Equal images modules and Auslander-Reiten theory for generalized Beilinson algebras

Julia Worch
University of Kiel
26.03.2013

Motivation

Motivation

General objective:

Motivation

General objective: Understand $\bmod k \mathcal{G}$,

Motivation

General objective: Understand $\bmod k \mathcal{G}$, where \mathcal{G} is a finite group (scheme)

Motivation

General objective: Understand $\bmod k \mathcal{G}$, where \mathcal{G} is a finite group (scheme) and k is a field of characteristic $p>0$.

Motivation

General objective: Understand $\bmod k \mathcal{G}$, where \mathcal{G} is a finite group (scheme) and k is a field of characteristic $p>0$.

Problem:

Motivation

General objective: Understand $\bmod k \mathcal{G}$, where \mathcal{G} is a finite group (scheme) and k is a field of characteristic $p>0$.

Problem: $k \mathcal{G}$ is wild in most cases

Motivation

General objective：Understand $\bmod k \mathcal{G}$ ，where \mathcal{G} is a finite group （scheme）and k is a field of characteristic $p>0$ ．

Problem：$k \mathcal{G}$ is wild in most cases，e．g．if $\mathcal{G}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $p>2$ ．

Motivation

General objective：Understand $\bmod k \mathcal{G}$ ，where \mathcal{G} is a finite group （scheme）and k is a field of characteristic $p>0$ ．

Problem：$k \mathcal{G}$ is wild in most cases，e．g．if $\mathcal{G}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $p>2$ ．
\rightsquigarrow Study modules that satisfy additional properties．

Motivation

General objective：Understand $\bmod k \mathcal{G}$ ，where \mathcal{G} is a finite group （scheme）and k is a field of characteristic $p>0$ ．

Problem：$k \mathcal{G}$ is wild in most cases，e．g．if $\mathcal{G}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $p>2$ ．
\rightsquigarrow Study modules that satisfy additional properties．

Approach：

Motivation

General objective: Understand $\bmod k \mathcal{G}$, where \mathcal{G} is a finite group (scheme) and k is a field of characteristic $p>0$.

Problem: $k \mathcal{G}$ is wild in most cases, e.g. if $\mathcal{G}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $p>2$.
\rightsquigarrow Study modules that satisfy additional properties.

Approach: Study $\bmod k \mathcal{G}$ via algebraic families of restrictions to $k[T] /\left(T^{p}\right) \subseteq k \mathcal{G}$

Motivation

General objective：Understand $\bmod k \mathcal{G}$ ，where \mathcal{G} is a finite group （scheme）and k is a field of characteristic $p>0$ ．

Problem：$k \mathcal{G}$ is wild in most cases，e．g．if $\mathcal{G}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $p>2$ ．
\rightsquigarrow Study modules that satisfy additional properties．

Approach：Study $\bmod k \mathcal{G}$ via algebraic families of restrictions to $k[T] /\left(T^{p}\right) \subseteq k \mathcal{G} \rightsquigarrow \bmod k[T] /\left(T^{p}\right)$ is completely understood．

Motivation

General objective: Understand $\bmod k \mathcal{G}$, where \mathcal{G} is a finite group (scheme) and k is a field of characteristic $p>0$.

Problem: $k \mathcal{G}$ is wild in most cases, e.g. if $\mathcal{G}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $p>2$.
\rightsquigarrow Study modules that satisfy additional properties.

Approach: Study $\bmod k \mathcal{G}$ via algebraic families of restrictions to $k[T] /\left(T^{p}\right) \subseteq k \mathcal{G} \rightsquigarrow \bmod k[T] /\left(T^{p}\right)$ is completely understood.

We confine our investigations to elementary abelian p-groups.

Setup

Setup

－k denotes an algebraically closed field of $\operatorname{char}(k)=p>0$ ．

Setup

- k denotes an algebraically closed field of $\operatorname{char}(k)=p>0$.
- $E_{r}=\left(\mathbb{Z}_{p}\right)^{r}$ is an elementary abelian p-group of rank $r \geq 2$.

