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1. Motivation and aim

Cluster algebras were invented at around 2000 by Fomin-Zelevinsky [7]. Their
main motivation was to find a combinatorial approach to Lusztig’s results concern-
ing total positivity in algebraic groups [16] and canonical bases in quantum groups
[15]. However, shortly after their appearance, strong links with other areas of Math-
ematics were discovered: Poisson geometry, discrete dinamical systems, algebraic
geometry, representation theory of finite-dimensional algebras,. . .

The definition of cluster algebras involves a procedure called mutation of a quiver
at a vertex.

Definition 1.1. Let Q be a finite quiver without loops or 2-cycles (e.g. acyclic).
The mutation of Q at the vertex r is a new quiver, µrQ, obtained from Q following
the rules:

M1) for each i → r → j we add an arrow i → j,
M2) reverse arrows incident with r,
M3) remove a maximal collection of 2-cycles.

Example 1.2.
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Nowadays, a major effort is being made to understand cluster algebras by ‘cat-
egorifying’ them, namely, by finding nice categories encoding their combinatorics.
Our aim here is to compare two categorifications of quiver mutation:

(1) via cluster-tilting objects (Iyama-Yoshino [10], Buan-Marsh-Reineke-Reiten-
Todorov [5], Geiß-Leclerc-Schröer [8], Amiot [1], . . . )

(2) via cluster-hearts (or cluster collections) (Bridgeland [3], Kontsevich-Soibelman
[14], Nagao [18],. . . )

2. The setup

- k algebraically closed field,
- Q finite quiver (say |Q0| = n) without loops or 2-cycles,
- k̂Q=completed path algebra, i.e. the underlying vector space is free over

the set of all possible paths, and multiplications is given by concatenation
of paths,

- W ∈ k̂Q a potential = (possibly infinite) linear combination of cycles of
length ≥ 3, up to cyclic equivalence (a1a2 . . . an ∼ a2a3 . . . ana1).

Assumptions:
1) (Q,W ) is a non-degenerate, i.e. no 2-cycles appear in any iterated mutation

of (Q,W ) (see Derksen-Weyman-Zelevinsky [6]).
2) Its Jacobian algebra P(Q,W ) = k̂Q/〈δaW , a ∈ Q1〉 is finite-dimensional.

Example 2.1.
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coo W = cba , P(Q,W ) = k̂Q/〈ba, cb, ac〉

After [9], associated to the quiver with potential (Q,W ) we have the so called
complete Ginzburg dg algebra, Γ. It is concentrated in non-positive degrees, and
satisfies H0Γ = P(Q,W ). For this dg algebra we consider the following triangulated
categories:

- its unbounded derived category, DΓ,
- its perfect derived category, per Γ, which is the smallest full triangulated

subcategory of DΓ containing Γ and closed under direct summands,
- its finite-dimensional derived category, DfdΓ, which is the full subcategory

of DΓ formed by those modules M such that Σp∈Z dim HpM < ∞,
and an exact sequence of triangulated categories,

0 → DfdΓ ↪→ per Γ → CΓ → 0.

DfdΓ is the home of the cluster hearts (or cluster collections), and CΓ, the general-
ized cluster category, is the home of the cluster-tilting objects.

Associated to the quiver Q we have the following braid group,

Braid(Q) = 〈σi , i ∈ Q0 |

{
σiσj = σjσi if there is no i ↔ j

σiσjσi = σjσiσj if there is one i ↔ j
〉.
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After Seidel-Thomas [23], we know that the following map is a group morphism

Braid(Q) → Auteq(DfdΓ) , σi 7→ twSi
,

where

- S1 , . . . , Sn is the set of simples of H0Γ regarded in DfdΓ via the morphism
Γ → H0Γ,

- twSi
is the Seidel-Thomas twist, defined by

RHom(Si, X)⊗L
k Si

ev→ X → twSi
(X) +→

3. Cluster collections

The following definition is due to Kontsevich-Soibelman [14].

Definition 3.1. A cluster collection is a sequence S ′ = (S′1, . . . , S
′
n) of objects of

DfdΓ such that

a) the S′i are 3-spherical, i.e. Hp REnd(S′i) ∼= Hp(S3; k) ∼=

{
k if p = 0, 3,

0 else;
b) for i 6= j the graded space

⊕
p∈Z HomDΓ(S′i,Σ

pS′j) is either zero or it is
concentrated in one of the two degrees p = 1 or p = 2 only;

c) the S′i generate DfdΓ.

