Equal images modules and Auslander-Reiten theory for generalized Beilinson algebras

Julia Worch

University of Kiel

26.03.2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲ロト ▲園ト ★臣ト ★臣ト ―臣 ― のへで

Motivation

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → りへで

Motivation

General objective:

General objective: Understand mod $k\mathcal{G}$,

General objective: Understand mod $k\mathcal{G}$, where \mathcal{G} is a finite group (scheme)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Problem:

Problem: $k\mathcal{G}$ is wild in most cases

Problem: $k\mathcal{G}$ is wild in most cases, e.g. if $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$ and p > 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Problem: $k\mathcal{G}$ is wild in most cases, e.g. if $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$ and p > 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \rightsquigarrow Study modules that satisfy additional properties.

Problem: $k\mathcal{G}$ is wild in most cases, e.g. if $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$ and p > 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \rightsquigarrow Study modules that satisfy additional properties.

Approach:

Problem: $k\mathcal{G}$ is wild in most cases, e.g. if $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$ and p > 2.

 \rightsquigarrow Study modules that satisfy additional properties.

Approach: Study mod $k\mathcal{G}$ via algebraic families of restrictions to $k[T]/(T^p) \subseteq k\mathcal{G}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problem: $k\mathcal{G}$ is wild in most cases, e.g. if $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$ and p > 2.

 \rightsquigarrow Study modules that satisfy additional properties.

Approach: Study mod $k\mathcal{G}$ via algebraic families of restrictions to $k[T]/(T^p) \subseteq k\mathcal{G} \rightsquigarrow \text{mod } k[T]/(T^p)$ is completely understood.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problem: $k\mathcal{G}$ is wild in most cases, e.g. if $\mathcal{G} = \mathbb{Z}_p \times \mathbb{Z}_p$ and p > 2.

 \rightsquigarrow Study modules that satisfy additional properties.

Approach: Study mod $k\mathcal{G}$ via algebraic families of restrictions to $k[T]/(T^p) \subseteq k\mathcal{G} \rightsquigarrow \text{mod } k[T]/(T^p)$ is completely understood.

We confine our investigations to elementary abelian *p*-groups.

Setup

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

• k denotes an algebraically closed field of char(k) = p > 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

k denotes an algebraically closed field of char(k) = p > 0.
E_r = (ℤ_p)^r is an elementary abelian p-group of rank r ≥ 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 めんぐ

- k denotes an algebraically closed field of char(k) = p > 0.
- $E_r = (\mathbb{Z}_p)^r$ is an elementary abelian *p*-group of rank $r \geq 2$.

• There is an isomorphism

$$kE_r \cong k[X_1,\ldots,X_r]/(X_1^p,\ldots,X_r^p).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- k denotes an algebraically closed field of char(k) = p > 0.
- $E_r = (\mathbb{Z}_p)^r$ is an elementary abelian *p*-group of rank $r \geq 2$.

• There is an isomorphism

$$kE_r \cong k[X_1,\ldots,X_r]/(X_1^p,\ldots,X_r^p).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\rightsquigarrow kE_r$ is generated by the elements $x_i := X_i + (X_1^p, \dots, X_r^p)$.

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

• Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

•
$$x \in \mathfrak{P}$$
 together with $M \in \text{mod } kE_r$

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

• $x \in \mathfrak{P}$ together with $M \in \mathsf{mod}\ kE_r$ yields a linear operator

 $x_M: M \to M, m \mapsto x.m$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

• $x \in \mathfrak{P}$ together with $M \in \text{mod } kE_r$ yields a linear operator

 $x_M: M \to M, m \mapsto x.m$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

• $x \in \mathfrak{P}$ together with $M \in \text{mod } kE_r$ yields a linear operator

 $x_M: M \to M, m \mapsto x.m$

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

• $x \in \mathfrak{P}$ together with $M \in \mathsf{mod}\ kE_r$ yields a linear operator

 $x_M: M \to M, m \mapsto x.m$

(中) (四) (종) (종) (종) (종)

Definition

Let $M \in mod(kE_r)$. We say that M has

constant Jordan type

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

• $x \in \mathfrak{P}$ together with $M \in \mathsf{mod}\ kE_r$ yields a linear operator

 $x_M: M \to M, m \mapsto x.m$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Definition

Let $M \in mod(kE_r)$. We say that M has

• constant Jordan type if $\mathsf{rk}(x_M^j) = \mathsf{rk}(y_M^j)$ for all $x, y \in \mathfrak{P}, j \ge 1$.

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

• $x \in \mathfrak{P}$ together with $M \in \text{mod } kE_r$ yields a linear operator

 $x_M: M \to M, m \mapsto x.m$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Definition

- constant Jordan type if $\mathsf{rk}(x_M^j) = \mathsf{rk}(y_M^j)$ for all $x, y \in \mathfrak{P}, j \ge 1$.
- 2 the equal images property

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

• $x \in \mathfrak{P}$ together with $M \in \text{mod } kE_r$ yields a linear operator

 $x_M: M \to M, m \mapsto x.m$

Definition

Let $M \in mod(kE_r)$. We say that M has

• constant Jordan type if $\mathsf{rk}(x_M^j) = \mathsf{rk}(y_M^j)$ for all $x, y \in \mathfrak{P}, j \ge 1$.

