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Motivation

General objective: Understand mod kG, where G is a finite group
(scheme) and k is a field of characteristic p > 0.

Problem: kG is wild in most cases, e.g. if G = Zp × Zp and p > 2.

 Study modules that satisfy additional properties.

Approach: Study mod kG via algebraic families of restrictions to
k[T ]/(T p) ⊆ kG  mod k[T ]/(T p) is completely understood.

We confine our investigations to elementary abelian p-groups.
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k denotes an algebraically closed field of char(k) = p > 0.

Er = (Zp)r is an elementary abelian p-group of rank r ≥ 2.

There is an isomorphism

kEr
∼= k[X1, . . . ,Xr ]/(X p

1 , . . . ,X
p
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 kEr is generated by the elements xi := Xi + (X p
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Full subcategories of mod kEr

Define

P := {x ∈ kEr | ∃α ∈ k r\0 : x = α1x1 + · · ·+ αrxr} .

x ∈ P together with M ∈ mod kEr yields a linear operator

xM : M → M,m 7→ x .m

Definition

Let M ∈ mod(kEr ). We say that M has

1 constant Jordan type if rk(x j
M) = rk(y j

M) for all x , y ∈ P, j ≥ 1.

2 the equal images property if im(xM) = im(yM) for all x , y ∈ P.

3 the equal kernels property if ker(xM) = ker(yM) for all x , y ∈ P.

CJT(kEr ), EIP(kEr ) and EKP(kEr ) are the corresponding full
subcategories of mod(kEr ).
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Generalized W -modules

For n ≤ p, m ≥ n, define

M
(r)
m,n := (X1, . . . ,Xr )m−n/(X1, . . . ,Xr )m.

For x ∈ P, we have ker(x
M

(r)
m,n

) = (X1, . . . ,Xr )m−1/(X1, . . . ,Xr )m.

 W
(r)
m,n := (M

(r)
m,n)∗ is a module with the equal images property.

W
(2)
m,n = Wm,n was defined by Carlson-Friedlander-Suslin
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W4,3

Every object in EIP(kE2) is a quotient of some Wm,n.

The indecomposable objects of Loewy length 2 are of the form Wm,2.
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W4,3

Every object in EIP(kE2) is a quotient of some Wm,n.

The indecomposable objects of Loewy length 2 are of the form Wm,2.



Generalized Beilinson algebras

Let B(n, r) be the generalized Beilinson algebra, the path algebra of
the quiver
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For n ≤ p, we have a faithful exact functor

F : mod B(n, r)→ mod(kEr )

with

F(
n⊕

i=1

Mi ) =
n⊕

i=1

Mi and xj .m := γ
(i)
j .m

for all m ∈ Mi .
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Corresponding subcategories and homological
characterization

We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of
mod B(n, r), such that

for X ∈ {CJT,EIP,EKP}, we have F(X (n, r)) ⊆ X (kEr ).

the restriction of F to EIP(n, r) reflects isomorphisms.

There is a family (Xα)α∈k r\0 of pairwise non-isomorphic indecomposable
B(n, r)-modules of projective dimension one such that

Lemma

We have

EIP(n, r) =
{

M ∈ mod B(n, r) | Ext1(Xα,M) = 0 ∀α
}
,

EKP(n, r) = {M ∈ mod B(n, r) | Hom(Xα,M) = 0 ∀α} .
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Auslander-Reiten theory

Understand mod A in terms of Auslander-Reiten theory:

For each non-projective indecomposable object M, there is a unique
almost split sequence

0→ τ(M)→
t⊕

i=1

Emi
i → M → 0

with τ(M),Ei indecomposable Ei 6∼= Ej for i 6= j .

The Auslander-Reiten quiver Γ(A) is given by the following data

vertices =̂ isomorphism classes of indecomposable objects
arrows [X ]→ [Y ] =̂ maps X → Y occurring in almost split sequences

We have meshes
[E1]

!!DDD

[τ(M)]

::uuu

$$III
... [M]

[Et ]

==zzz
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EIP(n, r) is a torsion class

Recall: A full subcategory T ⊆ mod A is called torsion class provided
T is closed under images, direct sums and extensions.

Given a torsion class T ⊆ mod A, F = {N|HomA(−,N)T = 0} is the
corresponding torsion-free class.

Theorem

The category EIP(n, r) is the torsion class T of a torsion pair (T ,F) in
mod B(n, r) such that

EKP(n, r) ⊂ F
T is closed under the Auslander-Reiten translate τ

T contains all preinjective modules.

