10. Übungsblatt zu Lineare Algebra und analytische Geometrie 2

Prof. M. Geck, Dr. E. Chavli

SoSe 2023

Aufgabe 1. (V) Gegeben sei die symmetrische Matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \in M_3(\mathbb{R}).$

- (a) Bestimmen Sie die Eigenwerte von A sowie Basen der zugehörigen Eigenräume.
- (b) Bestimmen Sie eine Orthonormalbasis für jeden Eigenraum.
- (c) Bestimmen Sie $T \in O(3)$ so, dass $T^{-1} \cdot A \cdot T$ eine Diagonalmatrix ist.

Aufgabe 2. (V) Bestimmen Sie alle Matrizen $A \in M_n(\mathbb{R})$, die sowohl symmetrisch als auch nilpotent sind.

Aufgabe 3. (S, 12=4+4+4 Punkte) Bestimmen Sie die SVD (also Matrizen U, V, S wie in Satz 33.2) für die folgenden Matrizen

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}, \qquad A = \begin{bmatrix} 0 & 6 & -6 & 3 \\ 0 & -4 & -8 & -8 \end{bmatrix}.$$

(Siehe auch Beispiel 33.3.)

Aufgabe 4. (S, 5 Punkte) Sei $A \in \mathbb{R}^{m \times n}$ mit $m, n \geq 1$ beliebig. Zeigen Sie: Ist $0 \neq \lambda \in \mathbb{R}$ ein Eigenwert von $A \cdot A^{\operatorname{tr}}$, so ist λ auch ein Eigenwert von $A^{\operatorname{tr}} \cdot A$. Gilt dies auch, falls $\lambda = 0$ ein Eigenwert von $A \cdot A^{\operatorname{tr}}$ ist?

Aufgabe 5. (V) Sei (V, β) ein Euklidischer Raum; wir setzen $||v|| := \sqrt{\beta(v, v)}$ für $v \in V$. Gegeben seien $u, v \in V$ mit ||u|| = 3, ||u + v|| = 4 und ||u - v|| = 6. Bestimmen Sie ||v||.

Aufgabe 6. (V) Sei $V=\mathbb{R}^2$ und $\beta\colon V\times V\to\mathbb{R}$ das Standard-Skalarprodukt. Gegeben sei ein Dreieck mit Kantenlängen a,b,c. Sei d die Länge der Verbindung vom Mittelpunkt der Kante mit Länge c zum gegenüberliegenden Eckpunkt.

Zeigen Sie die Apollonios-Identität $a^2 + b^2 = \frac{1}{2}c^2 + 2d^2$ (siehe auch https://de.wikipedia.org/wiki/Apollonios_von_Perge).

Aufgabe 7. (Z) Sei (V, β) ein Euklidischer Raum; wir setzen $||v|| := \sqrt{\beta(v, v)}$ für $v \in V$. Sei $B = \{v_1, \ldots, v_n\}$ eine Orthonormalbasis von V. Gegeben seien $w_1, \ldots, w_n \in V$ mit

$$||v_i - w_i|| < \frac{1}{\sqrt{n}}$$

für $1 \le i \le n$. Zeigen Sie, dass $\{w_1, \ldots, w_n\}$ eine Basis von V ist.

