5. Übung zur Algebra

Prof. M. Geck, Dr. L. Iancu, WiSe 2023/2024

Aufgabe 1. Sei $G = \mathrm{SL}_2(\mathbb{F}_3)$, wobei $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$ Körper mit 3 Elementen ist.

- (a) Zeigen Sie |G| = 24. (Benutzen Sie die Formel für $|GL_n(K)|$ in Beispiel 8.6(b) der Vorlesung.)
- (b) Wie viele Elemente der Ordnung 2 gibt es in G? Ist $G \cong S_4$?

Aufgabe 2. Wir betrachten die abelsche Gruppe $(\mathbb{Q}, +)$. Sei $G = (\mathbb{Q}/\mathbb{Z}, +)$.

- (a) Finden Sie ein Vertretersystem der Nebenklassen von \mathbb{Z} in \mathbb{Q} .
- (b) Zeigen Sie dass jedes Element in G endliche Ordnung hat.
- (c) Zeigen sie dass es für jedes $n \in \mathbb{N}$ genau eine Untergruppe H_n der Ordnung n gibt und dass H_n zyklisch ist. Außerdem ist $G = \bigcup_{n \in \mathbb{N}} H_n$.

Aufgabe 3. (Schriftlich, 6 Punkte) Sei H die folgende Teilmenge von $\mathbb C$:

$$H = \{z \in \mathbb{C} \mid |z| = 1\}$$
 (alle komplexen Zahlen mit Absolutbetrag 1).

- (a) Zeigen Sie dass (H,\cdot) eine Untergruppe von $(\mathbb{C}^{\times},\cdot)$ ist (wobei $\mathbb{C}^{\times}=\mathbb{C}\setminus\{0\}$).
- (b) Zeigen Sie dass $(\mathbb{R}/\mathbb{Z}, +) \cong (H, \cdot)$.

Hinweis. Man könnte z.B. folgende Abbildung betrachten $\varphi \colon \mathbb{R} \to \mathbb{C}^{\times}, \quad x \mapsto e^{2\pi i x}$.

- **Aufgabe 4.** (Schriftlich, 9 Punkte) Sei G eine Gruppe und $\operatorname{Aut}(G)$ die Menge aller bijektiven Gruppenhomomorphismen $\alpha \colon G \to G$ (auch Automorphismen genannt).
- (a) Zeigen Sie, dass Aut(G) eine Gruppe ist, mit der Hintereinanderausführung von Abbildungen als Verknüpfung.
- (b) Für festes $g \in G$ definieren wir eine Abbildung $\gamma_g \colon G \to G$ durch $\gamma_g(x) = gxg^{-1}$ für alle $x \in G$. Zeigen Sie, dass $\gamma_g \in \operatorname{Aut}(G)$ gilt.
- (c) Zeigen Sie: Die Abbildung $\gamma \colon G \to \operatorname{Aut}(G), g \mapsto \gamma_g$, ist ein Gruppen-Homomorphismus mit $\operatorname{Kern}(\gamma) = Z(G)$. Sei $\operatorname{Inn}(G) := \{\gamma_g \mid g \in G\}$. Zeigen Sie: $\operatorname{Inn}(G) \unlhd \operatorname{Aut}(G)$. Die Automorphismen in $\operatorname{Inn}(G)$ heißen "innere Automorphismen".
- **Aufgabe 5.** (a) Sei $\varphi: G \to H$ ein Gruppenhomomorphismus. Zeigen Sie, dass wenn G endlich ist so ist auch $\varphi(G)$ endlich und $|\varphi(G)|$ teilt |G|.
- (b) Sei $\varphi \colon G \to H$ ein Gruppenhomomorphismus. Zeigen Sie, dass wenn H endlich ist so ist auch $\varphi(G)$ endlich und $|\varphi(G)|$ teilt |H|.
- (c) Seien G, H Gruppen, dann gibt es immer den trivialen Homomorphismus $\varphi \colon G \to H$ definiert durch $\varphi(g) = 1_H, \ \forall g \in G.$

Für jeden der folgenden Fälle, geben Sie ein Beispiel eines nicht trivialen Homomorphismus an oder begründen Sie dass keiner existiert :

(i)
$$\varphi \colon \mathbb{Z}/18\mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$$
 (ii) $\varphi \colon \mathbb{Z}/12\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$ (iii) $\varphi \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ (iv) $\varphi \colon \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ (v) $\varphi \colon Q_8 \to \mathbb{Z}/4\mathbb{Z}$ (vi) $\varphi \colon D_8 \to S_3$

 $(vii) \ \varphi \colon S_4 \to S_3 \qquad (viii) \ \varphi \colon \mathbb{Z}/3\mathbb{Z} \to \mathbb{Z} \qquad (ix) \ \varphi \colon \mathbb{Z} \to S_3 \qquad (x) \ \varphi \colon \mathbb{Z} \times \mathbb{Z} \to 2\mathbb{Z}.$

Abgabe der schriftlichen Aufgaben: Am 13./14. November, vor den Übungsgruppen.