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1 t-structures, weight structures and semiorthogonal decompo-
sitions

Throughout, let T be a triangulated category. We recall 3 definitions, formulated in a slightly
non-classical way in order to stress the formal similarity among them:

t-structure: A pair (X ,Y) of full subcategories in T such that

• X = ⊥Y and X⊥ = Y,

• X [1] ⊆ X (and so Y[−1] ⊆ Y),

• approximation triangles exist (see below).

Motivation: H = X ∩ Y[1] is an abelian subcategory of T .

Semiorthogonal decomposition: A pair (X ,Y) of full subcategories in T such that

• X = ⊥Y and X⊥ = Y,

• X [1] = X (and so Y[−1] = Y),

• approximation triangles exist (see below).

Motivation: There are triangle equivalences T /X ∼→ Y (Bousfield localization) and T /Y ∼→
X (Bousfield colocalization).

Weight structure: A pair (X ,Y) of full subcategories in T such that

• X = ⊥Y and X⊥ = Y,

• X [−1] ⊆ X (and so Y[1] ⊆ Y),

• approximation triangles exist (see below).

Motivation from motivic theory, more details in other talks.

Difference only in the closure properties of X and Y. The following crucial concept is
involved in all the definitions:

Approximation triangles: We insist that each U ∈ T admits a triangle X → U → Y → X[1]
with X ∈ X and Y ∈ Y.

Question. Given a Hom-orthogonal pair (X ,Y), that is a pair of full subcategories of T
such that X = ⊥Y and X⊥ = Y, when do approximation triangles exist?
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2 Frobenius exact categories

We address the question for algebraic triangulated categories, i.e. those obtained from Frobenius
exact categories. Recall:

Exact category: An additive category C together with a designated class of kernel-cokernel
pairs

{0 −→ Kλ
iλ−→ Lλ

dλ−→Mλ −→ 0 | λ ∈ Λ},

called conflations, satisfying suitable axioms. Terminology:

inflation: The map iλ in a conflation.

deflation: The map dλ in a conflation.

Remark. If A is abelian, C ⊆ A is an extension closed full subcategory, and the conflations in C
are defined by

{0 −→ K −→ L −→M −→ 0 exact in A | K,L,M ∈ C},

we get an exact category. Every small exact category is of this form.

Given an exact category C and K,M ∈ C, we can define Yoneda Ext:

Ext1C(M,K) = {0 −→ K −→ L −→M −→ 0 conflation}/ ∼

and using that, we can define projective and injective objects.

Frobenius exact category: An exact category C such that

• C has enough projectives and injectives,

• {projectives in C} = {injectives in C}.

Theorem (Happel). Let C be a Frobenius exact category and C = C/[{projectives}]. Then C
carries a triangulated structure such that

• triangles come from conflations,

• M [1] = Ω−(M) (a “cosyzygy”) for each M ∈ C.

Observation. If C is Frobenius, Ext1C(M,K) ∼= HomC(M,K[1]) naturally for every M,K ∈ C.

Then Hom-orthogonal pairs and existence of approximation triangles translate into the
following concepts, which in fact make sense for any (not necessarily Frobenius) exact category:

Cotorsion pair: A pair (A,B) of full subcategories of C such that A = ⊥1B and A⊥1 = B
(orthogonality with respect to Ext1C).

Complete cotorsion pair: A cotorsion pair such that for each M ∈ C there do exist confla-
tions

0 −→M −→ B −→ A −→ 0 and 0 −→ B′ −→ A′ −→M −→ 0

with A,A′ ∈ A and B,B′ ∈ B.
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3 Efficient exact categories

To construct complete cotorsion pairs, we need more assumptions on our exact categories. What
we define is, in a sense, an analogue of a Grothendieck category in the world of exact categories.
The concept here is a simplified and more restrictive version of that in arXiv:1005.3248.

Efficient exact category: An exact category C with splitting idempotents and satisfying

left exactness: Given a well-ordered continuous direct system

X0 −→ X1 −→ X2 −→ X3 −→ · · · −→ Xω −→ Xω+1 −→ · · ·

of inflations, a colimit X exists and the colimit morphisms

Xα −→ X

are inflations again.

smallness: Each object of C is small with respect to well-ordered continuous chains of
inflations (technical).

existence of generators: C has enough projectives or a generator (i.e. there is G ∈ C
such that each M ∈ C admits a deflation

∐
G�M).

Examples.

1. C = C(Mod-R), conflations = all exact sequences.

Then C is efficient and has enough projectives and injectives.

· · · −→ R2 (0100)−→ R2 (0100)−→ R2 −→ · · ·

is a (projective) generator of C.

2. C = C(G), G Grothendieck, conflations = all exact sequences.

Then C is efficient and has a generator and enough injectives. In fact, C itself is a
Grothendieck category. However, C need not have enough projectives.

