Ferien-Übung zu LAAG1 / 0. Übungsblatt zu LAAG2

Prof. M. Geck

WiSe 2022/23 bzw. SoSe 2023

Die Aufgaben auf diesem Übungsblatt sind zum Selbststudium gedacht, oder können in den Übungsgruppen der ersten Woche im Sommersemester besprochen werden.

Aufgabe 1. Sei V ein K-Vektorraum mit $n := \dim V < \infty$. Sei B eine Basis von V. Für jedes $v \in V$ sei $M_B(v) \in K^n$ der zugehörige Koordinatenvektor (siehe Skript §20). Zeigen Sie:

Die Abbildung $\varphi: V \to K^n$, $v \mapsto M_B(v)$, ist linear und bijektiv. Also ist V isomorph zu K^n ; oder noch einmal anders ausgedrückt: Alle K-Vektorräume der Dimension n sind isomorph zueinander.

Aufgabe 2. Gegeben seien K-Vektorräume V, W und eine lineare Abbildung $\varphi \colon V \to W$. Sei $n = \dim V < \infty$ und $m = \dim W < \infty$. Seien B, B' Basen von V und C, C' Basen von W. Seien $T := M_B^{B'}(\mathrm{id}_V) \in M_n(K)$ und $P := M_C^{C'}(\mathrm{id}_W) \in M_m(K)$ die zugehörigen Basiswechselmatrizen (siehe Skript, Satz 20.6). Zeigen Sie die allgemeine Transformationsformel:

$$M_{C'}^{B'}(\varphi) = P^{-1} \cdot M_C^B(\varphi) \cdot T.$$

Aufgabe 3. Sei V ein K-Vektorraum und $\varphi \colon V \to V$ linear. Ein Vektor $v \in V$ heißt Eigenvektor von φ , wenn $v \neq 0_V$ gilt und es ein $\lambda \in K$ gibt mit $\varphi(v) = \lambda v$; in diesem Fall heißt λ der zu v gehörige Eigenwert. (Dies ist analog zur Definition von Eigenvektoren und Eigenwerten für Matrizen $A \in M_n(K)$; siehe Skript, §14.)

Sei nun $n = \dim V < \infty$ und $B = \{v_1, \dots, v_n\}$ eine Basis von V. Sei $A = M_B(\varphi) \in M_n(K)$ die darstellende Matrix von φ bezüglich B. Sei $v \in V$ und $x := M_B(v) \in K^n$ der zugehörge Koordinatenvektor. Zeigen Sie: v ist ein Eigenvektor von φ genau dann, wenn x ein Eigenvektor von A ist.

Aufgabe 4. Sei V ein K-Vektorraum und $\varphi \in \operatorname{End}(V)$ fest. Für $i \in \mathbb{N}$ setze $\varphi^i := \underbrace{\varphi \circ \ldots \circ \varphi}_{i \text{ mal}}$. Für ein Polynom $f = a_d X^d + \ldots + a_1 X + a_0 \in K[X]$ können wir dann

$$f(\varphi) := a_d \varphi^d + \ldots + a_1 \varphi + a_0 \mathrm{id}_V \in \mathrm{End}(V)$$

definieren. Sei nun $n = \dim V < \infty$. Zeigen Sie:

- (a) Ist B eine Basis von V, so gilt $M_B(f(\varphi)) = f(M_B(\varphi))$.
- (b) Es gibt ein eindeutiges, normiertes Polynom $f_0 \in K[X]$ kleinsten Grades mit $f_0(\varphi) = \underline{0}$. Ist B eine Basis von V und $A := M_B(\varphi) \in M_n(K)$, so gilt $f_0 = \mu_A$ (= Minimalpolynom von A, wie in der Vorlesung §14 definiert).

Aufgabe 5. Sei V ein K-Vektorraum mit $n = \dim V < \infty$, und $\varphi \colon V \to V$ eine lineare Abbildung. Für $d \in \mathbb{N}$ setze $\varphi^d = \underbrace{\varphi \circ \ldots \circ \varphi}$. Gilt $\varphi^d = \underline{0}$ für ein $d \in \mathbb{N}$, so heißt φ nilpotent.