Setup

－k denotes an algebraically closed field of $\operatorname{char}(k)=p>0$ ．
－$E_{r}=\left(\mathbb{Z}_{p}\right)^{r}$ is an elementary abelian p－group of rank $r \geq 2$ ．
－There is an isomorphism

$$
k E_{r} \cong k\left[X_{1}, \ldots, X_{r}\right] /\left(X_{1}^{p}, \ldots, X_{r}^{p}\right)
$$

Setup

－k denotes an algebraically closed field of $\operatorname{char}(k)=p>0$ ．
－$E_{r}=\left(\mathbb{Z}_{p}\right)^{r}$ is an elementary abelian p－group of rank $r \geq 2$ ．
－There is an isomorphism

$$
k E_{r} \cong k\left[X_{1}, \ldots, X_{r}\right] /\left(X_{1}^{p}, \ldots, X_{r}^{p}\right)
$$

$\rightsquigarrow k E_{r}$ is generated by the elements $x_{i}:=X_{i}+\left(X_{1}^{p}, \ldots, X_{r}^{p}\right)$ ．

Full subcategories of $\bmod k E_{r}$

Full subcategories of $\bmod k E_{r}$

- Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

Full subcategories of $\bmod k E_{r}$

- Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

- $x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$

Full subcategories of $\bmod k E_{r}$

- Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

- $x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$ yields a linear operator

$$
x_{M}: M \rightarrow M, m \mapsto x \cdot m
$$

Full subcategories of $\bmod k E_{r}$

- Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

- $x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$ yields a linear operator

$$
x_{M}: M \rightarrow M, m \mapsto x . m
$$

Definition

Full subcategories of $\bmod k E_{r}$

- Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

- $x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$ yields a linear operator

$$
x_{M}: M \rightarrow M, m \mapsto x . m
$$

Definition

Let $M \in \bmod \left(k E_{r}\right)$.

Full subcategories of $\bmod k E_{r}$

－Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

－$x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$ yields a linear operator

$$
x_{M}: M \rightarrow M, m \mapsto x . m
$$

Definition

Let $M \in \bmod \left(k E_{r}\right)$ ．We say that M has
（1）constant Jordan type

Full subcategories of $\bmod k E_{r}$

- Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

- $x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$ yields a linear operator

$$
x_{M}: M \rightarrow M, m \mapsto x \cdot m
$$

Definition

Let $M \in \bmod \left(k E_{r}\right)$. We say that M has
(1) constant Jordan type if $\operatorname{rk}\left(x_{M}^{j}\right)=\operatorname{rk}\left(y_{M}^{j}\right)$ for all $x, y \in \mathfrak{P}, j \geq 1$.

Full subcategories of $\bmod k E_{r}$

- Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

- $x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$ yields a linear operator

$$
x_{M}: M \rightarrow M, m \mapsto x \cdot m
$$

Definition

Let $M \in \bmod \left(k E_{r}\right)$. We say that M has
(1) constant Jordan type if $\operatorname{rk}\left(x_{M}^{j}\right)=\operatorname{rk}\left(y_{M}^{j}\right)$ for all $x, y \in \mathfrak{P}, j \geq 1$.
(2) the equal images property

Full subcategories of $\bmod k E_{r}$

－Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

－$x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$ yields a linear operator

$$
x_{M}: M \rightarrow M, m \mapsto x . m
$$

Definition

Let $M \in \bmod \left(k E_{r}\right)$ ．We say that M has
（1）constant Jordan type if $\operatorname{rk}\left(x_{M}^{j}\right)=\operatorname{rk}\left(y_{M}^{j}\right)$ for all $x, y \in \mathfrak{P}, j \geq 1$ ．
（2）the equal images property if $\operatorname{im}\left(x_{M}\right)=\operatorname{im}\left(y_{M}\right)$ for all $x, y \in \mathfrak{P}$ ．

Full subcategories of $\bmod k E_{r}$

- Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

- $x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$ yields a linear operator

$$
x_{M}: M \rightarrow M, m \mapsto x . m
$$

Definition

Let $M \in \bmod \left(k E_{r}\right)$. We say that M has
(1) constant Jordan type if $\operatorname{rk}\left(x_{M}^{j}\right)=\operatorname{rk}\left(y_{M}^{j}\right)$ for all $x, y \in \mathfrak{P}, j \geq 1$.
(2) the equal images property if $\operatorname{im}\left(x_{M}\right)=\operatorname{im}\left(y_{M}\right)$ for all $x, y \in \mathfrak{P}$.
(3) the equal kernels property

Full subcategories of $\bmod k E_{r}$

- Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

- $x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$ yields a linear operator

$$
x_{M}: M \rightarrow M, m \mapsto x . m
$$

Definition

Let $M \in \bmod \left(k E_{r}\right)$. We say that M has
(1) constant Jordan type if $\operatorname{rk}\left(x_{M}^{j}\right)=\operatorname{rk}\left(y_{M}^{j}\right)$ for all $x, y \in \mathfrak{P}, j \geq 1$.
(2) the equal images property if $\operatorname{im}\left(x_{M}\right)=\operatorname{im}\left(y_{M}\right)$ for all $x, y \in \mathfrak{P}$.
(3) the equal kernels property if $\operatorname{ker}\left(x_{M}\right)=\operatorname{ker}\left(y_{M}\right)$ for all $x, y \in \mathfrak{P}$.