3. C = C(G), conflations = componentwise split exact sequences.

C is again efficient and has enough projectives and injectives.

Beware: For C = C(Ab), no single object G ∈ C is a generator!

Before stating the main result, we need to formalize transfinite extensions in an efficient
exact category C. Let S ⊆ C be a class of objects. We define:

S-filtration: A continuous well-ordered chain of inflations

X0 −→ X1 −→ X2 −→ X3 −→ · · · −→ Xω −→ Xω+1 −→ · · ·

such that Coker(Xα −→ Xα+1) ∈ S for each α.

S-filtered object: A colimit of an S-filtration.
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Denoting the class of all S-filtered objects in C by Filt-S, we can formulate the main result.
Its proof is based on Quillen’s small object argument.

Theorem (Saoŕın, Š.). Let C be an efficient exact category and S ⊆ C a set (not a proper
class!) of objects. Then:

1. If S contains a generator of C, (⊥1(S⊥1),S⊥1) is a complete cotorsion pair. Moreover,
⊥1(S⊥1) consists precisely of summands of S-filtered objects.

2. If C has enough projectives, (⊥1(S⊥1),S⊥1) is a complete cotorsion pair. Moreover,
⊥1(S⊥1) consists precisely of summands of objects E appearing in a conflation

0 −→ P −→ E −→ F −→ 0

with P projective and F ∈ Filt-S.
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4 Semiorthogonal decompositions and filtrations

We can use the results to compare

• approximation theory for infinitely generated modules (e.g. a book by Göbel and Trlifaj),

• theory for well-generated triangulated categories (a book by Neeman).

Theorem (Saoŕın, Š.). Let C be an accessible efficient Frobenius exact category and let S ⊆ C
be a set such that S = S[1]. Then:

1. (⊥(S⊥),S⊥) is a semiorthogonal decomposition of C and ⊥(S⊥) is a well generated trian-
gulated category (C itself need not be!),

2. ⊥(S⊥) = the closure of S under coproducts and triangle completions,
= the essential image of Filt-S under C � C.

A short comment on the unexplained terminology:

Accessible category: A technical condition; C(Mod-R) or C(G), G a Grothendieck category,
are always accessible.

Well-generated triangulated category: A concept defined by Neeman in his book, there is
a very satisfactory theory for Bousfield localizations of such categories.

Example. Let C = C(Mod-R), conflations = componentwise split exact sequences. Then C is
accessible efficient Frobenius.

Let S be a representative set of all bounded below complexes of free modules of finite rank:

· · · −→ 0 −→ 0 −→ Rrn −→ Rrn+1 −→ Rrn+2 −→ · · ·

Then Filt-S = C(Free-R), so K(Free-R) is well-generated. Eilenberg’s swindle shows that

K(Free-R)
∼−→ K(Proj-R),

and we recover results of Jørgensen and Neeman, that K(Proj-R) is well generated.
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5 The mock homotopy category of projectives

A more elaborate example due to Neeman and Murfet: Let X be a nice enough scheme (quasi-
compact and separated) and let

F = {flat quasi-coherent sheaves}.

Further, let F̃ ⊆ C(F) be the subclass of all acyclic complexes with flat cycle objects. Then
Murfet defines

Mock homotopy category of projectives: the Verdier quotient K(F)/F̃ .

Remarks.

1. Terminology: If X is affine, then K(F)/F̃ ∼−→ K(Proj-X) (Neeman).

2. Motivation: K(F)/F̃ is compactly generated and the category of compact objects is
equivalent to Db(cohX)op (Murfet).

Question. Is there a semiorthogonal decomposition (F̃ , F̃⊥) of K(F)?

The answer is YES, but:

Warning. Typically, there is no set S ⊆ K(F) such that S⊥ = F̃⊥ in K(F)!

Solution: We take another exact structure on C(F). Not the Frobenius one, but the one with:

conflations = all s.e.s. of complexes of flat quasi-coherent sheaves.

For this exact structure, there is a generating set S ′ ⊆ C(F) such that F = Filt-S ′, and so
(F̃ , F̃⊥1) is a complete cotorsion pair.

Warning. We have changed the exact structure, so typically F̃⊥ 6= F̃⊥1 !

But we know, using the approximation conflations for (F̃ , F̃⊥1), that F̃ is contravariantly
finite in C(F), and so also in K(F). Here:

Contravariant finiteness: ∀M ∈ C(F), there is f : F −→M with F ∈ F̃ and such that

F
f // M

∀F ′ ∈ F̃

∀f ′

;;wwwwwwwwwwwwwwwwwww

∃

OO

Now, we just apply the following lemma.

Lemma (Neeman; Keller, Vossieck). Let T be a triangulated category with splitting idempotents.
Let X ⊆ T be a full suspended subcategory, i.e. closed under extentions, summands and
X [1] ⊆ X . Then

X is contravariantly finite in T ⇐⇒ (X ,X⊥) is a t-structure.
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