3 the equal images property if $im(x_M) = im(y_M)$ for all $x, y \in \mathfrak{P}$.

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

• $x \in \mathfrak{P}$ together with $M \in \text{mod } kE_r$ yields a linear operator

 $x_M: M \to M, m \mapsto x.m$

Definition

- constant Jordan type if $\mathsf{rk}(x_M^j) = \mathsf{rk}(y_M^j)$ for all $x, y \in \mathfrak{P}, j \ge 1$.
- 3 the equal images property if $im(x_M) = im(y_M)$ for all $x, y \in \mathfrak{P}$.
- the equal kernels property

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \cdots + \alpha_r x_r \}.$$

• $x \in \mathfrak{P}$ together with $M \in \text{mod } kE_r$ yields a linear operator

 $x_M: M \to M, m \mapsto x.m$

Definition

- constant Jordan type if $\mathsf{rk}(x_M^j) = \mathsf{rk}(y_M^j)$ for all $x, y \in \mathfrak{P}, j \ge 1$.
- 3 the equal images property if $im(x_M) = im(y_M)$ for all $x, y \in \mathfrak{P}$.
- **3** the equal kernels property if $ker(x_M) = ker(y_M)$ for all $x, y \in \mathfrak{P}$.

Define

$$\mathfrak{P} := \{ x \in kE_r \mid \exists \alpha \in k^r \setminus 0 : x = \alpha_1 x_1 + \dots + \alpha_r x_r \}.$$

• $x \in \mathfrak{P}$ together with $M \in \text{mod } kE_r$ yields a linear operator

 $x_M: M \to M, m \mapsto x.m$

Definition

- constant Jordan type if $\mathsf{rk}(x_M^j) = \mathsf{rk}(y_M^j)$ for all $x, y \in \mathfrak{P}, j \ge 1$.
- 3 the equal images property if $im(x_M) = im(y_M)$ for all $x, y \in \mathfrak{P}$.
- **3** the equal kernels property if $ker(x_M) = ker(y_M)$ for all $x, y \in \mathfrak{P}$.
 - CJT(kE_r), EIP(kE_r) and EKP(kE_r) are the corresponding full subcategories of mod(kE_r).

Generalized *W*-modules

Generalized *W*-modules

• For $n \leq p$, $m \geq n$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Generalized W-modules

• For $n \leq p$, $m \geq n$, define

$$M_{m,n}^{(r)} := (X_1, \ldots, X_r)^{m-n}/(X_1, \ldots, X_r)^m.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
• For
$$n \leq p$$
, $m \geq n$, define
$$M_{m,n}^{(r)} := (X_1, \dots, X_r)^{m-n} / (X_1, \dots, X_r)^m.$$

• For
$$x \in \mathfrak{P}$$
, we have $\ker(x_{\mathcal{M}_{m,n}^{(r)}}) = (X_1, \ldots, X_r)^{m-1}/(X_1, \ldots, X_r)^m$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• For
$$n \leq p$$
, $m \geq n$, define
 $M_{m,n}^{(r)} := (X_1, \dots, X_r)^{m-n}/(X_1, \dots, X_r)^m.$

• For $x \in \mathfrak{P}$, we have $\ker(x_{M_{m,n}^{(r)}}) = (X_1, \dots, X_r)^{m-1}/(X_1, \dots, X_r)^m$. $\rightsquigarrow W_{m,n}^{(r)} := (M_{m,n}^{(r)})^*$ is a module with the equal images property.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• For
$$n \leq p$$
, $m \geq n$, define
 $M_{m,n}^{(r)} := (X_1, \ldots, X_r)^{m-n}/(X_1, \ldots, X_r)^m.$

• For $x \in \mathfrak{P}$, we have $\ker(x_{M_{m,n}^{(r)}}) = (X_1, \ldots, X_r)^{m-1}/(X_1, \ldots, X_r)^m$. $\rightsquigarrow W_{m,n}^{(r)} := (M_{m,n}^{(r)})^*$ is a module with the equal images property.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $W_{m,n}^{(2)} = W_{m,n}$ was defined by Carlson-Friedlander-Suslin

• For
$$n \leq p$$
, $m \geq n$, define $M_{m,n}^{(r)} := (X_1, \dots, X_r)^{m-n}/(X_1, \dots, X_r)^m.$

• For
$$x \in \mathfrak{P}$$
, we have $\ker(x_{M_{m,n}^{(r)}}) = (X_1, \ldots, X_r)^{m-1}/(X_1, \ldots, X_r)^m$.
 $\rightsquigarrow W_{m,n}^{(r)} := (M_{m,n}^{(r)})^*$ is a module with the equal images property.