Full subcategories of $\bmod k E_{r}$

- Define

$$
\mathfrak{P}:=\left\{x \in k E_{r} \mid \exists \alpha \in k^{r} \backslash 0: x=\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}\right\} .
$$

- $x \in \mathfrak{P}$ together with $M \in \bmod k E_{r}$ yields a linear operator

$$
x_{M}: M \rightarrow M, m \mapsto x \cdot m
$$

Definition

Let $M \in \bmod \left(k E_{r}\right)$. We say that M has
(1) constant Jordan type if $\operatorname{rk}\left(x_{M}^{j}\right)=\operatorname{rk}\left(y_{M}^{j}\right)$ for all $x, y \in \mathfrak{P}, j \geq 1$.
(2) the equal images property if $\operatorname{im}\left(x_{M}\right)=\operatorname{im}\left(y_{M}\right)$ for all $x, y \in \mathfrak{P}$.
(3) the equal kernels property if $\operatorname{ker}\left(x_{M}\right)=\operatorname{ker}\left(y_{M}\right)$ for all $x, y \in \mathfrak{P}$.

- $\operatorname{CJT}\left(k E_{r}\right), \operatorname{EIP}\left(k E_{r}\right)$ and $\operatorname{EKP}\left(k E_{r}\right)$ are the corresponding full subcategories of $\bmod \left(k E_{r}\right)$.

Generalized W-modules

Generalized W-modules

- For $n \leq p, m \geq n$,

Generalized W-modules

- For $n \leq p, m \geq n$, define

$$
M_{m, n}^{(r)}:=\left(X_{1}, \ldots, X_{r}\right)^{m-n} /\left(X_{1}, \ldots, X_{r}\right)^{m}
$$

Generalized W-modules

- For $n \leq p, m \geq n$, define

$$
M_{m, n}^{(r)}:=\left(X_{1}, \ldots, X_{r}\right)^{m-n} /\left(X_{1}, \ldots, X_{r}\right)^{m}
$$

- For $x \in \mathfrak{P}$, we have $\operatorname{ker}\left(x_{M_{m, n}^{(r)}}\right)=\left(X_{1}, \ldots, X_{r}\right)^{m-1} /\left(X_{1}, \ldots, X_{r}\right)^{m}$.

Generalized W－modules

－For $n \leq p, m \geq n$ ，define

$$
M_{m, n}^{(r)}:=\left(X_{1}, \ldots, X_{r}\right)^{m-n} /\left(X_{1}, \ldots, X_{r}\right)^{m}
$$

－For $x \in \mathfrak{P}$ ，we have $\operatorname{ker}\left(x_{M_{m, n}^{(r)}}\right)=\left(X_{1}, \ldots, X_{r}\right)^{m-1} /\left(X_{1}, \ldots, X_{r}\right)^{m}$ ． $\rightsquigarrow W_{m, n}^{(r)}:=\left(M_{m, n}^{(r)}\right)^{*}$ is a module with the equal images property．

Generalized W－modules

－For $n \leq p, m \geq n$ ，define

$$
M_{m, n}^{(r)}:=\left(X_{1}, \ldots, X_{r}\right)^{m-n} /\left(X_{1}, \ldots, X_{r}\right)^{m}
$$

－For $x \in \mathfrak{P}$ ，we have $\operatorname{ker}\left(x_{M_{m, n}^{(r)}}\right)=\left(X_{1}, \ldots, X_{r}\right)^{m-1} /\left(X_{1}, \ldots, X_{r}\right)^{m}$ ． $\rightsquigarrow W_{m, n}^{(r)}:=\left(M_{m, n}^{(r)}\right)^{*}$ is a module with the equal images property．
－$W_{m, n}^{(2)}=W_{m, n}$ was defined by Carlson－Friedlander－Suslin