Let Γ(n, r) denote the Auslander-Reiten quiver of B(n, r).
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ZA∞-components of Γ(n, r)

Corollary

Assume that C is a ZA∞-component of Γ(n, r) such that EIP(n, r)∩ C and
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n = 2: The r -Kronecker

B(2, r) is the path algebra Kr of the r -Kronecker

1

γ1
!!

γr

==
... 2

The Auslander-Reiten quiver Γ(Kr ) consists of
a preinjective component I ⊆ EIP(2, r),
a preprojective component P ⊆ EKP(2, r),

r = 2: homogeneous tubes Tλ with add Tλ ∩ CJT(2, 2) = 0.
r > 2: ZA∞-components (wild case).

Proposition

Let C be a ZA∞-component of Γ(Kr ), r > 2. Then EIP(2, r) ∩ C and
EKP(2, r) ∩ C are non-empty disjoint cones.
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The modules W
(r)
m,2

Where in Γ(Kr ) do we find modules of the form W
(r)
m,2?

r = 2: W -modules correspond to the preinjectives.

r > 2: generalized W -modules are injective or in ZA∞-components.

Theorem

Let r > 2,m ≥ 3. The ZA∞-component Cm containing W
(r)
m,2, satisfies

W(Cm) = 0. In particular, Cm ⊆ CJT(2, r).



The modules W
(r)
m,2

Where in Γ(Kr ) do we find modules of the form W
(r)
m,2?

r = 2: W -modules correspond to the preinjectives.

r > 2: generalized W -modules are injective or in ZA∞-components.

Theorem

Let r > 2,m ≥ 3. The ZA∞-component Cm containing W
(r)
m,2, satisfies

W(Cm) = 0. In particular, Cm ⊆ CJT(2, r).



The modules W
(r)
m,2

Where in Γ(Kr ) do we find modules of the form W
(r)
m,2?

r = 2: W -modules correspond to the preinjectives.

r > 2: generalized W -modules are injective or in ZA∞-components.

Theorem

Let r > 2,m ≥ 3. The ZA∞-component Cm containing W
(r)
m,2, satisfies

W(Cm) = 0. In particular, Cm ⊆ CJT(2, r).



The modules W
(r)
m,2

Where in Γ(Kr ) do we find modules of the form W
(r)
m,2?

r = 2: W -modules correspond to the preinjectives.

r > 2: generalized W -modules are injective or in ZA∞-components.

Theorem

Let r > 2,m ≥ 3. The ZA∞-component Cm containing W
(r)
m,2, satisfies

W(Cm) = 0. In particular, Cm ⊆ CJT(2, r).



The modules W
(r)
m,2

Where in Γ(Kr ) do we find modules of the form W
(r)
m,2?

r = 2: W -modules correspond to the preinjectives.

r > 2: generalized W -modules are injective or in ZA∞-components.

Theorem

Let r > 2,m ≥ 3. The ZA∞-component Cm containing W
(r)
m,2, satisfies

W(Cm) = 0. In particular, Cm ⊆ CJT(2, r).



The modules W
(r)
m,2

Where in Γ(Kr ) do we find modules of the form W
(r)
m,2?

r = 2: W -modules correspond to the preinjectives.

r > 2: generalized W -modules are injective or in ZA∞-components.

Theorem

Let r > 2,m ≥ 3.

The ZA∞-component Cm containing W
(r)
m,2, satisfies

W(Cm) = 0. In particular, Cm ⊆ CJT(2, r).



The modules W
(r)
m,2

Where in Γ(Kr ) do we find modules of the form W
(r)
m,2?

r = 2: W -modules correspond to the preinjectives.

r > 2: generalized W -modules are injective or in ZA∞-components.

Theorem

Let r > 2,m ≥ 3. The ZA∞-component Cm containing W
(r)
m,2,

satisfies
W(Cm) = 0. In particular, Cm ⊆ CJT(2, r).



The modules W
(r)
m,2

Where in Γ(Kr ) do we find modules of the form W
(r)
m,2?

r = 2: W -modules correspond to the preinjectives.

r > 2: generalized W -modules are injective or in ZA∞-components.

Theorem

Let r > 2,m ≥ 3. The ZA∞-component Cm containing W
(r)
m,2, satisfies

W(Cm) = 0.

In particular, Cm ⊆ CJT(2, r).



The modules W
(r)
m,2

Where in Γ(Kr ) do we find modules of the form W
(r)
m,2?

r = 2: W -modules correspond to the preinjectives.

r > 2: generalized W -modules are injective or in ZA∞-components.

Theorem

Let r > 2,m ≥ 3. The ZA∞-component Cm containing W
(r)
m,2, satisfies

W(Cm) = 0. In particular, Cm ⊆ CJT(2, r).



n ≥ 3: One-point extensions

The one-point extension

Kr [M
(r)
3,2] =

(
Kr M

(r)
3,2

0 k

)

is isomorphic to B(3, r).

r = 2: extending 1

γ1
!!