Example 3.2. The set S = (S1, . . . , Sn) of simple modules over H0Γ yields a
cluster collection when regarded in DfdΓ. It is called canonical cluster collection.
We have Ext-quiver(S) = Q

Definition 3.3. The left Kontsevich-Soibelman(=KS)-mutation of a cluster collec-
tion S ′ at the vertex r is the collection µr,−(S ′) = (µr,−(S′1), . . . , µr,−(S′n)) where

µr,−(S′i) =


Σ−1S′r if i = r,

Si if there is some r → i in Ext-quiver(S ′),
twS′

r
(S′i) if i 6= r and r 6→ i in Ext-quiver(S ′).

The right KS-mutation of a cluster collection S ′ at the vertex r is the collection
µr,+(S ′) = (µr,+(S′1), . . . , µr,+(S′n)) where

µr,+(S′i) =


ΣS′r if i = r,

S′i if and there is some i → r in Ext-quiver(S ′),
tw−1

S′
r
(S′i) if i 6= r and i 6→ r in Ext-quiver(S ′).

Using ideas of Bridgeland one can prove the following:

Proposition 3.4. For each cluster tilting collection S ′ and each r ∈ {1, . . . , n}:
a) (twS′

r
◦µr,+)(S ′) ∼= µr,−(S ′).

b) Ext-quiver(µr,ε(S ′)) = µr(Ext-quiver(S ′)), for ε ∈ {+,−}.

Definition 3.5. A cluster collection S ′ is reachable if it can be obtained from the
canonical one by mutating and permutating.
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4. Cluster-tilting sequences

Definition 4.1. An object T ∈ CΓ is cluster-tilting if it is basic and ker Ext1(T, ?) =
add(T ).

We write QT to refere to the Gabriel quiver of the finite-dimensional algebra
End(T ), i.e. the Ext-quiver of their simple modules.

Example 4.2. (Amiot [1]) Γ ∈ CΓ cluster-tilting and QΓ = Q.

The following two theorems show how cluster-tilting objects help us to categorify
quiver-mutation:

Theorem 4.3. (Iyama-Yoshino [10]) If Tr is an idecomposable direct summand of
a cluster-tilting object T , there exists a unique indecomposable direct summand T ∗r
of T , not isomorphic to Tr, such that (T/T ∗r )⊕ T ∗r is cluster-tilting.

In this case we denote (T/T ∗r )⊕ T ∗r by µr(T ) and we say that it is the mutation
of T at r.

Theorem 4.4. (Buan-Iyama-Reiten-Scott [4])

QµrT = µr(QT ).

Definition 4.5. A cluster-tilting sequence is a sequence T ′ = (T ′1 , . . . , T ′n) of
pairwise non-isomorphic indecomposable objects of CΓ whose direct sum is a cluster-
tilting object T ′ whose associated quiver QT ′ does not have loops or 2-cycles.

Example 4.6. Associated to the vertices 1 , . . . , n of Q we have a complete
set of orthogonal idempotents e1 , . . . , en of Γ. The image T = (T1, . . . , Tn) of
(e1Γ, . . . , enΓ) in CΓ yields the so-called canonical cluster-tilting sequence.

Iyama-Yoshino mutation defines a partially defined mutation operation on the
cluster-tilting sequences. We use this in the following

Definition 4.7. A cluster-tilting sequence T ′ is reachable if it can be obtained
from the canonical one by mutating and permutating.

5. Main result

Theorem 5.1. (Keller-Nicolás [11]) There is a canonical bijection

{reachable cluster collection}/ Braid(Q) ∼→ {reachable cluster-tilting sequences}
compatible with mutations and permutations, and preserving the quivers.

6. Main ingredient of the proof

Let Γ be a dg k-algebra such that:
a) it is homologically non-positive, i.e. HpΓ = 0 for p ≥ 1,
b) HpΓ has finite dimension for each p ∈ Z,
c) it is homologically smooth, i.e. Γ is compact in D(Γ⊗k Γop).

Example 6.1. Γ can be:
a) a complete Ginzburg algebra as in § 2,
b) a finite-dimensional algebra with finite global dimension.

