ERRATA TO "CHARACTERS OF FINITE COXETER GROUPS AND IWAHORI-HECKE ALGEBRAS"

MEINOLF GECK AND GÖTZ PFEIFFER

- p. 5, l. -11: change " s_1 , s_2 , s_1s_2 , s_2s_1 , $s_1s_2s_1 = s_2s_1s_2$ " to "s, t, st, ts, sts = tst".
- p. 35, l. 8: change " $4\cos^2(\theta)$ " to " $4\cos^2(\theta/2)$ ".
- p. 52, l. 4: change " $z \in Z$)" to " $z \in Z$.)".
- p. 63, l. 18: change "a vertex labelled" to "an edge labelled".
- p. 81, Theorem 3.2.7: replace (P2) by "Let C be a cuspidal class of W and let $w \in C$ such that Cyc(w) is terminal. Then $Cyc(w) = C_{min}$.
- p. 85, l. 11: change "in 1.1" to "in Table 1.1".
- p. 170, Proposition 5.6.3: the statement is not correct. Throughout, one has to change " 2λ " to " $\lambda \cup \lambda$ " which is the partition of n obtained by taking each part of λ twice. With some minor changes, the proof proceeds as before. The proof of Prop. 6.1.5 also has to be changed accordingly.
- p. 205, l. -1: it should read "Hence we have $a_{\chi} = a'_{\chi}$, as claimed."
- p. 235, equation l. 13: change " $\rho(h \otimes 1)$ " to " $\rho^k(h \otimes 1)$ ".
- p. 238, l. -16: change "has some non-zero entry as well (since $d_{\theta}([V]) \neq 0$)" to "has exactly one non-zero entry as well (since $d_{\theta}([V]) \neq 0$ and since we have the equality $(\sum_{V'} d_{V,V'} \dim_L V')^2 = \sum_{V'} d_{V,V'}^2 (\dim_L V')^2)".$
- p. 252, l. -8 and equation in l. -3: change " $w \mapsto a_w$ " to " $T_w \mapsto a_w$ ".
- p. 253, l. 7: change " u_s ($s \in S$)" to "{ $u_s \mid s \in S$ }".
- p. 267, l. 3 and l. 7: change " $X(\mathbf{H})$ " to " $X(\mathbf{H})$ ".
- p. 272, l. 12 and l. 19: the term $\sqrt{u_s u_t}$ should have exponent k.
- p. 277, l. 11: change " $e_{\mathsf{E}}\mathbb{C}[\mathsf{G}]$ " to " $e_{\mathsf{E}}\mathbb{C}[\mathsf{G}/\mathsf{B}]$ ".
- p. 278, l. 16: change " $B/B \cap N$ " to " $N/B \cap N$ ".
- p. 280, equations in l. 3 and l. 9: change "[G/B]" to "|G/B|".
- p. 285, l. 9: change "Use (a)" to "Use (b)"; l. 10: change "use (b)" to "use (c)".
- p. 314, l. -3: change " $\mathbb{R}[\sqrt{u}_s \mid s \in S]$ " to " $\mathbb{R}[\Gamma_+ \cup \{1\}]$ ".
- p. 315, l. 12: the argument is much easier. Change the whole paragraph "Finally, we show that ...(until the end of the proof)" to "Finally, since $\chi(T_w) \in \mathbb{R}$ for w = 1, we see that $\alpha_{\chi} \in \Gamma_+ \cup \{1\}$ ".
- p. 349, l. -2: change the term $P_{B_1}(u, v)$ to " $P_{B_1}(u, v^{-1}u^2)$ ".
- p. 359, l. -4: change "w" to " χ ".
- p. 367, l. 15: it should be "such that y < z < w".
- p. 375, l. 5: change " $\mathbf{A} = \mathbb{Z}[\mathbf{u}^{\pm 1}, \mathbf{v}^{\pm 1}]$ " to " $\mathbf{A} = \mathbb{Z}[\sqrt{\mathbf{u}}^{\pm 1}, \sqrt{\mathbf{v}}^{\pm 1}]$ ".
- p. 375, l. 10: change " $\sqrt{u} < \sqrt{v}$ " to " $\Gamma_{+} = \{\sqrt{u}^{k}\sqrt{v}^{l} \mid l \geq 0\} \cup \{\sqrt{u}^{k} \mid k > 0\}$ ". p. 375, l. -9: The list of characters should be " $\chi_{(1,0)}, \chi'_{(1,12)}, \chi'_{(2,4)}, \chi''_{(2,4)}, \chi''_{(2,4)}, \chi''_{(3,6)}, \chi''_{(4,7)}, \chi''_{(6,6)}, \chi''_{(8,3)}, \chi''_{(9,6)}, \chi''_{(9,6)}, \chi_{(9,2)}, \chi_{(12,4)}, \chi_{(16,5)}$ ".
- p. 382, l. 8: change "rank 5" to "rank 4".
- p. 383, l. 15: change "already know" to "already known".
- p. 384, l. -4: change "where r = 1" to "where $J_2 = \emptyset$ ".
- $\mathrm{p.\ 396,\ l.\ 16:\ change\ ``\nu_{s}<\nu_{t}''\ to\ ``\Gamma_{+}=\{\sqrt{\nu_{s}^{k}}\sqrt{\nu_{t}^{l}}\mid k\geq0\}\cup\{\sqrt{\nu_{t}^{l}}\mid l>0\}''.}$
- p. 422, l. 7: change "Proposition 9.4.1" to "Proposition 9.4.3".