}(\mathfrak{g})$	Category $\mathcal{O}'(\mathfrak{g})$
h acts semisimply	\mathfrak{h} acts locally finitely
$Z(U(\mathfrak{g}))$ acts locally finitely	$Z(U(\mathfrak{g}))$ acts semisimply

But Soergel showed that $\mathcal{O}'(\mathfrak{g})_{\chi}$ is equivalent to $\mathcal{O}(\mathfrak{g})_{\chi}$ for χ integral regular.

Theorem

 $\mathcal{O}(K,\lambda,\xi)$ is equivalent to modules over an algebra $A = A(K,\lambda,\xi)$.

 $Q_1 :=$ the path algebra of quiver

$$Q_n := Q_1 \otimes_{\mathbb{C}} Q_2 \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} Q_1.$$

$$A := (e_{\mathcal{F}} Q_n e_{\mathcal{F}}) / \langle e_{\mathcal{F} \setminus \mathcal{B}}, \vartheta(\mathfrak{k}) \rangle,$$

where $\vartheta: \mathfrak{t}^n = \mathbb{C}^n \to Q_n$ sends i^{th} basis vector to sum of all loops flipping the sign in the i^{th} place.

回 と く ヨ と く ヨ と …

Assume λ , ξ are generic.

Theorem

 $\mathcal{O}(V,\lambda,\xi)$ is highest weight (A is quasi-hereditary): there are

- a partial order on set B of idempotents,
- standard and projective objects M_{α} , P_{α} , $\alpha \in \mathcal{B}$, and
- surjections $P_{lpha} o M_{lpha} o L_{lpha}$ so that

 $\ker(M_{\alpha} \to L_{\alpha})$ has filtration with subquotients L_{β} , $\beta < \alpha$, and $\ker(P_{\alpha} \to M_{\alpha})$ has filtration with subquotients M_{γ} , $\gamma > \alpha$.

Partial order: $\alpha \leq \beta$ iff there is a path $v_{\alpha} \rightarrow v_{\beta}$ between highest vertices of the chambers, running along edges in \mathcal{H}_{λ} in direction of increasing ξ .

Multiplicities in standards: $[M_{\beta} : L_{\alpha}] = 1$ if chamber α lies in downward cone from v_{β} , 0 otherwise. (K-L polynomials are all 0 or 1!)

(《圖》 《문》 《문》 - 문

Note that A is graded, although it's not obvious from definition of O.

Theorem

The algebra A is Koszul: in category of graded A-modules,

for any
$$\alpha, \beta$$
, $\operatorname{Ext}^{i}(L_{\alpha}, L_{\beta})_{j} = 0$ if $i \neq j$.

The Koszul dual ring $A^! := \operatorname{Ext}^*_{\mathcal{A}}(\mathcal{A}_0, \mathcal{A}_0)$ is isomorphic to $\mathcal{A}(\mathcal{K}^!, -\xi, -\lambda)$, where $\mathfrak{k}^!$ is the orthogonal complement to $\mathfrak{k} \subset \mathfrak{t}^n = \mathbb{C}^n$ under the standard inner product.

Gives a derived equivalence $D^b(A - gr) \cong D^b(A^! - gr)$ sending simples to projectives, injectives to simples, and standards to standards (with shifts). The correspondence $(K_{-}) \in (K_{-})$ is called Cale deality.

The correspondence $(K, \lambda, \xi) \leftrightarrow (K^!, -\xi, -\lambda)$ is called Gale duality.

・日・ ・ ヨ・ ・ ヨ・

In particular, there is an order-reversing bijection $\mathcal{B} \leftrightarrow \mathcal{B}^!$ between the sets of bounded feasible chambers (in fact $\mathcal{B} = \mathcal{B}^!$ as sets of sign vectors).

The relation "share a codimension one wall" (= has a nonzero Ext^1) is also preserved by Gale duality.

We can also see the algebra A on the dual side:

$$\mathfrak{M}^!$$
 hypertoric variety defined by $(\mathcal{K}^!, -\xi, -\lambda)$.

 $X_{\alpha}^{!}, \alpha \in \mathcal{B}$ Lagrangian toric subvarieties for bounded chambers.

Then

$$B({\mathcal K}^!,-\xi,-\lambda):=igoplus_{lpha,eta\in{\mathcal B}}H^*(X_lpha\cap X_eta)$$

(with a strange grading) has an associative convolution product, making it isomorphic to $A(V, \lambda, \xi)$.

This is analogous to Stroppel and Webster's description of the algebra governing parabolic category \mathcal{O} for a maximal parabolic in \mathfrak{gl}_n via a convolution product on intersections of components of a Springer fiber.

米部 シネヨシネヨシ 三日

The B-ring description of \mathcal{O} makes it easy to see the center:

Theorem
The map

$$H^*(\mathfrak{M}^!) \mapsto \bigoplus_{\alpha \in \mathcal{B}} H^*(X_{\alpha} \cap X_{\alpha}) \mapsto \bigoplus_{\alpha, \beta \in \mathcal{B}} H^*(X_{\alpha} \cap X_{\beta})$$

gives an isomorphism
 $H^*(\mathfrak{M}^!) \cong Z(B(\mathcal{K}^!, -\xi, -\lambda)) = Z(A(\mathcal{K}, \lambda, \xi)).$

Hypertoric category \mathcal{O}

When λ and ξ are generic, the category $\mathcal{O}(\mathcal{K}, \lambda, \xi)$ localizes to modules over a sheaf of rings on \mathfrak{M}_{λ} , quantizing the sheaf of regular functions.

