13. Übung zur Algebra

Dr. L. Iancu, WiSe 2020/21

- **Aufgabe 1.** In dieser Aufgabe geht es um Konstruktionen mit Zirkel und Lineal (siehe §18 der Vorlesung). Gegeben sei jeweils als Startmenge $P_0 = \{(0,0),(1,0)\}.$
- (a) Sie $a \in \mathbb{R}$ mit a > 0. Zeigen Sie: Ist $(a,0) \in \mathbb{R}^2$ konstruierbar, so ist auch $(\sqrt{a},0) \in \mathbb{R}^2$ konstruierbar.
- (b) Sei $(a,b) \in \mathbb{R}$ konstruierbar. Sei $(a',b') \in \mathbb{R}^2$ so, dass $a'+b'i \in \mathbb{C}$ eine Quadratwurzel von $a+bi \in \mathbb{C}$ ist. Zeigen Sie, dass dann auch (a',b') konstruierbar ist.
- (c) Sei $\zeta_5 = e^{2\pi i/5} \in \mathbb{C}$. Zeigen Sie: $\cos(2\pi/5) = \frac{1}{2}(\zeta_5 + \zeta_5^{-1}) = \frac{1}{4}(-1 \pm \sqrt{5}) \notin \mathbb{Q}$. (*Hinweis:* Benutzen Sie das Kreisteilungspolynom Φ_5 .) Konstruieren Sie das regelmäßige 5-Eck mit Zirkel und Lineal.
- Aufgabe 2. (Schriftlich, 6 Punkte) In dieser Aufgabe geht es um das Problem der Winkeldreiteilung (siehe §18 der Vorlesung). Gegeben sei ein Winkel, also eine reelle Zahl $\varphi \in \mathbb{R}$ mit $0 < \varphi \leq \pi$. Anschaulich ist dieser Winkel gegeben durch zwei Geraden in der Ebene \mathbb{R}^2 : Die eine Gerade geht durch die beiden Punkte in der Startmenge $P_0 = \{(0,0),(1,0)\}$, die andere durch die beiden Punkte (0,0) und $(\cos(\varphi),\sin(\varphi))$. Entsprechend sagen wir, dass φ mit Zirkel und Lineal konstruiert werden kann, wenn der Punkt $(\cos(\varphi),\sin(\varphi)) \in \mathbb{R}^2$ mit Zirkel und Lineal aus P_0 konstruierbar ist.
- (a) Sei von nun an $\varphi = \pi/3$. Konstruieren Sie den Winkel φ mit Zirkel und Lineal. Wieviele elementare Konstruktionsschritte benötigen Sie dazu? (Gemeint ist also das n in Definition 18.1(b).)
- (b) Zeigen Sie, dass der Körpergrad $[\mathbb{Q}(\cos(\pi/9)) : \mathbb{Q}]$ endlich, aber keine 2-Potenz ist. (*Hinweis*: Wie hängt $\cos(\pi/9)$ mit dem α in Ü12A2 zusammen?) Nach Satz 18.3 ist also $\pi/9 = \varphi/3$ nicht mit Zirkel und Lineal konstruierbar (aus der Startmenge P_0).
- (c) Zeigen Sie, das $\pi/9 = \varphi/3$ auch nicht aus der Startmenge $P_1 = \{(0,0), (1,0), (\cos(\varphi), \sin(\varphi))\}$ konstruierbar ist und damit die Winkeldreiteilung im Allgemeinen unmöglich; siehe dazu auch https://de.wikipedia.org/wiki/Dreiteilung_des_Winkels
- **Aufgabe 3.** Bestimmen Sie alle $m \in \mathbb{N}$ mit $\cos(2\pi/m) \in \mathbb{Q}$. (*Hinweis:* Ü3A4 und Satz 18.5.)
- **Aufgabe 4.** (Schriftlich, 9 Punkte) Sei $f = X^3 + pX + q \in \mathbb{R}[X]$ und $\Delta := \frac{q^2}{4} + \frac{p^3}{27}$. Sei $L \subseteq \mathbb{C}$ Zerfällungskörper von f. Nach der Vorlesung ist $[L:\mathbb{Q}] \leq 3! = 6$.
- (a) Zeigen Sie: Ist $\Delta < 0$, so gibt es 3 verschiedene reelle Nullstellen von f; ist $\Delta = 0$, so gibt es 3 reelle Nullstellen, die aber nicht alle verschieden sind; ist $\Delta > 0$, so gibt es 1 reelle Nullstelle und 2 nicht-reelle, konjugiert-komplexe Nullstellen.
- (b) Bestimmen Sie mit Hilfe der Cardano-Formeln die Nullstellen von $f = X^3 3X + 1$. Vergleichen Sie die Ergebnisse mit Ü12A2.
- (c) Bestimmen Sie die Nullstellen von $f = X^3 + 6X 20$ mit Hilfe der Cardano-Formeln. Gibt es Nullstellen in \mathbb{Q} ? Was ist hier $[L:\mathbb{Q}]$? Analog für das Polynom $f = X^3 15X 4$.

Aufgabe 5. Sei K ein Körper mit 4 Elementen und $f = X^3 + X + 1 \in K[X]$. Zeigen Sie, dass f irreduzibel ist. Nach dem Satz von Kronecker gibt es eine Erweiterung $L \supseteq K$ und ein $\alpha \in L$ mit $L = K(\alpha)$ und $f(\alpha) = 0$. Ist L ein Zerfällungskörper von f?

Aufgabe 6. Wahr oder falsch? (Kurzer Beweis oder Gegenbeispiel.)

- (a) Wenn die Teilmenge $S \subseteq \mathbb{R}$ eine irrationale Zahl enthält, so gilt $\mathbb{R} = \mathbb{Q}(S)$.
- (b) Jedes Element von \mathbb{C} ist algebraisch über \mathbb{R} .
- (c) \mathbb{C} ist ein algebraischer Abschluss von \mathbb{Q} .
- (d) $\overline{\mathbb{Q}} := \{ \alpha \in \mathbb{C} \mid \alpha \text{ algebraisch über } \mathbb{Q} \}$ ist ein algebraisch abgeschlossener Teilkörper von \mathbb{C} .
- (e) Es gibt einen endlichen Körper, der algebraisch abgeschlossen ist.
- (f) Zu jedem $n \in \mathbb{N}$ gibt es ein irreduzibles Polynom $f \in \mathbb{Q}[X]$ mit Grad(f) = n.
- (g) Zu jedem $n \in \mathbb{N}$ gibt es ein irreduzibles Polynom $f \in \mathbb{R}[X]$ mit Grad(f) = n.
- (h) Es gibt eine algebraische Körpererweiterung $K \supseteq \mathbb{R}$ mit $[K : \mathbb{R}] = \infty$.
- (i) Es gibt eine algebraische Körpererweiterung $K \supseteq \mathbb{Q}$ mit $[K : \mathbb{Q}] = \infty$.
- (j) Ist $L \supseteq K$ eine Körpererweiterung mit $|K| < \infty$, so gilt $[L:K] < \infty$.
- (k) Das regelmäßiges 6-Vieleck ist konstruierbar.
- (1) Das regelmäßiges 9-Vieleck ist konstruierbar.