Abstract methods for constructing t-structures (talk notes)

Jan Šťovíček

July 7, 2011

Abstract

Notes for the talk at Workshop on t-structures and related topics, July 7–9, 2011, Stuttgart. Report on joint work with M. Saorín, based on arXiv:1005.3248v2.

Contents

1	t-structures, weight structures and semiorthogonal decompositions	2
2	Frobenius exact categories	3
3	Efficient exact categories	4
4	Semiorthogonal decompositions and filtrations	6
5	The mock homotopy category of projectives	7

1 *t*-structures, weight structures and semiorthogonal decompositions

Throughout, let \mathcal{T} be a triangulated category. We recall 3 definitions, formulated in a slightly non-classical way in order to stress the formal similarity among them:

t-structure: A pair $(\mathcal{X}, \mathcal{Y})$ of full subcategories in \mathcal{T} such that

- $\mathcal{X} = {}^{\perp}\mathcal{Y}$ and $\mathcal{X}^{\perp} = \mathcal{Y}$,
- $\mathcal{X}[1] \subseteq \mathcal{X} \text{ (and so } \mathcal{Y}[-1] \subseteq \mathcal{Y}),$
- approximation triangles exist (see below).

Motivation: $\mathcal{H} = \mathcal{X} \cap \mathcal{Y}[1]$ is an abelian subcategory of \mathcal{T} .

Semiorthogonal decomposition: A pair $(\mathcal{X}, \mathcal{Y})$ of full subcategories in \mathcal{T} such that

- $\mathcal{X} = {}^{\perp}\mathcal{Y}$ and $\mathcal{X}^{\perp} = \mathcal{Y}$,
- $\mathcal{X}[1] = \mathcal{X}$ (and so $\mathcal{Y}[-1] = \mathcal{Y}$),
- approximation triangles exist (see below).

Motivation: There are triangle equivalences $\mathcal{T}/\mathcal{X} \xrightarrow{\sim} \mathcal{Y}$ (Bousfield localization) and $\mathcal{T}/\mathcal{Y} \xrightarrow{\sim} \mathcal{X}$ (Bousfield colocalization).

Weight structure: A pair $(\mathcal{X}, \mathcal{Y})$ of full subcategories in \mathcal{T} such that

- $\mathcal{X} = {}^{\perp}\mathcal{Y}$ and $\mathcal{X}^{\perp} = \mathcal{Y}$,
- $\mathcal{X}[-1] \subseteq \mathcal{X}$ (and so $\mathcal{Y}[1] \subseteq \mathcal{Y}$),
- approximation triangles exist (see below).

Motivation from motivic theory, more details in other talks.

Difference only in the closure properties of \mathcal{X} and \mathcal{Y} . The following crucial concept is involved in all the definitions:

Approximation triangles: We insist that each $U \in \mathcal{T}$ admits a triangle $X \to U \to Y \to X[1]$ with $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$.

Question. Given a **Hom-orthogonal pair** $(\mathcal{X}, \mathcal{Y})$, that is a pair of full subcategories of \mathcal{T} such that $\mathcal{X} = {}^{\perp}\mathcal{Y}$ and $\mathcal{X}^{\perp} = \mathcal{Y}$, when do approximation triangles exist?

2 Frobenius exact categories

We address the question for algebraic triangulated categories, i.e. those obtained from Frobenius exact categories. Recall:

Exact category: An additive category \mathcal{C} together with a designated class of kernel-cokernel pairs

$$\{0 \longrightarrow K_{\lambda} \xrightarrow{i_{\lambda}} L_{\lambda} \xrightarrow{d_{\lambda}} M_{\lambda} \longrightarrow 0 \mid \lambda \in \Lambda\},\$$

called **conflations**, satisfying suitable axioms. Terminology:

inflation: The map i_{λ} in a conflation.

deflation: The map d_{λ} in a conflation.

Remark. If \mathcal{A} is abelian, $\mathcal{C} \subseteq \mathcal{A}$ is an extension closed full subcategory, and the conflations in \mathcal{C} are defined by

 $\{0 \longrightarrow K \longrightarrow L \longrightarrow M \longrightarrow 0 \text{ exact in } \mathcal{A} \mid K, L, M \in \mathcal{C}\},\$

we get an exact category. Every small exact category is of this form.

Given an exact category \mathcal{C} and $K, M \in \mathcal{C}$, we can define Yoneda Ext:

$$\operatorname{Ext}^{1}_{\mathcal{C}}(M,K) = \{0 \longrightarrow K \longrightarrow L \longrightarrow M \longrightarrow 0 \text{ conflation}\} / \sim$$

and using that, we can define projective and injective objects.

Frobenius exact category: An exact category \mathcal{C} such that

- \mathcal{C} has enough projectives and injectives,
- {projectives in C} = {injectives in C}.

Theorem (Happel). Let C be a Frobenius exact category and $\underline{C} = C/[\{\text{projectives}\}]$. Then \underline{C} carries a triangulated structure such that

- triangles come from conflations,
- $M[1] = \Omega^{-}(M)$ (a "cosyzygy") for each $M \in \mathcal{C}$.