• $W_{m,n}^{(2)} = W_{m,n}$ was defined by Carlson-Friedlander-Suslin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• For
$$n \leq p$$
, $m \geq n$, define $M_{m,n}^{(r)} := (X_1, \dots, X_r)^{m-n}/(X_1, \dots, X_r)^m.$

• $W_{m,n}^{(2)} = W_{m,n}$ was defined by Carlson-Friedlander-Suslin

• Every object in $EIP(kE_2)$ is a quotient of some $W_{m,n}$.

• For
$$n \leq p$$
, $m \geq n$, define $M_{m,n}^{(r)} := (X_1, \ldots, X_r)^{m-n}/(X_1, \ldots, X_r)^m.$

• For
$$x \in \mathfrak{P}$$
, we have $\ker(x_{M_{m,n}^{(r)}}) = (X_1, \ldots, X_r)^{m-1}/(X_1, \ldots, X_r)^m$.
 $\rightsquigarrow W_{m,n}^{(r)} := (M_{m,n}^{(r)})^*$ is a module with the equal images property.

• $W_{m,n}^{(2)} = W_{m,n}$ was defined by Carlson-Friedlander-Suslin

(日) (四) (문) (문) (문)

- Every object in $EIP(kE_2)$ is a quotient of some $W_{m,n}$.
- The indecomposable objects of Loewy length 2 are of the form $W_{m,2}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Let B(n, r) be the generalized Beilinson algebra,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver

• Let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver

<ロト <四ト <注入 <注下 <注下 <

• Let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$1\underbrace{\begin{array}{c} \gamma_{1}^{(1)} \\ \vdots \\ \gamma_{r}^{(1)} \end{array}}_{\gamma_{r}^{(2)}} 2\underbrace{\begin{array}{c} \gamma_{1}^{(2)} \\ \vdots \\ \gamma_{r}^{(2)} \end{array}}_{\gamma_{r}^{(2)}} 3 \cdots n - \underbrace{\begin{array}{c} \gamma_{1}^{(n-1)} \\ \vdots \\ \gamma_{r}^{(n-1)} \end{array}}_{\gamma_{r}^{(n-1)}} n$$

with relations $\gamma_s^{(i+1)} \gamma_t^{(i)} - \gamma_t^{(i+1)} \gamma_s^{(i)}$

• Let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver

with relations $\gamma_s^{(i+1)} \gamma_t^{(i)} - \gamma_t^{(i+1)} \gamma_s^{(i)}$

• For $n \leq p$, we have a faithful exact functor

 $\mathfrak{F}: \mod B(n,r) \to \mod(kE_r)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver

with relations $\gamma_s^{(i+1)}\gamma_t^{(i)} - \gamma_t^{(i+1)}\gamma_s^{(i)}$

• For $n \leq p$, we have a faithful exact functor

 $\mathfrak{F}: \mod B(n,r) \to \mod(kE_r)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

with

$$\mathfrak{F}(\bigoplus_{i=1}^n M_i) = \bigoplus_{i=1}^n M_i$$

• Let B(n, r) be the generalized Beilinson algebra, the path algebra of the quiver

$$1\underbrace{\vdots}_{\gamma_{r}^{(1)}}^{\gamma_{1}^{(1)}} 2\underbrace{\vdots}_{\gamma_{r}^{(2)}}^{\gamma_{1}^{(2)}} 3 \cdots n - \underbrace{1}_{\gamma_{r}^{(n-1)}}^{\gamma_{1}^{(n-1)}} n$$

with relations $\gamma_s^{(i+1)}\gamma_t^{(i)} - \gamma_t^{(i+1)}\gamma_s^{(i)}$

• For $n \leq p$, we have a faithful exact functor

$$\mathfrak{F}: \mod B(n,r) \to \mod(kE_r)$$

with

$$\mathfrak{F}(\bigoplus_{i=1}^n M_i) = \bigoplus_{i=1}^n M_i \text{ and } x_j.m := \gamma_j^{(i)}.m$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for all $m \in M_i$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

• for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

• for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

• for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• the restriction of \mathfrak{F} to EIP(n, r) reflects isomorphisms.

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

• for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• the restriction of \mathfrak{F} to EIP(n, r) reflects isomorphisms.

There is a family $(X_{\alpha})_{\alpha \in k^r \setminus 0}$

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

- for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.
- the restriction of \mathfrak{F} to EIP(n, r) reflects isomorphisms.

There is a family $(X_{\alpha})_{\alpha \in k^r \setminus 0}$ of pairwise non-isomorphic indecomposable B(n, r)-modules of projective dimension one

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

- for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.
- the restriction of \mathfrak{F} to EIP(n, r) reflects isomorphisms.

There is a family $(X_{\alpha})_{\alpha \in k^r \setminus 0}$ of pairwise non-isomorphic indecomposable B(n, r)-modules of projective dimension one such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

- for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.
- the restriction of \mathfrak{F} to EIP(n, r) reflects isomorphisms.

