PROPOSITION.- Let \mathcal{D} be a triangulated category with small coproducts and \mathcal{D}' be an arbitrary triangulated subcategory. If for each aisle \mathcal{U} of \mathcal{D}' , $Susp_{\mathcal{D}}(\mathcal{U})$ is an aisle of \mathcal{D} , then each t-estructure on \mathcal{D}' is the restriction of a t-structure on \mathcal{D} . Moreover, in such a case the assignment $\mathcal{U} \rightsquigarrow Susp(\mathcal{U})$ gives a bijection between the aisles of \mathcal{D}' and the aisles of \mathcal{D} which restrict to \mathcal{D}' .

COROLLARY.- Under the hypotheses above, suppose in addition that \mathcal{D} is compactly generated. If for each aisle \mathcal{U} of \mathcal{D}' , one has that $Susp_{\mathcal{D}}(\mathcal{U}) = Susp_{\mathcal{D}}(\mathcal{S})$ for some set of compact objects \mathcal{S} , then each t-structure on \mathcal{D}' is the restriction of a t-structure on \mathcal{D} . EXAMPLES.-

- 1. If \mathcal{D} is a compactly generated triangulated category, then each t-stucture on \mathcal{D}^c is the restriction of a t-structure on \mathcal{D} . Moreover, we have a bijection between t-structures on \mathcal{D}^c and compactly generated t-structures on \mathcal{D} .
- 2. If R is a commutative Noetherian ring, then each t-structure on $D_{fg}^b(R)$ is the restriction of a compactly generated t-structure on D(R)

DEFINITION.- A map $\phi : \mathbb{Z} \longrightarrow \mathcal{P}(Spec(R))$ is a *filtration by supports* if $\phi(n) \supseteq \phi(n+1)$ and $\phi(n)$ is closed under specialization, for all $n \in \mathbb{Z}$. THEOREM (A-J-S).- Let R be a commutative Noetherian ring. Then each aisle in D(R) generated by complexes of $D_{fg}^b(R)$ is compactly generated. Moreover, if for each filtration by supports $\phi : \mathbb{Z} \longrightarrow \mathcal{P}(Spec(R))$ we put

$$\mathcal{U}_{\phi} := \{ X \in D(R) :$$

Supp $(H^{i}(X)) \subseteq \phi(i)$, for all $i \in \mathbb{Z} \}$.

then

 $\mathcal{U}_{\phi} = Susp_{D(R)}(\frac{R}{\mathbf{p}}[-i] : i \in \mathbf{Z} \text{ and } \mathbf{p} \in \phi(i)).$

and the assignment $\phi \rightsquigarrow \mathcal{U}_{\phi}$ establishes a bijection between filtrations by supports on Spec(R) and compactly generated t-structures on D(R).

QUESTION 1.- Which are the compactly generated t-structures of D(R) which restrict to t-structures on $D_{fg}^b(R)$?.

Equivalently:

QUESTION 2.- Which are the filtrations by supports ϕ on Spec(R) such that $\mathcal{U}_{\phi} \cap D^b_{fg}(R)$ is an aisle of $D^b_{fg}(R)$? THEOREM (A-J-S).- Let R be a commutative Noetherian ring and $\phi : \mathbb{Z} \longrightarrow \mathcal{P}(Spec(R))$ be a filtration by supports. Consider the following assertions:

- 1. $\mathcal{U}_{\phi} \cap D^b_{fg}(R)$ is an aisle of $D^b_{fg}(R)$
- 2. If $p \subseteq q$ are prime ideals, with p maximal under q, and $q \in \phi(j)$ then $p \in \phi(i)$ (we will say in this case that ϕ satisfies the *weak Cousin condition* (wCc)).

Then $1) \Longrightarrow 2)$ and, in case R has a dualizing complex, the converse is also true. **KEY IDEAS FOR THE PROOF OF** $2) \Longrightarrow 1$:

- W.l.o.g. we assume that Spec(R) is connected and fix a dualizing complex D. Then we know:

- a) $D \in D^b_{fg}(R)$ and D is quasi-isomorphic to a bounded complex of injectives
- b) There is a codimension function d: $Spec(R) \longrightarrow \mathbb{Z}$ defined by the rule:

$$d(\mathbf{p}) = j \iff Hom_{D(R_{\mathbf{p}})}(k(p), D_{\mathbf{p}}[j]) \neq 0.$$

c) R has finite Krull dimension.

d) $RHom_R(-,D) : D^b_{fg}(R) \xrightarrow{\cong} D^b_{fg}(R)$ is a duality.