Observation. If \mathcal{C} is Frobenius, $\operatorname{Ext}^{1}_{\mathcal{C}}(M, K) \cong \operatorname{Hom}_{\mathcal{C}}(M, K[1])$ naturally for every $M, K \in \mathcal{C}$.

Then Hom-orthogonal pairs and existence of approximation triangles translate into the following concepts, which in fact make sense for **any** (not necessarily Frobenius) exact category:

Cotorsion pair: A pair $(\mathcal{A}, \mathcal{B})$ of full subcategories of \mathcal{C} such that $\mathcal{A} = {}^{\perp_1}\mathcal{B}$ and $\mathcal{A}^{\perp_1} = \mathcal{B}$ (orthogonality with respect to $\operatorname{Ext}^1_{\mathcal{C}}$).

Complete cotorsion pair: A cotorsion pair such that for each $M \in \mathcal{C}$ there do exist conflations

 $0 \longrightarrow M \longrightarrow B \longrightarrow A \longrightarrow 0 \qquad \text{and} \qquad 0 \longrightarrow B' \longrightarrow A' \longrightarrow M \longrightarrow 0$

with $A, A' \in \mathcal{A}$ and $B, B' \in \mathcal{B}$.

3 Efficient exact categories

To construct complete cotorsion pairs, we need more assumptions on our exact categories. What we define is, in a sense, an analogue of a Grothendieck category in the world of exact categories. The concept here is a simplified and more restrictive version of that in arXiv:1005.3248.

Efficient exact category: An exact category \mathcal{C} with splitting idempotents and satisfying

left exactness: Given a well-ordered continuous direct system

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \cdots \longrightarrow X_{\omega} \longrightarrow X_{\omega+1} \longrightarrow \cdots$$

of inflations, a colimit X exists and the colimit morphisms

$$X_{\alpha} \longrightarrow X$$

are inflations again.

- **smallness:** Each object of C is small with respect to well-ordered continuous chains of inflations (technical).
- existence of generators: \mathcal{C} has enough projectives or a generator (i.e. there is $G \in \mathcal{C}$ such that each $M \in \mathcal{C}$ admits a deflation $\prod G \twoheadrightarrow M$).

Examples.

1. C = C(Mod-R), conflations = all exact sequences.

Then \mathcal{C} is efficient and has enough projectives and injectives.

 $\cdots \longrightarrow R^2 \xrightarrow{\binom{0}{0}} R^2 \xrightarrow{\binom{0}{0}} R^2 \longrightarrow \cdots$

is a (projective) generator of \mathcal{C} .

2. C = C(G), G Grothendieck, conflations = all exact sequences.

Then C is efficient and has a generator and enough injectives. In fact, C itself is a Grothendieck category. However, C need not have enough projectives.

3. C = C(G), conflations = componentwise split exact sequences.

 \mathcal{C} is again efficient and has enough projectives and injectives.

Beware: For $\mathcal{C} = \mathbf{C}(Ab)$, no single object $G \in \mathcal{C}$ is a generator!

Before stating the main result, we need to formalize transfinite extensions in an efficient exact category C. Let $S \subseteq C$ be a class of objects. We define:

S-filtration: A continuous well-ordered chain of inflations

 $X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \cdots \longrightarrow X_{\omega} \longrightarrow X_{\omega+1} \longrightarrow \cdots$

such that $\operatorname{Coker}(X_{\alpha} \longrightarrow X_{\alpha+1}) \in \mathcal{S}$ for each α .

S-filtered object: A colimit of an S-filtration.

Denoting the class of all S-filtered objects in C by Filt-S, we can formulate the main result. Its proof is based on Quillen's small object argument.

Theorem (Saorín, Š.). Let C be an efficient exact category and $S \subseteq C$ a set (not a proper class!) of objects. Then:

- 1. If S contains a generator of C, $({}^{\perp_1}(S{}^{\perp_1}), S{}^{\perp_1})$ is a complete cotorsion pair. Moreover, ${}^{\perp_1}(S{}^{\perp_1})$ consists precisely of summands of S-filtered objects.
- 2. If C has enough projectives, $({}^{\perp_1}(S{}^{\perp_1}), S{}^{\perp_1})$ is a complete cotorsion pair. Moreover, ${}^{\perp_1}(S{}^{\perp_1})$ consists precisely of summands of objects E appearing in a conflation

$$0 \longrightarrow P \longrightarrow E \longrightarrow F \longrightarrow 0$$

with P projective and $F \in \text{Filt-}S$.

4 Semiorthogonal decompositions and filtrations

We can use the results to compare

- approximation theory for infinitely generated modules (e.g. a book by Göbel and Trlifaj),
- theory for well-generated triangulated categories (a book by Neeman).