There is a family $(X_{\alpha})_{\alpha \in k^r \setminus 0}$ of pairwise non-isomorphic indecomposable B(n, r)-modules of projective dimension one such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lemma

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

- for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.
- the restriction of \mathfrak{F} to EIP(n, r) reflects isomorphisms.

There is a family $(X_{\alpha})_{\alpha \in k^r \setminus 0}$ of pairwise non-isomorphic indecomposable B(n, r)-modules of projective dimension one such that

Lemma We have

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

- for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.
- the restriction of \mathfrak{F} to EIP(n, r) reflects isomorphisms.

There is a family $(X_{\alpha})_{\alpha \in k^r \setminus 0}$ of pairwise non-isomorphic indecomposable B(n, r)-modules of projective dimension one such that

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Lemma

We have

•
$$\mathsf{EIP}(n,r) = \{M \in \mathsf{mod}\ B(n,r) \mid$$

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

- for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.
- the restriction of \mathfrak{F} to EIP(n, r) reflects isomorphisms.

There is a family $(X_{\alpha})_{\alpha \in k^r \setminus 0}$ of pairwise non-isomorphic indecomposable B(n, r)-modules of projective dimension one such that

Lemma

We have

•
$$\mathsf{EIP}(n,r) = \left\{ M \in \mathsf{mod} B(n,r) \mid \mathsf{Ext}^1(X_{\alpha},M) = 0 \ \forall \alpha \right\},$$

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

- for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.
- the restriction of \mathfrak{F} to EIP(n, r) reflects isomorphisms.

There is a family $(X_{\alpha})_{\alpha \in k^r \setminus 0}$ of pairwise non-isomorphic indecomposable B(n, r)-modules of projective dimension one such that

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Lemma

We have

•
$$\operatorname{EIP}(n,r) = \left\{ M \in \operatorname{mod} B(n,r) \mid \operatorname{Ext}^1(X_{\alpha},M) = 0 \ \forall \alpha \right\},$$

• $\mathsf{EKP}(n,r) = \{ M \in \mathsf{mod} B(n,r) \mid$

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of mod B(n, r), such that

- for $\mathcal{X} \in \{\mathsf{CJT}, \mathsf{EIP}, \mathsf{EKP}\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}(kE_r)$.
- the restriction of \mathfrak{F} to EIP(n, r) reflects isomorphisms.

There is a family $(X_{\alpha})_{\alpha \in k^r \setminus 0}$ of pairwise non-isomorphic indecomposable B(n, r)-modules of projective dimension one such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lemma

We have

•
$$\operatorname{EIP}(n,r) = \left\{ M \in \operatorname{mod} B(n,r) \mid \operatorname{Ext}^1(X_{\alpha},M) = 0 \ \forall \alpha \right\},$$

• $\mathsf{EKP}(n,r) = \{ M \in \mathsf{mod} B(n,r) \mid \mathsf{Hom}(X_{\alpha},M) = 0 \ \forall \alpha \}.$

Understand mod A in terms of Auslander-Reiten theory:

Understand mod A in terms of Auslander-Reiten theory:

• For each non-projective indecomposable object M,

Understand mod *A* in terms of Auslander-Reiten theory:

• For each non-projective indecomposable object *M*, there is a unique almost split sequence

$$0 \to \tau(M) \to \bigoplus_{i=1}^t E_i^{m_i} \to M \to 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Understand mod A in terms of Auslander-Reiten theory:

• For each non-projective indecomposable object *M*, there is a unique almost split sequence

$$0 \to \tau(M) \to \bigoplus_{i=1}^t E_i^{m_i} \to M \to 0$$

with $\tau(M), E_i$ indecomposable $E_i \not\cong E_j$ for $i \neq j$.

Understand mod *A* in terms of Auslander-Reiten theory:

• For each non-projective indecomposable object *M*, there is a unique almost split sequence

$$0 \to \tau(M) \to \bigoplus_{i=1}^t E_i^{m_i} \to M \to 0$$

(日) (四) (코) (코) (코) (코)

with $\tau(M), E_i$ indecomposable $E_i \not\cong E_j$ for $i \neq j$.

• The Auslander-Reiten quiver $\Gamma(A)$ is given by the following data

Understand mod *A* in terms of Auslander-Reiten theory:

• For each non-projective indecomposable object *M*, there is a unique almost split sequence

$$0 \to \tau(M) \to \bigoplus_{i=1}^t E_i^{m_i} \to M \to 0$$

(日) (四) (코) (코) (코) (코)

with $\tau(M), E_i$ indecomposable $E_i \ncong E_j$ for $i \neq j$.

- The Auslander-Reiten quiver $\Gamma(A)$ is given by the following data
 - $\, \bullet \,$ vertices $\, \widehat{=} \,$ isomorphism classes of indecomposable objects

Understand mod *A* in terms of Auslander-Reiten theory:

• For each non-projective indecomposable object *M*, there is a unique almost split sequence

$$0 \to \tau(M) \to \bigoplus_{i=1}^t E_i^{m_i} \to M \to 0$$

with $\tau(M), E_i$ indecomposable $E_i \ncong E_j$ for $i \neq j$.

