1. Übung zur Algebra für M.Ed./Lehramt

Prof. M. Geck, SoSe 2023

Aufgabe 1. Berechnen Sie (ohne Taschenrechner!) das eindeutige $r \in \mathbb{Z}$ mit $0 \le r \le 6$ und $r \equiv 6^{82} \mod 7$. Analoge Frage für $r \equiv 6^{82} \mod 13$, wobei $0 \le r \le 12$.

Aufgabe 2. Bestimmen Sie Verknüpfungstabellen für die Addition und Multiplikation im Ring $R = \mathbb{Z}/12\mathbb{Z}$ (analog zu den Tabellen im Skript, Seite 7). Bestimmen Sie die Einheitengruppe R^{\times} .

Aufgabe 3. Sei $\mathbb{Z}/2\mathbb{Z} = \{\bar{0}, \bar{1}\}$ Körper mit 2 Elementen.

- (a) Zeigen Sie, dass $K:=\left\{\begin{pmatrix} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}, \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}, \begin{pmatrix} \bar{0} & \bar{1} \\ \bar{1} & \bar{1} \end{pmatrix}, \begin{pmatrix} \bar{1} & \bar{1} \\ \bar{1} & \bar{0} \end{pmatrix}\right\} \subseteq M_2(\mathbb{Z}/2\mathbb{Z})$ mit der üblichen Addition und Multiplikation von Matrizen ein Körper mit 4 Elementen ist.
- (b) Sei $\omega := \begin{pmatrix} \bar{0} & \bar{1} \\ \bar{1} & \bar{1} \end{pmatrix} \in K$. Zeigen Sie, dass $K = \{0, 1, \omega, \omega^2\}$ gilt (wobei 0 und 1 die neutralen Elemente bzgl. Addition und Multiplikation in K bezeichnen). Bestimmen Sie die Verknüpfungstabellen für die Addition und Multiplikation in K (ausgedrückt mit Hilfe von $0, 1, \omega, \omega^2$).
- **Aufgabe 4.** (a) Sei $\mathbb{Z}[i] \subseteq \mathbb{C}$ der Ring der Gauß'schen Zahlen. Bestimmen Sie alle Zerlegungen $2 = a \cdot b$ wobei $a, b \in \mathbb{Z}[i]$. Gleiche Frage für 6 und für 4 2i.
- (b) Zeigen Sie, dass $R = \{n + m\sqrt{2} \mid n, m \in \mathbb{Z}\}$ ein Teilring von \mathbb{R} ist und $|R^{\times}| = \infty$ gilt. Bestimmen Sie eine Zerlegung $1 = a \cdot b$ wobei $a, b \in R \setminus \{\pm 1\}$.
- **Aufgabe 5.** Für $n \geq 1$ sei S_n die symmetrische Gruppe auf $\{1, \ldots, n\}$. Bestimmen Sie die Anzahlen $|\{\sigma \in S_4 \mid \sigma(3) = 3\}|$ und $|\{\sigma \in S_6 \mid \sigma(2) = 5\}|$. Können Sie daraus eine allgemeine Regel für die Anzahl $|\{\sigma \in S_n \mid \sigma(i) = j\}|$ raten wobei $1 \leq i, j \leq n$ fest gewählt sind?

Aufgabe 6. Sei G eine Gruppe und seien U, V Untergruppen von G. Zeigen Sie:

- (a) $U \cup V$ ist eine Untergruppe $\Leftrightarrow U \subseteq V$ oder $V \subseteq U$.
- (b) $U \cdot V$ ist eine Untergruppe $\Leftrightarrow U \cdot V = V \cdot U$.
- (c) Sei $\{U_n \mid n \in \mathbb{N}\}$ eine Familie von Untergruppen von G. Gilt $U_n \subseteq U_{n+1}$ für alle $n \in \mathbb{N}$, so ist $\bigcup_{n \in \mathbb{N}} U_n$ eine Untergruppe von G.

(Hierbei sei $A \cdot B := \{a \cdot b \mid a \in A, b \in B\}$ für beliebige Teilmengen A, B von G. Wahrscheinlich haben Sie eine ähnliche Aufgabe wie in (a) bereits in der Linearen Algebra behandelt, mit Teilräumen eines Vektorraums anstelle von Untergruppen einer Gruppe.)