Generalized W－modules

－For $n \leq p, m \geq n$ ，define

$$
M_{m, n}^{(r)}:=\left(X_{1}, \ldots, X_{r}\right)^{m-n} /\left(X_{1}, \ldots, X_{r}\right)^{m}
$$

－For $x \in \mathfrak{P}$ ，we have $\operatorname{ker}\left(x_{M_{m, n}^{(r)}}\right)=\left(X_{1}, \ldots, X_{r}\right)^{m-1} /\left(X_{1}, \ldots, X_{r}\right)^{m}$ ． $\rightsquigarrow W_{m, n}^{(r)}:=\left(M_{m, n}^{(r)}\right)^{*}$ is a module with the equal images property．
－$W_{m, n}^{(2)}=W_{m, n}$ was defined by Carlson－Friedlander－Suslin

Generalized W-modules

- For $n \leq p, m \geq n$, define

$$
M_{m, n}^{(r)}:=\left(X_{1}, \ldots, X_{r}\right)^{m-n} /\left(X_{1}, \ldots, X_{r}\right)^{m}
$$

- For $x \in \mathfrak{P}$, we have $\operatorname{ker}\left(x_{M_{m, n}^{(r)}}\right)=\left(X_{1}, \ldots, X_{r}\right)^{m-1} /\left(X_{1}, \ldots, X_{r}\right)^{m}$. $\rightsquigarrow W_{m, n}^{(r)}:=\left(M_{m, n}^{(r)}\right)^{*}$ is a module with the equal images property.
- $W_{m, n}^{(2)}=W_{m, n}$ was defined by Carlson-Friedlander-Suslin

- Every object in $\operatorname{EIP}\left(k E_{2}\right)$ is a quotient of some $W_{m, n}$.

Generalized W-modules

- For $n \leq p, m \geq n$, define

$$
M_{m, n}^{(r)}:=\left(X_{1}, \ldots, X_{r}\right)^{m-n} /\left(X_{1}, \ldots, X_{r}\right)^{m}
$$

- For $x \in \mathfrak{P}$, we have $\operatorname{ker}\left(x_{M_{m, n}^{(r)}}\right)=\left(X_{1}, \ldots, X_{r}\right)^{m-1} /\left(X_{1}, \ldots, X_{r}\right)^{m}$. $\rightsquigarrow W_{m, n}^{(r)}:=\left(M_{m, n}^{(r)}\right)^{*}$ is a module with the equal images property.
- $W_{m, n}^{(2)}=W_{m, n}$ was defined by Carlson-Friedlander-Suslin

- Every object in $\operatorname{EIP}\left(k E_{2}\right)$ is a quotient of some $W_{m, n}$.
- The indecomposable objects of Loewy length 2 are of the form $W_{m, 2}$.

Generalized Beilinson algebras

Generalized Beilinson algebras

－Let $B(n, r)$ be the generalized Beilinson algebra，

Generalized Beilinson algebras

- Let $B(n, r)$ be the generalized Beilinson algebra, the path algebra of the quiver

Generalized Beilinson algebras

- Let $B(n, r)$ be the generalized Beilinson algebra, the path algebra of the quiver

Generalized Beilinson algebras

- Let $B(n, r)$ be the generalized Beilinson algebra, the path algebra of the quiver

with relations $\gamma_{s}^{(i+1)} \gamma_{t}^{(i)}-\gamma_{t}^{(i+1)} \gamma_{s}^{(i)}$

Generalized Beilinson algebras

- Let $B(n, r)$ be the generalized Beilinson algebra, the path algebra of the quiver

with relations $\gamma_{s}^{(i+1)} \gamma_{t}^{(i)}-\gamma_{t}^{(i+1)} \gamma_{s}^{(i)}$
- For $n \leq p$, we have a faithful exact functor

$$
\mathfrak{F}: \bmod B(n, r) \rightarrow \bmod \left(k E_{r}\right)
$$

Generalized Beilinson algebras

- Let $B(n, r)$ be the generalized Beilinson algebra, the path algebra of the quiver

with relations $\gamma_{s}^{(i+1)} \gamma_{t}^{(i)}-\gamma_{t}^{(i+1)} \gamma_{s}^{(i)}$
- For $n \leq p$, we have a faithful exact functor

$$
\mathfrak{F}: \bmod B(n, r) \rightarrow \bmod \left(k E_{r}\right)
$$

with

$$
\mathfrak{F}\left(\bigoplus_{i=1}^{n} M_{i}\right)=\bigoplus_{i=1}^{n} M_{i}
$$