Remark 6.2. Note that conditions a), b) and c) above are preserved under derived
Morita equivalence.
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Theorem 6.3. There are canonical bijections between the following sets:
1) Non-degenerate t-structures t in DΓ such that the corresponding homological

functors Ht=n : DΓ → DΓ , n ∈ Z, preserve products and coproducts, and
such that the heart H(t) has a finite set of projective generators which are
compact in DΓ.

2) Equivalence classes of subsets P = {P ′
1 , . . . , P ′

n} of per Γ such that
a) Hom(P ′

i ,Σ
pP ′

j) = 0 for p > 0;
b) per Γ = thick(P ′

1, . . . , P
′
n).

Two such sets P and P ′ are equivalent if add(P) = add(P ′).
3) Bounded weight structures on per Γ whose heart is the additive closure of a

finite set.
4) Bounded t-structures on DfdΓ whose heart is a length category with a finite

number of simples.
5) Families S ′ = {S′1, . . . , S′n} ⊆ DfdΓ of simple-minded objects1, i.e. such

that

a) Hom(S′i, S
′
j) ∼=

{
0 if i 6= j,

k if i = j;
b) Hom(S′i,Σ

pS′j) = 0 for each p < 0;
c) S ′ generates DfdΓ.

The corresponding weight structures of 2) and t-structures of 3) are orthogonal with
respect to Hom, i.e.

Hom(X, Y ) = 0 if X ∈ (per Γ)w≤0 and Y ∈ (DfdΓ)t≥1.

Example 6.4. Any cluster collection is a family of simple-minded object.

Definition 6.5. In the situation of § 2, we call cluster heart to the heart of a
t-structure on DfdΓ corresponding to a cluster collection via the bijection between
4) and 5).

Remark 6.6. • The bijection between 1) and 2) works in great generality, it
is implicit in the work of Bondarko [2], and it has been recently rediscovered
by Mendoza, Saenz, Santiago and Souto Salorio [17]. To go from 3) to 2),
given a weight structure we take its heart. Conversely, given a set P as in
1) one takes the following weight structure w:

(per Γ)w≤0 = {M ∈ per Γ | Hom(P,ΣpM) = 0 for each p ≥ 1}
and (per Γ)w≥0 to be the smallest full subcategory of per Γ containing
cosusp(P) and closed under direct summands. The heart is add(P).

• From 2) to 1,4): a set P as in 1) induces a t-structure in DΓ which restricts
to a t-structure in DfdΓ.

• From 4) to 1): we construct ‘by hand’ the injective envelopes of the simple-
minded objects, and then we prove that they are in the image of the
Nakayama functor ν : per Γ → D0Γ = TriaDΓ(DfdΓ), where νP is defined
by

HomD0Γ(M,νP ) ∼= D HomDΓ(P,M)
for each M ∈ D0Γ.

• The bijections between 2), 4) and 5) are related to work by König and Yang
[13].

1This is a terminology due to König and Liu, [12].
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• To go from 4) to 5) we just take a set of representatives of the isoclasses of
the simple objects of the heart. The bijection between 4) and 5) is related to
work of Al-Nofayee [19], and Rickard and Rouquier [22]. In our approach we
prove the theorem below on compactly generated weight structures, related
to work of Pauksztello [20, 21].

Theorem 6.7. Suppose that T is a cocomplete triangulated category and that S is
a full additive subcategory stable under direct summands such that:

a) S compactly generates T ;
b) we have T (L, ΣpM) = 0 for all L and M in S and all integers p < 0;
c) the category ModS of additive functors Sop → ModZ is semi-simple.

For X in T and p ∈ Z, we write Hp(X) for the object L 7→ T (L,ΣpX) of ModS.
Then we have:

1) There is a unique weight structure (T >0, T ≤0) on T such that T ≤0 is
formed by the objects X with Hp(X) = 0 for all p > 0 and T >0 is formed
by the objects X with Hp(X) = 0 for all p ≤ 0.

2) For each object X, there is a truncation triangle

σ>0(X) → X → σ≤0X → Σσ>0(X)

such that the morphism X → σ≤0X induces an isomorphism in Hp for
p ≤ 0 and the morphism σ>0(X) → X induces an isomorphism in Hp for
p > 0.
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