- LEMMA.- If $H := RHom_R(-, D)$ then the assignment $\mathcal{U} \rightsquigarrow^{\perp} H(\mathcal{U})$ gives a bijection inverse of itself between the set of *closed pre-aisles* (resp. aisles) in $D_{fg}^b(R)$ and itself. In particular, it induces a bijection between the corresponding sets of filtrations by supports on Spec(R) and themselves.

- EXAMPLES.-
- a) If ϕ is the filtration by supports on Spec(R) corresponding to the canonical t-structure, then its image by the above bijection is he filtration ϕ_{CM} given by

$$\phi_{CM}(i) = \{ \mathbf{p} \in Spec(R) : d(\mathbf{p}) > i \}$$

b) If $Z \subseteq Spec(R)$ is closed under specialization and $n \in \mathbb{Z}$ is an integer, then the filtration by supports $\phi_{Z,n}$ given by $\phi_{Z,n}(i) = Z$, for $i \leq n$, and $\phi_{Z,n}(i) = \emptyset$, for i > n, has as its image by the above map the filtration by supports $\xi = \xi_{Z,n}$ given by

$$\xi(k) = \{ \mathbf{q} \in Spec(R) : \\ V(\mathbf{q}) \cap Z \subseteq \phi_{CM}(k+n) \}.$$

OBSERVATION.- Denote by $\Gamma_Z : R - Mod \longrightarrow R - Mod$ the torsion radical associated to Z and by $R\Gamma_Z : D(R) \longrightarrow D(R)$ is right derived functor. The left truncation functor associated to the aisle $\mathcal{U}_{\phi_{Z,n}}$ is precisely $\tau^{\leq n} R\Gamma_Z : D(R) \longrightarrow D(R)$.

If $M \in D^b_{fg}(R)$, then we have a chain of implications:

$$\begin{split} R\Gamma_Z(M) &\in D^{>n}(R) \iff \tau^{\leq n} R\Gamma_Z(M) = 0 \iff \\ M &\in \mathcal{U}_{\phi_{Z,n}}^{\perp} \iff RHom_R(M,D) \in \mathcal{U}_{\xi} \Longrightarrow \\ Supp(Hom_{D(R)}(M,D[k])) \subseteq \xi(k), \text{ for all} \\ k \in \mathbf{Z} \iff \\ Z \cap Supp(Hom_{D(R)}(M,D[k])) \subseteq \phi_{CM}(k+n), \\ \text{ for all } i \in \mathbf{Z}. \end{split}$$

LEMMA.- With the notation above, let M be in $D_{fg}^b(R)$. The following assertions are equivalent:

- **1.** $\tau^{\leq n} R \Gamma_Z(M)$ is $D^b_{fq}(R)$
- **2.** $Supp(Hom_{D(R)}(M, D[k])) \subseteq Z \cup \xi(k)$, for all $i \in \mathbb{Z}$.

LEMMA.- (Always assuming that R has a dualizing complex) if $\phi : \mathbb{Z} \longrightarrow \mathcal{P}(Spec(R))$ is a filtration satisfying wCc, then it is of the form

$$\begin{split} \ldots = Spec(R) = \phi(r) \supsetneq \phi(r+1) \supseteq \phi(r+2) ... \supseteq \\ \phi(n) \supsetneq \phi(n+1) = \emptyset =, \end{split}$$

for uniquely determined integers r < n

If ϕ , r and n are as in the above lemma and n - k + 1 > 1, then the filtration by supports

$$\phi' : \qquad \dots = Spec(R) = \phi(r) \supsetneq \phi(r+1) \supseteq \\ \phi(r+2) \dots \supseteq \phi(n-1) \supsetneq \phi'(n) = \emptyset = \dots$$

also satisfies the wCc. This suggests to apply induction on the length n - r + 1, the case of length 1 being trivial. The key point is then