Sei nun φ nilpotent und $d \in \mathbb{N}$ minimal mit $\varphi^d = \underline{0}$

- (a) Zeigen Sie: $\operatorname{Kern}(\varphi) \neq \{0_V\}$ und $\operatorname{Bild}(\varphi) \subsetneq V$.
- (b) Zeigen Sie: $\{0_V\} \subseteq \operatorname{Kern}(\varphi) \subseteq \operatorname{Kern}(\varphi^2) \subseteq \ldots \subseteq \operatorname{Kern}(\varphi^{d-1}) \subseteq \operatorname{Kern}(\varphi^d) = V.$
- (c) Sei B_1 eine Basis von $\operatorname{Kern}(\varphi)$; ergänze diese zu einer Basis B_2 von $\operatorname{Kern}(\varphi^2)$, und so weiter, bis wir schließlich eine Basis $B := B_d$ von $V = \operatorname{Kern}(\varphi^d)$ erhalten. Zeigen Sie, dass die darstellende Matrix $M_B(\varphi) \in M_n(K)$ eine obere Dreiecksmatrix mit 0 auf der Diagonalen ist.
- **Aufgabe 6.** Ist $A \in M_n(K)$ gegeben, so haben wir $C(A) := \{T \in M_n(K) \mid A \cdot T = T \cdot A\}$ definiert; siehe Aufgabe 4, Blatt 12. Sei nun $f \in K[X]$ nicht-konstant, normiert mit $n = \operatorname{Grad}(f) \geq 1$. Sei $A_f \in M_n(K)$ die Begleitmatrix zu f; dann ist f das Minimalpolynom von A_f (siehe Skript, Lemma 15.9). Ziel dieser Aufgabe ist es, $C(A_f)$ zu bestimmen.
- (a) Sind $A, B \in M_n(K)$ gegeben, so setze $\mathcal{C}(A, B) := \{T \in M_n(K) \mid A \cdot T = T \cdot B\}$. Man sieht sofort, dass $\mathcal{C}(A, B)$ ein Teilraum von $M_n(K)$ ist. Zeigen Sie: Für $A \in M_n(K)$ gilt dim $\mathcal{C}(A, A_f) \leq n$.

(Hinweis: Sei $T \in \mathcal{C}(A, A_f)$ und seien $v_1, \ldots, v_n \in K^n$ die Spalten von T. Beachte $T \cdot e_1 = v_1$ und $A_f \cdot e_1 = e_2$. Dann ist $A \cdot v_1 = A \cdot T \cdot e_1 = T \cdot A_f \cdot e_1 = T \cdot e_2 = v_2$; also ist $v_2 = 0_n$ falls $v_1 = 0_n$. Zeigen Sie analog, dass $v_3 = 0_n$ falls $v_2 = 0_n$, und so fort. Betrachte dann die lineare Abbildung $\varphi \colon \mathcal{C}(A, A_f) \to K^n$, $T \mapsto T \cdot e_1$.)

(b) Zeigen Sie: $C(A_f) = C(A_f, A_f) = K[A_f]$, wobei $K[A_f]$ wie im Skript, Definition 15.4, definiert ist. Insbesondere ist also dim $C(A_f) = n$, und jedes $T \in C(A_f)$ ist eine Linearkombination von Potenzen von A_f . (Hinweis: Benutzen Sie (a) und beachten Sie, dass $A_f^i \in C(A_f)$ gilt für alle $i \in \mathbb{N}_0$.)

Aufgabe 7. Sei V ein K-Vektorraum mit dim $V < \infty$. Gegeben sei eine nicht-leere, endliche Teilmenge $X \subseteq V$ mit $0_V \notin X$.

Zeigen Sie: Ist $|K| = \infty$, so gibt es eine lineare Abbildung $\varphi \colon V \to K$ mit $\varphi(x) \neq 0$ für alle $x \in X$.

(Hinweis: Sei $n = \dim V$ und $\{v_1, \ldots, v_n\}$ eine Basis von V. Schreiben Sie jedes $x \in X$ als Linearkombination von v_1, \ldots, v_n . Für $c \in K$ definiere eine lineare Abbildung $\varphi_c \colon V \to K$ durch $\varphi_c(v_i) := c^i$ für $i = 1, \ldots, n$. Bestimmen Sie Formeln für $\varphi_c(x)$ für $x \in X$. Überlegen Sie sich, dass es ein c geben muss, so dass $\varphi_c(x) \neq 0$ für alle $x \in X$ gilt.)