- The Auslander-Reiten quiver $\Gamma(A)$ is given by the following data
 - $\, \bullet \,$ vertices $\, \widehat{=} \,$ isomorphism classes of indecomposable objects
 - arrows $[X] \rightarrow [Y] \cong$ maps $X \rightarrow Y$ occurring in almost split sequences

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで
Auslander-Reiten theory

Understand mod *A* in terms of Auslander-Reiten theory:

• For each non-projective indecomposable object *M*, there is a unique almost split sequence

$$0 \to \tau(M) \to \bigoplus_{i=1}^t E_i^{m_i} \to M \to 0$$

with $\tau(M), E_i$ indecomposable $E_i \ncong E_j$ for $i \neq j$.

- The Auslander-Reiten quiver $\Gamma(A)$ is given by the following data
 - $\, \bullet \,$ vertices $\, \widehat{=} \,$ isomorphism classes of indecomposable objects
 - arrows $[X] \rightarrow [Y] \cong$ maps $X \rightarrow Y$ occurring in almost split sequences
- We have meshes

| ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ● 三 ● ○ ○ ○

• Recall:

• Recall: A full subcategory $\mathcal{T} \subseteq \mod A$ is called torsion class

Recall: A full subcategory *T* ⊆ mod *A* is called torsion class provided *T* is closed under images, direct sums and extensions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Recall: A full subcategory $\mathcal{T} \subseteq \mod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Given a torsion class $\mathcal{T} \subseteq \operatorname{mod} A$,

- Recall: A full subcategory T ⊆ mod A is called torsion class provided T is closed under images, direct sums and extensions.
- Given a torsion class T ⊆ mod A, F = {N | Hom_A(−, N)_T = 0} is the corresponding torsion-free class.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Recall: A full subcategory T ⊆ mod A is called torsion class provided T is closed under images, direct sums and extensions.
- Given a torsion class T ⊆ mod A, F = {N | Hom_A(−, N)_T = 0} is the corresponding torsion-free class.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

- Recall: A full subcategory $\mathcal{T} \subseteq \mod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class T ⊆ mod A, F = {N | Hom_A(-, N)_T = 0} is the corresponding torsion-free class.

Theorem

The category EIP(n, r)

- Recall: A full subcategory T ⊆ mod A is called torsion class provided T is closed under images, direct sums and extensions.
- Given a torsion class T ⊆ mod A, F = {N | Hom_A(−, N)_T = 0} is the corresponding torsion-free class.

Theorem

The category EIP(n, r) is the torsion class T

- Recall: A full subcategory T ⊆ mod A is called torsion class provided T is closed under images, direct sums and extensions.
- Given a torsion class T ⊆ mod A, F = {N | Hom_A(-, N)_T = 0} is the corresponding torsion-free class.

Theorem

The category EIP(n, r) is the torsion class T of a torsion pair (T, F) in mod B(n, r)

- Recall: A full subcategory T ⊆ mod A is called torsion class provided T is closed under images, direct sums and extensions.
- Given a torsion class T ⊆ mod A, F = {N | Hom_A(−, N)_T = 0} is the corresponding torsion-free class.

Theorem

The category EIP(n, r) is the torsion class \mathcal{T} of a torsion pair $(\mathcal{T}, \mathcal{F})$ in mod B(n, r) such that

- Recall: A full subcategory T ⊆ mod A is called torsion class provided T is closed under images, direct sums and extensions.
- Given a torsion class T ⊆ mod A, F = {N | Hom_A(-, N)_T = 0} is the corresponding torsion-free class.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

The category EIP(n, r) is the torsion class T of a torsion pair (T, F) in mod B(n, r) such that

• EKP
$$(n, r) \subset \mathcal{F}$$

- Recall: A full subcategory T ⊆ mod A is called torsion class provided T is closed under images, direct sums and extensions.
- Given a torsion class T ⊆ mod A, F = {N | Hom_A(-, N)_T = 0} is the corresponding torsion-free class.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem

The category EIP(n, r) is the torsion class \mathcal{T} of a torsion pair $(\mathcal{T}, \mathcal{F})$ in mod B(n, r) such that

- $\mathsf{EKP}(n,r) \subset \mathcal{F}$
- ${\cal T}$ is closed under the Auslander-Reiten translate au

- Recall: A full subcategory T ⊆ mod A is called torsion class provided T is closed under images, direct sums and extensions.
- Given a torsion class T ⊆ mod A, F = {N | Hom_A(-, N)_T = 0} is the corresponding torsion-free class.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem

The category EIP(n, r) is the torsion class \mathcal{T} of a torsion pair $(\mathcal{T}, \mathcal{F})$ in mod B(n, r) such that

- $\mathsf{EKP}(n,r) \subset \mathcal{F}$
- ${\cal T}$ is closed under the Auslander-Reiten translate au
- *T* contains all preinjective modules.