γ2

==I _ u
2 by •v1

}}{{
{

!!C
C •v2

}}{{
{

!!C
C

• • •

yields 0

v1
!!

v2

==I _ u
1

γ1
!!

γ2

==I _ u
2 with relations γ2.v1 = γ1.v2.



n ≥ 3: One-point extensions

The one-point extension

Kr [M
(r)
3,2] =

(
Kr M

(r)
3,2

0 k

)

is isomorphic to B(3, r).

r = 2: extending 1

γ1
!!

γ2

==I _ u
2 by •v1

}}{{
{

!!C
C •v2

}}{{
{

!!C
C

• • •

yields 0

v1
!!

v2

==I _ u
1

γ1
!!

γ2

==I _ u
2 with relations γ2.v1 = γ1.v2.



n ≥ 3: One-point extensions

The one-point extension

Kr [M
(r)
3,2] =

(
Kr M

(r)
3,2

0 k

)

is isomorphic to B(3, r).

r = 2: extending 1

γ1
!!

γ2

==I _ u
2 by •v1

}}{{
{

!!C
C •v2

}}{{
{

!!C
C

• • •

yields 0

v1
!!

v2

==I _ u
1

γ1
!!

γ2

==I _ u
2 with relations γ2.v1 = γ1.v2.



n ≥ 3: One-point extensions

The one-point extension

Kr [M
(r)
3,2] =

(
Kr M

(r)
3,2

0 k

)

is isomorphic to B(3, r).

r = 2:

extending 1

γ1
!!

γ2

==I _ u
2 by •v1

}}{{
{

!!C
C •v2

}}{{
{

!!C
C

• • •

yields 0

v1
!!

v2

==I _ u
1

γ1
!!

γ2

==I _ u
2 with relations γ2.v1 = γ1.v2.



n ≥ 3: One-point extensions

The one-point extension

Kr [M
(r)
3,2] =

(
Kr M

(r)
3,2

0 k

)

is isomorphic to B(3, r).

r = 2: extending 1

γ1
!!

γ2

==I _ u
2

by •v1
}}{{

{
!!C

C •v2
}}{{

{
!!C

C

• • •

yields 0

v1
!!

v2

==I _ u
1

γ1
!!

γ2

==I _ u
2 with relations γ2.v1 = γ1.v2.



n ≥ 3: One-point extensions

The one-point extension

Kr [M
(r)
3,2] =

(
Kr M

(r)
3,2

0 k

)

is isomorphic to B(3, r).

r = 2: extending 1

γ1
!!

γ2

==I _ u
2 by •v1

}}{{
{

!!C
C •v2

}}{{
{

!!C
C

• • •

yields 0

v1
!!

v2

==I _ u
1

γ1
!!

γ2

==I _ u
2 with relations γ2.v1 = γ1.v2.



n ≥ 3: One-point extensions

The one-point extension

Kr [M
(r)
3,2] =

(
Kr M

(r)
3,2

0 k

)

is isomorphic to B(3, r).

r = 2: extending 1

γ1
!!

γ2

==I _ u
2 by •v1

}}{{
{

!!C
C •v2

}}{{
{

!!C
C

• • •

yields 0

v1
!!

v2

==I _ u
1

γ1
!!

γ2

==I _ u
2 with relations γ2.v1 = γ1.v2.



W -modules determine ZA∞-components

Inductively: B(n, r) ∼= Kr [M
(r)
3,2] · · · [M(r)

n,n−1]

Ringel:

Lifting properties of almost split sequences over A to a one-point
extension A[X ].

Splitting properties of almost split sequences over A[X ] after
restriction to A.

Theorem

Let n ≥ 3, m > n. The module W
(r)
m,n belongs to a ZA∞-component C(r)m

of Γ(n, r) such that

for r > 2: W(C(r)m ) = 0.

for r = 2: C(2)m ⊂ CJT(n, 2).
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Lifting of almost split sequences

Let A be an algebra, M ∈ mod A A[M] =

(
A M
0 k

)
.

Lemma (Ringel)

Let A be an algebra, M an A-module. Let furthermore

0→ τ(N)→ E → N → 0

be an Auslander-Reiten sequence in mod A. Then

0→
(

τ(N)

HomA(M, τ(N))

)
→
(

E

HomA(M, τ(N))

)
→
(

N

0

)
→ 0

is an Auslander-Reiten sequence in mod A[M], where m.ϕ = ϕ(m) for
m ∈ M, ϕ ∈ HomA(M, τ(N)).


