Bonus-Übungsblatt zu Lineare Algebra und analytische Geometrie 1

Prof. M. Geck, Dr. E. Chavli WiSe 2022/23

Mit diesem Übungsblatt können Sie eventuell noch fehlende Punkte für den Schein erwerben. Ihre schriftlichen Bearbeitungen geben Sie bitte online bei Ihren Tutorinnen ab, bis Mittwoch 15. Februar.

Aufgabe 1. (S, 6=2+2+2 Punkte)

- (a) Teilen Sie $f = X^4 + \bar{2}X^3 + \bar{3}X^2 + \bar{1} \in \mathbb{F}_5[X]$ mit Rest durch $g = X^2 + \bar{2} \in \mathbb{F}_5[X]$.
- (b) Wir betrachten den Körper \mathbb{F}_{13} . Finden Sie das eindeutige $a \in \{0, 1, 2, \dots, 12\}$ mit $\bar{5} \cdot a = \bar{7}$.
- (c) Schreiben Sie die komplexe Zahl $z:=\left(\frac{3i}{1+2i}\right)^2\in\mathbb{C}$ in der Form z=a+bi mit $a,b\in\mathbb{R}$.

Aufgabe 2. (S, 5=3+1+1 Punkte)

Sei K ein Körper und $A \in K^{m \times n}$. Sei $N(A) = \{x \in K^n \mid A \cdot x = 0_m\}$ der Lösungsraum des homogenen LGS mit Matrix A. Zeigen Sie: Es gilt dim $N(A) \ge n - m$.

Geben Sie ein Beispiel an mit dim $N(A) > n - m \ge 0$ und ein Beispiel mit $N(A) = n - m \ge 0$.

Aufgabe 3. (S, 6=3+3 Punkte) Sei K ein Körper. Nach Blatt 12, Aufgabe 2(c), ist

$$\operatorname{Sym}_n(K) := \{ A \in M_n(K) \mid A^{\operatorname{tr}} = A \}$$
 ein Teilraum von $M_n(K)$.

- (a) Bestimmen Sie eine Basis von $\operatorname{Sym}_n(K)$ und zeigen Sie damit $\operatorname{dim} \operatorname{Sym}_n(K) = n(n+1)/2$. (Hinweis: Seien $E_{ij}^{(n,n)}$ die Standard-Matrizen wie in Beispiel 16.8 der Vorlesung. Für i=j ist offenbar $E_{ii}^{(n,n)} \in \operatorname{Sym}_n(K)$; für $i \neq j$ betrachte $E_{ij}^{(n,n)} + E_{ji}^{(n,n)}$.)
- (b) Definiere $\varphi \colon M_n(K) \to M_n(K)$ durch $\varphi(A) := A + A^{\operatorname{tr}}$ für alle $A \in M_n(K)$. Zeigen Sie, dass φ linear ist, mit $\operatorname{Bild}(\varphi) \subseteq \operatorname{Sym}_n(K)$. Außerdem: $\operatorname{Bild}(\varphi) = \operatorname{Sym}_n(K) \Leftrightarrow 1 + 1 \neq 0$ in K.

Bestimmen sie die Gleichung der Ausgleichs-Polynomfunktion 2-ten Grades (also $a_0, a_1, a_2 \in \mathbb{R}$ mit $y = a_2 t^2 + a_1 t + a_0$) durch diese Punkte; siehe Beispiel 18.7 der Vorlesung. Gehen Sie dazu in folgenden Schritten vor: Seien

$$y := \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}, \quad u_1 := \begin{bmatrix} t_1^2 \\ t_2^2 \\ t_3^2 \\ t_4^2 \\ t_5^2 \end{bmatrix}, \quad u_2 := \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \end{bmatrix}, \quad u_3 := \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad \text{und} \quad U := \langle u_1, u_2, u_3 \rangle_{\mathbb{R}} \subseteq \mathbb{R}^5.$$

- (i) Bestimmen Sie eine Orthogonalbasis $\{w_1, w_2, w_3\}$ von U (z.B. mit Gram-Schmidt).
- (ii) Bestimmen Sie $u_0 := \frac{\langle w_1, y \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle w_2, y \rangle}{\langle w_2, w_2 \rangle} w_2 + \frac{\langle w_3, y \rangle}{\langle w_3, w_3 \rangle} w_3 \in U$ (wie in Lemma 18.6).

