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Summary

Inspired by Kontsevich’s homological mirror conjecture, Seidel and Thomas stud-
ied in [10] actions of the braid groups generated by the so-called twist functors along
spherical objects on triangulated categories.

On the other hand, cluster algebras were invented at around 2000 by Fomin-
Zelevinsky [3]. Their main motivation was to find a combinatorial approach to
Lusztig’s results concerning total positivity in algebraic groups [8] and canonical
bases in quantum groups [7]. However, shortly after their appearance, strong links
with other areas of Mathematics were discovered: Poisson geometry, discrete di-
namical systems, algebraic geometry, representation theory of finite-dimensional
algebras,. . .

Nowadays, a major effort is being made to understand cluster algebras by ‘cat-
egorifying’ them, namely, by finding nice categories encoding their combinatorics.
There are three main types of categorification:

• additive, by means of the 2-Calabi-Yau triangulated cluster category (after
Buan-Marsh-Reineke-Reiten-Todorov [2], Keller [5], Amiot [1],. . . ),

• monoidal (after Hernandez-Leclerc [4], Nakajima [9],. . . ), and

• a categorification by means of a 3-Calabi-Yau triangulated category, re-
cently developped by Kontsevich-Soibelman [6], which is somewhere in the
middle of the additive and the monoidal types.

In a joint work with Bernhard Keller, we use braid actions on triangulated cat-
egories, t-structures and weight structures to understand the relationship between
Kontsevich-Soibelman categorification and the additive one.
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