Generalized Beilinson algebras

- Let $B(n, r)$ be the generalized Beilinson algebra, the path algebra of the quiver

with relations $\gamma_{s}^{(i+1)} \gamma_{t}^{(i)}-\gamma_{t}^{(i+1)} \gamma_{s}^{(i)}$
- For $n \leq p$, we have a faithful exact functor

$$
\mathfrak{F}: \bmod B(n, r) \rightarrow \bmod \left(k E_{r}\right)
$$

with

$$
\mathfrak{F}\left(\bigoplus_{i=1}^{n} M_{i}\right)=\bigoplus_{i=1}^{n} M_{i} \text { and } x_{j} \cdot m:=\gamma_{j}^{(i)} \cdot m
$$

for all $m \in M_{i}$.

Corresponding subcategories and homological characterization

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$ ，such that
－for $\mathcal{X} \in\{$ CJT，EIP，EKP $\}$

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$ ，such that
－for $\mathcal{X} \in\{$ CJT，EIP，EKP $\}$ ，we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$ ．

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$ ，such that
－for $\mathcal{X} \in\{$ CJT，EIP，EKP $\}$ ，we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$ ．
－the restriction of \mathfrak{F} to $\operatorname{EIP}(n, r)$ reflects isomorphisms．

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$ ，such that
－for $\mathcal{X} \in\{$ CJT，EIP，EKP $\}$ ，we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$ ．
－the restriction of \mathfrak{F} to $\operatorname{EIP}(n, r)$ reflects isomorphisms．
There is a family $\left(X_{\alpha}\right)_{\alpha \in k^{r} \backslash 0}$

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$, such that

- for $\mathcal{X} \in\{$ CJT, EIP, EKP $\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$.
- the restriction of \mathfrak{F} to $\operatorname{EIP}(n, r)$ reflects isomorphisms.

There is a family $\left(X_{\alpha}\right)_{\alpha \in k^{r} \backslash 0}$ of pairwise non-isomorphic indecomposable $B(n, r)$-modules of projective dimension one

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$, such that

- for $\mathcal{X} \in\{$ CJT, EIP, EKP $\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$.
- the restriction of \mathfrak{F} to $\operatorname{EIP}(n, r)$ reflects isomorphisms.

There is a family $\left(X_{\alpha}\right)_{\alpha \in k^{r} \backslash 0}$ of pairwise non-isomorphic indecomposable $B(n, r)$-modules of projective dimension one such that

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$, such that

- for $\mathcal{X} \in\{$ CJT, EIP, EKP $\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$.
- the restriction of \mathfrak{F} to $\operatorname{EIP}(n, r)$ reflects isomorphisms.

There is a family $\left(X_{\alpha}\right)_{\alpha \in k^{r} \backslash 0}$ of pairwise non-isomorphic indecomposable $B(n, r)$-modules of projective dimension one such that

Lemma

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$, such that

- for $\mathcal{X} \in\{$ CJT, EIP, EKP $\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$.
- the restriction of \mathfrak{F} to $\operatorname{EIP}(n, r)$ reflects isomorphisms.

There is a family $\left(X_{\alpha}\right)_{\alpha \in k^{r} \backslash 0}$ of pairwise non-isomorphic indecomposable $B(n, r)$-modules of projective dimension one such that

Lemma

We have

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$, such that

- for $\mathcal{X} \in\{$ CJT, EIP, EKP $\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$.
- the restriction of \mathfrak{F} to $\operatorname{EIP}(n, r)$ reflects isomorphisms.

There is a family $\left(X_{\alpha}\right)_{\alpha \in k^{r} \backslash 0}$ of pairwise non-isomorphic indecomposable $B(n, r)$-modules of projective dimension one such that

Lemma

We have

- $\operatorname{EIP}(n, r)=\{M \in \bmod B(n, r) \mid$

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$, such that

- for $\mathcal{X} \in\{$ CJT, EIP, EKP $\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$.
- the restriction of \mathfrak{F} to $\operatorname{EIP}(n, r)$ reflects isomorphisms.

There is a family $\left(X_{\alpha}\right)_{\alpha \in k^{r} \backslash 0}$ of pairwise non-isomorphic indecomposable $B(n, r)$-modules of projective dimension one such that

Lemma

We have

- $\operatorname{EIP}(n, r)=\left\{M \in \bmod B(n, r) \mid \operatorname{Ext}^{1}\left(X_{\alpha}, M\right)=0 \forall \alpha\right\}$,

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$, such that

- for $\mathcal{X} \in\{$ CJT, EIP, EKP $\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$.
- the restriction of \mathfrak{F} to $\operatorname{EIP}(n, r)$ reflects isomorphisms.