(iii) Bestimmen Sie $a_0, a_1, a_2 \in \mathbb{R}$ mit $u_0 = a_2u_1 + a_1u_2 + a_0u_3$. Dann ist die Ausgleich-Polynomfunktion gegeben durch $y(t) = a_2t^2 + a_1t + a_0$ für $t \in \mathbb{R}$. Skizzieren Sie diese Funktion sowie die Punkte (t_i, y_i) in der \mathbb{R}^2 -Ebene (mit horizontaler Achse t und vertikaler Achse y).

Aufgabe 5. (**S**, 11=2+4+3+2 Punkte) Sei
$$A = \begin{bmatrix} \bar{3} & \bar{1} & \bar{1} & \bar{0} \\ 0 & \bar{2} & 0 & 0 \\ \bar{2} & \bar{2} & \bar{4} & 0 \\ \bar{1} & \bar{1} & \bar{1} & \bar{2} \end{bmatrix} \in M_4(\mathbb{F}_5).$$

- (a) Zeigen Sie, dass $\lambda_1 := \bar{0}$ und $\lambda_2 := \bar{2}$ Eigenwerte von A sind.
- (b) Betrachte die Teilräume $U_i := N(A \lambda_i I_4) = \{x \in \mathbb{F}_5^4 \mid A \cdot x = \lambda_i x\} \subseteq \mathbb{F}_5^4$ für i = 1, 2. (Nach Bemerkung 14.1 der Vorlesung sind also die Vektoren in $U_i \setminus \{0_4\}$ genau die zu λ_i gehörigen Eigenvektoren von A.) Bestimmen Sie Basen B_i von U_i .
- (c) Zeigen Sie, dass $B := B_1 \cup B_2$ eine Basis von \mathbb{F}_5^4 ist. Sei $T \in M_4(\mathbb{F}_5)$ die invertierbare Matrix mit Spalten gegeben durch die Vektoren in B. Bestimmen Sie $T^{-1} \cdot A \cdot T$.
- (d) Bestimmen Sie das Minimalpolynom von A.

Aufgabe 6. (S, 3 Punkte) Sei K ein Körper und $A \in M_n(k)$. Zeigen Sie, dass A und A^{tr} das gleiche Minimalpolynom haben.

Aufgabe 7. (S, 4=2+2 Punkte)

- (a) Gegeben seien K-Vektorräume V, W und eine lineare Abbildung $\varphi \colon V \to W$. Kann es sein, dass dim V = 7, dim W = 2 und dim Kern $(\varphi) = 4$ gilt? (Begründen Sie Ihre Antwort.)
- (b) Sei V ein K-Vektorraum mit dim V=7. Gegeben seien Teilräume $U_1, U_2 \subseteq V$ mit dim $U_1=\dim U_2=5$ und $V=U_1+U_2$. Bestimmen Sie dim $(U_1\cap U_2)$.

Aufgabe 8. (S, 6=2+2+2 Punkte)

Sei V ein K-Vektorraum und $\varphi \colon V \to V$ eine lineare Abbildung mit $\varphi \circ \varphi = \varphi$. Zeigen Sie:

- (a) Es gilt $v \varphi(v) \in \text{Kern}(\varphi)$ für alle $v \in V$.
- (b) Es gilt $\operatorname{Kern}(\varphi) \cap \operatorname{Bild}(\varphi) = \{0_V\}$ und $V = \operatorname{Kern}(\varphi) + \operatorname{Bild}(\varphi)$.
- (c) Jedes $v \in V$ lässt sich auf eindeutige Weise schreiben als v = u + w mit $u \in \text{Kern}(\varphi)$ und $w \in \text{Bild}(\varphi)$.

Aufgabe 9. (S, 4 Punkte) Sei
$$U = \left\langle \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\rangle_{\mathbb{Q}} \subseteq \mathbb{Q}^3$$
.

Zeigen Sie, dass dim U=2 gilt; bestimmen Sie eine Matrix $A\in\mathbb{Q}^{1\times 3}$ mit U=N(A) (siehe Beispiel 19.12 der Vorlesung).