- Recall: A full subcategory $\mathcal{T} \subseteq \mod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class T ⊆ mod A, F = {N | Hom_A(−, N)_T = 0} is the corresponding torsion-free class.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Theorem

The category EIP(n, r) is the torsion class T of a torsion pair (T, F) in mod B(n, r) such that

- $\mathsf{EKP}(n,r) \subset \mathcal{F}$
- ${\cal T}$ is closed under the Auslander-Reiten translate au
- *T* contains all preinjective modules.

Let $\Gamma(n, r)$ denote the Auslander-Reiten quiver of B(n, r).

$\mathbb{Z}A_{\infty}$ -components of $\overline{\Gamma(n,r)}$

- ◆ □ ▶ → @ ▶ → 注 → ↓ 注 → りへで

(日) (월) (일) (문) (문)

Corollary

Corollary

Assume that C is a $\mathbb{Z}A_{\infty}$ -component of $\Gamma(n, r)$ such that

◆□▶ ◆圖▶ ◆理▶ ◆理▶ ─ 理

Corollary

Assume that C is a $\mathbb{Z}A_{\infty}$ -component of $\Gamma(n, r)$ such that $\operatorname{EIP}(n, r) \cap C$ and $\operatorname{EKP}(n, r) \cap C$ are non-empty.

<ロト <四ト <注入 <注下 <注下 <

Corollary

Assume that C is a $\mathbb{Z}A_{\infty}$ -component of $\Gamma(n, r)$ such that $EIP(n, r) \cap C$ and $EKP(n, r) \cap C$ are non-empty. Then they form disjoint cones in C.

Corollary

Assume that C is a $\mathbb{Z}A_{\infty}$ -component of $\Gamma(n, r)$ such that $\operatorname{EIP}(n, r) \cap C$ and $\operatorname{EKP}(n, r) \cap C$ are non-empty. Then they form disjoint cones in C.

<ロト <四ト <注入 <注下 <注下 <

• The size of the gap $\mathcal{W}(\mathcal{C}) \in \mathbb{N}_0$ is an invariant of \mathcal{C} .

Corollary

Assume that C is a $\mathbb{Z}A_{\infty}$ -component of $\Gamma(n, r)$ such that $\operatorname{EIP}(n, r) \cap C$ and $\operatorname{EKP}(n, r) \cap C$ are non-empty. Then they form disjoint cones in C.

The size of the gap W(C) ∈ N₀ is an invariant of C.
W(C) = 0 ⇒ C ⊆ CJT(n, r).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

- The Auslander-Reiten quiver $\Gamma(\mathcal{K}_r)$ consists of
 - $\bullet\,$ a preinjective component ${\cal I}$

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- The Auslander-Reiten quiver $\Gamma(\mathcal{K}_r)$ consists of
 - a preinjective component $\mathcal{I} \subseteq \mathsf{EIP}(2, r)$,

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

(日) (四) (문) (문) (문)

- a preinjective component $\mathcal{I} \subseteq \mathsf{EIP}(2, r)$,
- $\bullet\,$ a preprojective component ${\cal P}$

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- a preinjective component $\mathcal{I} \subseteq \mathsf{EIP}(2, r)$,
- a preprojective component $\mathcal{P} \subseteq \mathsf{EKP}(2, r)$,

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- a preinjective component $\mathcal{I} \subseteq \mathsf{EIP}(2, r)$,
- a preprojective component $\mathcal{P} \subseteq \mathsf{EKP}(2, r)$,
- r = 2: homogeneous tubes \mathcal{T}_{λ}

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

- The Auslander-Reiten quiver $\Gamma(\mathcal{K}_r)$ consists of
 - a preinjective component $\mathcal{I} \subseteq \mathsf{EIP}(2, r)$,
 - a preprojective component $\mathcal{P} \subseteq \mathsf{EKP}(2, r)$,
 - r = 2: homogeneous tubes \mathcal{T}_{λ} with add $\mathcal{T}_{\lambda} \cap CJT(2,2) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

• The Auslander-Reiten quiver $\Gamma(\mathcal{K}_r)$ consists of

- a preinjective component $\mathcal{I} \subseteq \mathsf{EIP}(2, r)$,
- a preprojective component $\mathcal{P} \subseteq \mathsf{EKP}(2,r)$,
- r = 2: homogeneous tubes \mathcal{T}_{λ} with add $\mathcal{T}_{\lambda} \cap \mathsf{CJT}(2,2) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• r > 2: $\mathbb{Z}A_{\infty}$ -components (wild case).

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

• The Auslander-Reiten quiver $\Gamma(\mathcal{K}_r)$ consists of

- a preinjective component $\mathcal{I} \subseteq \mathsf{EIP}(2, r)$,
- a preprojective component $\mathcal{P} \subseteq \mathsf{EKP}(2, r)$,
- r = 2: homogeneous tubes \mathcal{T}_{λ} with add $\mathcal{T}_{\lambda} \cap CJT(2,2) = 0$.
- r > 2: $\mathbb{Z}A_{\infty}$ -components (wild case).