Theorem (Saorín, Š.). Let C be an accessible efficient Frobenius exact category and let $S \subseteq \underline{C}$ be a set such that S = S[1]. Then:

- 1. $(^{\perp}(S^{\perp}), S^{\perp})$ is a semiorthogonal decomposition of \underline{C} and $^{\perp}(S^{\perp})$ is a well generated triangulated category (\underline{C} itself need not be!),
- 2. $^{\perp}(S^{\perp}) = \text{the closure of } S \text{ under coproducts and triangle completions,}$ = the essential image of Filt-S under $C \twoheadrightarrow \underline{C}$.

A short comment on the unexplained terminology:

- Accessible category: A technical condition; $\mathbf{C}(Mod-R)$ or $\mathbf{C}(\mathcal{G})$, \mathcal{G} a Grothendieck category, are always accessible.
- Well-generated triangulated category: A concept defined by Neeman in his book, there is a very satisfactory theory for Bousfield localizations of such categories.

Example. Let C = C(Mod-R), conflations = componentwise split exact sequences. Then C is accessible efficient Frobenius.

Let \mathcal{S} be a representative set of all bounded below complexes of free modules of finite rank:

 $\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow R^{r_n} \longrightarrow R^{r_{n+1}} \longrightarrow R^{r_{n+2}} \longrightarrow \cdots$

Then Filt- $\mathcal{S} = \mathbf{C}(\text{Free-}R)$, so $\mathbf{K}(\text{Free-}R)$ is well-generated. Eilenberg's swindle shows that

 $\mathbf{K}(\operatorname{Free-} R) \xrightarrow{\sim} \mathbf{K}(\operatorname{Proj-} R),$

and we recover results of Jørgensen and Neeman, that $\mathbf{K}(\operatorname{Proj}-R)$ is well generated.

5 The mock homotopy category of projectives

A more elaborate example due to Neeman and Murfet: Let X be a nice enough scheme (quasicompact and separated) and let

 $\mathcal{F} = \{ \text{flat quasi-coherent sheaves} \}.$

Further, let $\tilde{\mathcal{F}} \subseteq \mathbf{C}(\mathcal{F})$ be the subclass of all acyclic complexes with flat cycle objects. Then Murfet defines

Mock homotopy category of projectives: the Verdier quotient $\mathbf{K}(\mathcal{F})/\tilde{\mathcal{F}}$.

Remarks.

- 1. Terminology: If X is affine, then $\mathbf{K}(\mathcal{F})/\tilde{\mathcal{F}} \xrightarrow{\sim} \mathbf{K}(\text{Proj-X})$ (Neeman).
- 2. Motivation: $\mathbf{K}(\mathcal{F})/\tilde{\mathcal{F}}$ is compactly generated and the category of compact objects is equivalent to $\mathbf{D}^{b}(\mathfrak{coh}\mathbb{X})^{\mathrm{op}}$ (Murfet).

Question. Is there a semiorthogonal decomposition $(\tilde{\mathcal{F}}, \tilde{\mathcal{F}}^{\perp})$ of $\mathbf{K}(\mathcal{F})$?

The answer is YES, but:

Warning. Typically, there is no set $\mathcal{S} \subseteq \mathbf{K}(\mathcal{F})$ such that $\mathcal{S}^{\perp} = \tilde{\mathcal{F}}^{\perp}$ in $\mathbf{K}(\mathcal{F})$!

Solution: We take another exact structure on $C(\mathcal{F})$. Not the Frobenius one, but the one with:

conflations = **all** s.e.s. of complexes of flat quasi-coherent sheaves.

For this exact structure, there is a generating set $\mathcal{S}' \subseteq \mathbf{C}(\mathcal{F})$ such that $\mathcal{F} = \text{Filt-}\mathcal{S}'$, and so $(\tilde{\mathcal{F}}, \tilde{\mathcal{F}}^{\perp_1})$ is a complete cotorsion pair.

Warning. We have changed the exact structure, so typically $\tilde{\mathcal{F}}^{\perp} \neq \tilde{\mathcal{F}}^{\perp_1}!$

But we know, using the approximation conflations for $(\tilde{\mathcal{F}}, \tilde{\mathcal{F}}^{\perp_1})$, that $\tilde{\mathcal{F}}$ is contravariantly finite in $\mathbf{C}(\mathcal{F})$, and so also in $\mathbf{K}(\mathcal{F})$. Here:

Contravariant finiteness: $\forall M \in \mathbf{C}(\mathcal{F})$, there is $f: F \longrightarrow M$ with $F \in \tilde{\mathcal{F}}$ and such that

Now, we just apply the following lemma.

Lemma (Neeman; Keller, Vossieck). Let \mathcal{T} be a triangulated category with splitting idempotents. Let $\mathcal{X} \subseteq \mathcal{T}$ be a full suspended subcategory, i.e. closed under extensions, summands and $\mathcal{X}[1] \subseteq \mathcal{X}$. Then

 \mathcal{X} is contravariantly finite in $\mathcal{T} \iff (\mathcal{X}, \mathcal{X}^{\perp})$ is a t-structure.