LEMMA.- With the notation above, if we put $Z = \phi(n)$, then we have triangles in D(R)

$$\tau_{\phi'}^{\leq} X \longrightarrow \tau_{\phi}^{\leq} X \longrightarrow \tau^{\leq n} R \Gamma_Z(\tau_{\phi'}^{>} X) \xrightarrow{+} \tau^{\leq n} R \Gamma_Z(\tau_{\phi'}^{>} X) \longrightarrow \tau_{\phi'}^{>} X \longrightarrow \tau_{\phi}^{>} X \xrightarrow{+} \tau_{\phi}^{>} X \xrightarrow{+} \tau_{\phi'}^{>} X$$

COROLLARY.- If $\mathcal{U}_{\phi'} \cap D^b_{fg}(R)$ is an aisle of $D^b_{fg}(R)$ then $\mathcal{U}_{\phi} \cap D^b_{fg}(R)$ is an aisle of $D^b_{fg}(R)$ if, and only if, $\tau^{\leq n} R\Gamma_Z(\tau^{>}_{\phi'}X) \in D^b_{fg}(R)$, where $Z = \phi(n)$. **KEY IDEAS FOR THE PROOF OF** $1) \Longrightarrow 2$:

- We assume, by reduction to absurd, that there is an inclusion $p \subsetneq q$, with p maximal under q, such that $q \in \phi(1)$ and $p \notin \phi(0)$ (there is no loss of generality).

- We fix the ϕ -triangle

 $T \longrightarrow R/\mathbf{p} \longrightarrow Y \stackrel{+}{\longrightarrow}$

(i.e. with $T \in \mathcal{U}_{\phi}$ and $Y \in \mathcal{U}_{\phi}^{\perp}$) which, by hypothesis, lives in $D_{fg}^{b}(R)$.

- By localizing at q, we can assume that R is local and q = m is the maximal ideal. By the exact sequence of homology applied to the triangle, one gets:

- a) $T \in D^{>0}(R)$ and $Y \in D^{\geq 0}(R)$
- b) An exact sequence $0 \to R/\mathbf{p} \xrightarrow{j} H^0(Y) \longrightarrow H^1(T) \to 0$, where j is an essential monomorphism.
- c) (As a consequence of b) $Supp(H^{1}(T)) \subseteq$ $Supp(H^{0}(Y)) = Supp(R/\mathbf{p}) = V(\mathbf{p}) = \{\mathbf{p}, \mathbf{m}\},$ and $\mathbf{p} \notin Supp(H^{1}(T))$ since $\mathbf{p} \notin \phi(0)$ (and hence $\mathbf{p} \notin \phi(1)$).

- It follows that $Supp(H^1(Y)) = \{\mathbf{m}\}$, and hence $H^1(Y)$ is an *R*-module of finite length and there is a r > 0 such that $\mathbf{m}^r H^1(Y) = 0$.

- We check that if A = R/p and n = m/p, then the canonical maps

$$Ext^{1}_{A}(A/\mathbf{n}^{k}, A) \longrightarrow Ext^{1}_{R}(A/\mathbf{n}^{k}, A) \longrightarrow Ext^{1}_{R}(R/\mathbf{m}^{k}, R)$$

are both injective.

- Using the fact that A is a local Noetherian domain of Krull dimension 1, one uses the minimal injective resolution of A to see that $\mathbf{n}^{k-1}Ext_A^1(A/\mathbf{n}^k, A) \neq 0$, and hence $\mathbf{m}^{k-1}Ext_R^1(R/\mathbf{m}^k, R/\mathbf{p}) \neq 0$, for all k > 0

- Using now that $R/\mathbf{m}^k[-1] \in \mathcal{U}_{\phi}$ (since $\mathbf{m} \in \phi(1)$) and that the truncation functor $\tau_{\phi}^{\leq} : D(R) \longrightarrow \mathcal{U}_{\phi}$ is right adjoint to the inclusion, we get that

$$Ext_{R}^{1}(R/\mathbf{m}^{k}, R/\mathbf{p}) \cong$$
$$Hom_{D(R)}(R/\mathbf{m}^{k}[-1], R/\mathbf{p}) \cong$$
$$Hom_{D(R)}(R/\mathbf{m}^{k}[-1], T) \cong$$
$$Hom_{R}(R/\mathbf{m}^{k}, H^{1}(T)),$$

the last isomorphism due to the fact that $T \in D^{>0}(R)$.

- Finally, from the equality $\mathbf{m}^r H^1(T) = 0$ we get that $\mathbf{m}^r Ext_R^1(R/\mathbf{m}^k, R/\mathbf{p}) = 0$, for all k > 0, which is a contradiction.