Proposition

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

- The Auslander-Reiten quiver $\Gamma(\mathcal{K}_r)$ consists of
 - a preinjective component $\mathcal{I} \subseteq \mathsf{EIP}(2, r)$,
 - a preprojective component $\mathcal{P} \subseteq \mathsf{EKP}(2,r)$,
 - r = 2: homogeneous tubes \mathcal{T}_{λ} with add $\mathcal{T}_{\lambda} \cap \mathsf{CJT}(2,2) = 0$.
 - r > 2: $\mathbb{Z}A_{\infty}$ -components (wild case).

Proposition

Let C be a $\mathbb{Z}A_{\infty}$ -component of $\Gamma(\mathcal{K}_r)$, r > 2.
n = 2: The *r*-Kronecker

• B(2, r) is the path algebra \mathcal{K}_r of the *r*-Kronecker

- The Auslander-Reiten quiver $\Gamma(\mathcal{K}_r)$ consists of
 - a preinjective component $\mathcal{I} \subseteq \mathsf{EIP}(2, r)$,
 - a preprojective component $\mathcal{P} \subseteq \mathsf{EKP}(2,r)$,
 - r = 2: homogeneous tubes \mathcal{T}_{λ} with add $\mathcal{T}_{\lambda} \cap \mathsf{CJT}(2,2) = 0$.
 - r > 2: $\mathbb{Z}A_{\infty}$ -components (wild case).

Proposition

Let C be a $\mathbb{Z}A_{\infty}$ -component of $\Gamma(\mathcal{K}_r)$, r > 2. Then $\text{EIP}(2, r) \cap C$ and $\text{EKP}(2, r) \cap C$ are non-empty disjoint cones.

The modules $W_{m,2}^{(r)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• r = 2: *W*-modules correspond to the preinjectives.

- r = 2: *W*-modules correspond to the preinjectives.
- r > 2: generalized *W*-modules are injective or in $\mathbb{Z}A_{\infty}$ -components.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- r = 2: *W*-modules correspond to the preinjectives.
- r > 2: generalized *W*-modules are injective or in $\mathbb{Z}A_{\infty}$ -components.

(=) (

Theorem

- r = 2: *W*-modules correspond to the preinjectives.
- r > 2: generalized *W*-modules are injective or in $\mathbb{Z}A_{\infty}$ -components.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- r = 2: *W*-modules correspond to the preinjectives.
- r > 2: generalized *W*-modules are injective or in $\mathbb{Z}A_{\infty}$ -components.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

Let $r > 2, m \ge 3$. The $\mathbb{Z}A_{\infty}$ -component \mathcal{C}_m containing $W_{m,2}^{(r)}$,

- r = 2: *W*-modules correspond to the preinjectives.
- r > 2: generalized *W*-modules are injective or in $\mathbb{Z}A_{\infty}$ -components.

Theorem

Let $r > 2, m \ge 3$. The $\mathbb{Z}A_{\infty}$ -component \mathcal{C}_m containing $W_{m,2}^{(r)}$, satisfies $\mathcal{W}(\mathcal{C}_m) = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- r = 2: *W*-modules correspond to the preinjectives.
- r > 2: generalized *W*-modules are injective or in $\mathbb{Z}A_{\infty}$ -components.

Theorem

Let $r > 2, m \ge 3$. The $\mathbb{Z}A_{\infty}$ -component \mathcal{C}_m containing $W_{m,2}^{(r)}$, satisfies $\mathcal{W}(\mathcal{C}_m) = 0$. In particular, $\mathcal{C}_m \subseteq CJT(2, r)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• The one-point extension

$$\mathcal{K}_r[\mathcal{M}_{3,2}^{(r)}] = \begin{pmatrix} \mathcal{K}_r & \mathcal{M}_{3,2}^{(r)} \\ 0 & k \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• The one-point extension

$$\mathcal{K}_r[M_{3,2}^{(r)}] = \begin{pmatrix} \mathcal{K}_r & M_{3,2}^{(r)} \\ 0 & k \end{pmatrix}$$

is isomorphic to B(3, r).

• The one-point extension

$$\mathcal{K}_r[M_{3,2}^{(r)}] = \begin{pmatrix} \mathcal{K}_r & M_{3,2}^{(r)} \\ 0 & k \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

is isomorphic to B(3, r).

• *r* = 2:

• The one-point extension

$$\mathcal{K}_r[M_{3,2}^{(r)}] = \begin{pmatrix} \mathcal{K}_r & M_{3,2}^{(r)} \\ 0 & k \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > = □

is isomorphic to B(3, r). • r = 2: extending $1 \frac{\gamma_1}{\gamma_2} 2$

• The one-point extension

$$\mathcal{K}_r[M_{3,2}^{(r)}] = \begin{pmatrix} \mathcal{K}_r & M_{3,2}^{(r)} \\ 0 & k \end{pmatrix}$$

・ロト ・四ト ・ヨト ・ヨト

æ

is isomorphic to B(3, r).

