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We confine our investigations to elementary abelian p-groups.
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@ k denotes an algebraically closed field of char(k) = p > 0.

o E, = (Zp)" is an elementary abelian p-group of rank r > 2.

@ There is an isomorphism
KE, = k[X1,..., X )/(XP,..., XP).

~ kE, is generated by the elements x; := X; + (Xf, L XP).
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Full subcategories of mod kE,

@ Define

P:={x€kE |Jaec k"\0O:x=a1x1+ -+ arx}.

@ x € P together with M € mod kE, yields a linear operator

xy:M— M m— x.m

Definition

Let M € mod(kE,). We say that M has
© constant Jordan type if rk(xJ,;/,) = rk(yJM) for all x,y € B,j > 1.
@ the equal images property if im(xp) = im(yp) for all x,y € P.
@ the equal kernels property if ker(xp) = ker(ynm) for all x,y € B.

o CJT(kKE,), EIP(kE,) and EKP(KE,) are the corresponding full
subcategories of mod(kE,).
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Generalized W-modules

@ For n < p, m > n, define

MO, = (Xt X)) (X, X)™

For x € B, we have ker(le(’q,?") = (X1, ., X)L/ (Xe, . X)™

~ ,Sqr),, = (I\/I,(,qr),,)* is a module with the equal images property.

W,qu), = Wi, » was defined by Carlson-Friedlander-Suslin

) ) ) ) Wi 3
NN LN S
NSNS

Every object in EIP(KE>) is a quotient of some W, 5.
The indecomposable objects of Loewy length 2 are of the form W, ».
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Generalized Beilinson algebras

o Let B(n,r) be the generalized Beilinson algebra, the path algebra of

the quiver
’7§1) 7{2) ’Y§n 1)
PN .
1 2 3 n—1 n
N N ~_ 7
(1) (2) (n—1)
Yr Yr Yr

with relations 7§"+”7§") — 7§i+1)7§’)

@ For n < p, we have a faithful exact functor
§: mod B(n, r) — mod(kE,)
with . ]
S M) =P M and xj.m = "y}i),m
' i=1

i=1
for all m € M;.
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We define full subcategories CJT(n, r), EIP(n, r) and EKP(n, r) of
mod B(n, r), such that

e for X € {CJT,EIP,EKP}, we have §F(X(n,r)) C X(KE,).

@ the restriction of § to EIP(n, r) reflects isomorphisms.

There is a family (X, )qekr\o Of pairwise non-isomorphic indecomposable
B(n, r)-modules of projective dimension one such that

We have

o EIP(n,r)={M € mod B(n,r) | Ext'(X,, M) =0Va},
e EKP(n,r) = {M € mod B(n, r) | Hom(X,, M) =0 Va}.
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Auslander-Reiten theory

Understand mod A in terms of Auslander-Reiten theory:
@ For each non-projective indecomposable object M, there is a unique
almost split sequence

t
O—>T(M)—>@E[”"—>M—>O
i=1
with 7(M), E; indecomposable E; 2 E; for i # ;.
@ The Auslander-Reiten quiver ['(A) is given by the following data

e vertices = isomorphism classes of indecomposable objects
o arrows [X] = [Y] = maps X — Y occurring in almost split sequences

@ We have meshes

[E1]
A N
[T(M)] [M]
™\ A
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@ Recall: A full subcategory 7 C mod A is called torsion class provided
T is closed under images, direct sums and extensions.

@ Given a torsion class 7 C mod A, F = {N|Homa(—, N)7 = 0} is the
corresponding torsion-free class.

Theorem

The category EIP(n, r) is the torsion class T of a torsion pair (T, F) in
mod B(n, r) such that

e EKP(n,r) C F
@ 7T is closed under the Auslander-Reiten translate T

@ T contains all preinjective modules.

Let [(n, r) denote the Auslander-Reiten quiver of B(n,r).
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ZA~-components of I'(n, r)

Assume that C is a ZA~-component of ['(n, r) such that EIP(n,r)NC and
EKP(n,r) N C are non-empty. Then they form disjoint cones in C.

NSNS
SN\
NSNS\
NN
NN\

..................

AN AN AN AN AN

@ The size of the gap WW(C) € Ny is an invariant of C.
e W({C)=0=CCCJT(n,r).
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n = 2: The r-Kronecker

@ B(2,r) is the path algebra IC, of the r-Kronecker

@ The Auslander-Reiten quiver I'(KC,) consists of
e a preinjective component Z C EIP(2,r),
e a preprojective component P C EKP(2, r),

o r =2: homogeneous tubes T, with add 7, N CJT(2,2) = 0.
o r>2: ZAs-components (wild case).

Proposition

Let C be a ZA-component of ['(KC;), r > 2. Then EIP(2,r) N C and
EKP(2,r) N C are non-empty disjoint cones.
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The modules W,gf)Q

Where in T'(K,) do we find modules of the form W(r)z?

m,

o r = 2: W-modules correspond to the preinjectives.

@ r > 2: generalized W-modules are injective or in ZAs-components.

(r)

m,2’

Let r > 2, m > 3. The ZA~-component C,, containing satisfies

W(Cr) = 0. In particular, C,, € CJT(2,r).
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@ The one-point extension
(r)
M) = (’C M;2)

is isomorphic to B(3, r).
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n > 3: One-point extensions

@ The one-point extension

()
i M = (’C Vs

is isomorphic to B(3, r).

"
e r =2: extending 1 N 2 by oV o2
N _ 7 N
5 A
vi M
yields 1 o with relations y2.v1 = 71.v2.

)
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W-modules determine ZA..-components

e Inductively: B(n,r) = IC,[Mgz)] e [M,({,)Fl]
Ringel:
o Lifting properties of almost split sequences over A to a one-point
extension A[X].

@ Splitting properties of almost split sequences over A[X] after
restriction to A.

(r)

Let n > 3, m > n. The module W,g,r),, belongs to a Z.A..-component Cp,

of ['(n, r) such that
o forr>2: W) =o.
o forr=2:CP CJT(n,2).
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Lifting of almost split sequences

Let A be an algebra, M € mod A ~» A[M] = <’3 A:)

Lemma (Ringel)

Let A be an algebra, M an A-module. Let furthermore
0—-7(N) - E—-N—=O0

be an Auslander-Reiten sequence in mod A. Then

o (HomAT((MN,)T(N») - <HomA(AEﬂ,T(N))> - (ﬁ') 70

is an Auslander-Reiten sequence in mod A[M], where m.o = p(m) for
mée M, ¢ € Homa(M, 7(N)).