To quantize as a sheaf, need to introduce a parameter: work over $\mathbb{C}((\hbar))$, and instead of $[\partial_i, z_i] = 1$, use $[w_i, z_i] = \hbar$.

Quantum hamiltonian reduction has a sheaf-theoretic version, giving sheaf \mathcal{U}_{λ} of $\mathbb{C}((\hbar))$ -modules on \mathfrak{M}_{λ} , whose S-invariant sections $\Gamma_{\mathbb{S}}(\mathcal{U}_{\lambda}) \cong \mathcal{U}_{\lambda}$.

Then $\mathcal{O}(K, \lambda, \xi)$ is equivalent to a certain subcategory of S-equivariant \mathcal{U}_{λ} -modules which are set-theoretically supported on

$$\mathfrak{M}^+ = \bigcup_{\alpha \in \mathcal{B}} X_{\alpha} = \{ p \in \mathfrak{M} \mid \lim_{t \to 0} \xi(t) \cdot p \text{ exists.} \}.$$

This gives a cycle map $\mathcal{K}(\mathcal{O}) \to \mathcal{H}^{\dim_{\mathbb{C}}\mathfrak{M}}_{c}(\mathfrak{M}^{+}) \cong \bigoplus_{\alpha \in \mathcal{B}} \mathbb{Z}.$

▲御★ ▲注★ ▲注★

For any $\alpha \in \mathcal{F}$, let Δ_{α} be its chamber in the arrangement \mathcal{H}_{λ} , and let $\Delta_{\alpha,0}$ be its "limit" in the central arrangement \mathcal{H}_0 .

Theorem

For any $\alpha, \beta \in \mathcal{F}$, we have

$$\operatorname{Ann}_{U_{\lambda}} L_{\alpha} = \operatorname{Ann}_{U_{\lambda}} L_{\beta}$$

if and only if $\mathbb{R}\Delta_{\alpha,0} = \mathbb{R}\Delta_{\beta,0}$ and $\Delta_{\alpha}/\mathbb{R}\Delta_{\alpha,0} = \Delta_{\beta}/\mathbb{R}\Delta_{\beta,0}$.

The equivalence classes are called left cells.

白 ト イヨト イヨト

For any two generic $\lambda,\lambda'\in\mathfrak{k}^*,$ there is a translation functor

$$T_{\lambda}^{\lambda'} \colon \mathcal{O}(K,\lambda,\xi) \to \mathcal{O}(K,\lambda',\xi).$$

Theorem

The following are equivalent for any α and β giving ξ -bounded regions (possibly for different λ !)

- $L_{\beta}^{\lambda'}$ appears as a subquotient of $T_{\lambda}^{\lambda'}L_{\alpha}^{\lambda}$ for some λ, λ'
- $\operatorname{Supp}(\operatorname{gr} L^{\lambda'}_{\beta}) \subset \operatorname{Supp}(\operatorname{gr} L^{\lambda}_{\alpha}) \subset \mathfrak{M}_{0}$
- $\Delta_{\alpha,0} \subset \Delta_{\beta,0}$.

The right cells are the equivalence classes generated by this relation.

回 と く ヨ と く ヨ と

Two-sided cells are the smallest subsets of \mathcal{B} which are unions of left and right cells. α, β are in the same two-sided cell iff $\mathbb{R}\Delta_{\alpha,0} = \mathbb{R}\Delta_{\beta,0}$.

The sets $\mathbb{R}\Delta_{\alpha,0}$ are certain flats of the central arrangement \mathcal{H}_0 , called relevant flats. They index strata in the coarsest possible stratification of \mathfrak{M}_0 , by Poisson leaves.

Theorem

The bijection between simples of $\mathcal{O}(K, \lambda, \xi)$ and $\mathcal{O}(K^!, -\xi, -\lambda)$ induced by Koszul duality interchanges left and right cells, and the bijection on two-sided cells induces an order-reversing bijection between strata of \mathfrak{M}_0 and $\mathfrak{M}_0^!$.

▲□ → ▲ □ → ▲ □ → …

The categories $\mathcal{O}(\mathcal{K}, \lambda, \xi)$ for different choices of generic λ and ξ are not equivalent, but they are derived equivalent. For varying λ , the equivalences are translation functors; for varying ξ , there are shuffling functors, which are Koszul dual to translation functors.

The categories are not *canonically* equivalent, however. $T_{\lambda}^{\lambda'} T_{\lambda'}^{\lambda}$ is not the identity functor!

The translation functors generate an action of $\pi_1(M_{\mathbb{C}})$ on $D^b(\mathcal{O}(K,\lambda,\xi))$, where $M_{\mathbb{C}}$ is the complement of the complexification of the secondary arrangement: the arrangement in $\mathfrak{k}^*_{\mathbb{R}}$ whose walls give the non-generic λ .

(日) (日) (日)