• The one-point extension

$$\mathcal{K}_r[M_{3,2}^{(r)}] = \begin{pmatrix} \mathcal{K}_r & M_{3,2}^{(r)} \\ 0 & k \end{pmatrix}$$

is isomorphic to B(3, r).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Inductively: $B(n,r) \cong \mathcal{K}_r[M_{3,2}^{(r)}] \cdots [M_{n,n-1}^{(r)}]$

• Inductively:
$$B(n,r) \cong \mathcal{K}_r[M_{3,2}^{(r)}] \cdots [M_{n,n-1}^{(r)}]$$

Ringel:

• Inductively:
$$B(n,r) \cong \mathcal{K}_r[\mathcal{M}_{3,2}^{(r)}] \cdots [\mathcal{M}_{n,n-1}^{(r)}]$$

Ringel:

• Lifting properties of almost split sequences over A to a one-point extension A[X].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• Inductively:
$$B(n,r) \cong \mathcal{K}_r[M_{3,2}^{(r)}] \cdots [M_{n,n-1}^{(r)}]$$

Ringel:

• Lifting properties of almost split sequences over A to a one-point extension A[X].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Splitting properties of almost split sequences over *A*[*X*] after restriction to *A*.

• Inductively:
$$B(n,r) \cong \mathcal{K}_r[M_{3,2}^{(r)}] \cdots [M_{n,n-1}^{(r)}]$$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension A[X].
- Splitting properties of almost split sequences over *A*[*X*] after restriction to *A*.

Theorem

• Inductively:
$$B(n,r) \cong \mathcal{K}_r[M_{3,2}^{(r)}] \cdots [M_{n,n-1}^{(r)}]$$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension A[X].
- Splitting properties of almost split sequences over *A*[*X*] after restriction to *A*.

Theorem

Let $n \geq 3$, m > n.

• Inductively:
$$B(n,r) \cong \mathcal{K}_r[M_{3,2}^{(r)}] \cdots [M_{n,n-1}^{(r)}]$$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension A[X].
- Splitting properties of almost split sequences over *A*[*X*] after restriction to *A*.

Theorem

Let $n \ge 3$, m > n. The module $W_{m,n}^{(r)}$ belongs to a $\mathbb{Z}A_{\infty}$ -component $\mathcal{C}_{m}^{(r)}$ of $\Gamma(n, r)$ such that

• Inductively:
$$B(n,r) \cong \mathcal{K}_r[M_{3,2}^{(r)}] \cdots [M_{n,n-1}^{(r)}]$$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension A[X].
- Splitting properties of almost split sequences over *A*[*X*] after restriction to *A*.

Theorem

Let $n \ge 3$, m > n. The module $W_{m,n}^{(r)}$ belongs to a $\mathbb{Z}A_{\infty}$ -component $\mathcal{C}_{m}^{(r)}$ of $\Gamma(n, r)$ such that

• for
$$r > 2$$
: $W(C_m^{(r)}) = 0$.

• Inductively:
$$B(n,r) \cong \mathcal{K}_r[M_{3,2}^{(r)}] \cdots [M_{n,n-1}^{(r)}]$$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension A[X].
- Splitting properties of almost split sequences over *A*[*X*] after restriction to *A*.

Theorem

Let $n \ge 3$, m > n. The module $W_{m,n}^{(r)}$ belongs to a $\mathbb{Z}A_{\infty}$ -component $\mathcal{C}_{m}^{(r)}$ of $\Gamma(n, r)$ such that

- for r > 2: $W(\mathcal{C}_m^{(r)}) = 0$.
- for r = 2: $C_m^{(2)} \subset CJT(n, 2)$.

▲ロト ▲園ト ★臣ト ★臣ト ―臣 ― のへで

Lifting of almost split sequences

Let A be an algebra,
$$M \in \operatorname{mod} A \rightsquigarrow A[M] = \begin{pmatrix} A & M \\ 0 & k \end{pmatrix}$$
.

Lemma (Ringel)

Let A be an algebra, M an A-module. Let furthermore

$$0 \rightarrow \tau(N) \rightarrow E \rightarrow N \rightarrow 0$$

be an Auslander-Reiten sequence in mod A. Then

$$0 \to \begin{pmatrix} \tau(N) \\ \operatorname{Hom}_{\mathcal{A}}(M, \tau(N)) \end{pmatrix} \to \begin{pmatrix} E \\ \operatorname{Hom}_{\mathcal{A}}(M, \tau(N)) \end{pmatrix} \to \begin{pmatrix} N \\ 0 \end{pmatrix} \to 0$$

is an Auslander-Reiten sequence in mod A[M], where $m.\varphi = \varphi(m)$ for $m \in M, \ \varphi \in \text{Hom}_A(M, \tau(N))$.