There is a family $\left(X_{\alpha}\right)_{\alpha \in k^{r} \backslash 0}$ of pairwise non-isomorphic indecomposable $B(n, r)$-modules of projective dimension one such that

Lemma

We have

- $\operatorname{EIP}(n, r)=\left\{M \in \bmod B(n, r) \mid \operatorname{Ext}^{1}\left(X_{\alpha}, M\right)=0 \forall \alpha\right\}$,
- $\operatorname{EKP}(n, r)=\{M \in \bmod B(n, r) \mid$

Corresponding subcategories and homological characterization

We define full subcategories $\operatorname{CJT}(n, r), \operatorname{EIP}(n, r)$ and $\operatorname{EKP}(n, r)$ of $\bmod B(n, r)$, such that

- for $\mathcal{X} \in\{$ CJT, EIP, EKP $\}$, we have $\mathfrak{F}(\mathcal{X}(n, r)) \subseteq \mathcal{X}\left(k E_{r}\right)$.
- the restriction of \mathfrak{F} to $\operatorname{EIP}(n, r)$ reflects isomorphisms.

There is a family $\left(X_{\alpha}\right)_{\alpha \in k^{r} \backslash 0}$ of pairwise non-isomorphic indecomposable $B(n, r)$-modules of projective dimension one such that

Lemma

We have

- $\operatorname{EIP}(n, r)=\left\{M \in \bmod B(n, r) \mid \operatorname{Ext}^{1}\left(X_{\alpha}, M\right)=0 \forall \alpha\right\}$,
- $\operatorname{EKP}(n, r)=\left\{M \in \bmod B(n, r) \mid \operatorname{Hom}\left(X_{\alpha}, M\right)=0 \forall \alpha\right\}$.

Auslander－Reiten theory

Auslander-Reiten theory

Understand $\bmod A$ in terms of Auslander-Reiten theory:

Auslander－Reiten theory

Understand $\bmod A$ in terms of Auslander－Reiten theory：
－For each non－projective indecomposable object M ，

Auslander－Reiten theory

Understand $\bmod A$ in terms of Auslander－Reiten theory：
－For each non－projective indecomposable object M ，there is a unique almost split sequence

$$
0 \rightarrow \tau(M) \rightarrow \bigoplus_{i=1}^{t} E_{i}^{m_{i}} \rightarrow M \rightarrow 0
$$

Auslander－Reiten theory

Understand $\bmod A$ in terms of Auslander－Reiten theory：
－For each non－projective indecomposable object M ，there is a unique almost split sequence

$$
0 \rightarrow \tau(M) \rightarrow \bigoplus_{i=1}^{t} E_{i}^{m_{i}} \rightarrow M \rightarrow 0
$$

with $\tau(M), E_{i}$ indecomposable $E_{i} \neq E_{j}$ for $i \neq j$ ．

Auslander-Reiten theory

Understand $\bmod A$ in terms of Auslander-Reiten theory:

- For each non-projective indecomposable object M, there is a unique almost split sequence

$$
0 \rightarrow \tau(M) \rightarrow \bigoplus_{i=1}^{t} E_{i}^{m_{i}} \rightarrow M \rightarrow 0
$$

with $\tau(M), E_{i}$ indecomposable $E_{i} \neq E_{j}$ for $i \neq j$.

- The Auslander-Reiten quiver $\Gamma(A)$ is given by the following data

Auslander－Reiten theory

Understand $\bmod A$ in terms of Auslander－Reiten theory：
－For each non－projective indecomposable object M ，there is a unique almost split sequence

$$
0 \rightarrow \tau(M) \rightarrow \bigoplus_{i=1}^{t} E_{i}^{m_{i}} \rightarrow M \rightarrow 0
$$

with $\tau(M), E_{i}$ indecomposable $E_{i} \neq E_{j}$ for $i \neq j$ ．
－The Auslander－Reiten quiver $\Gamma(A)$ is given by the following data
－vertices $\widehat{=}$ isomorphism classes of indecomposable objects

Auslander-Reiten theory

Understand $\bmod A$ in terms of Auslander-Reiten theory:

- For each non-projective indecomposable object M, there is a unique almost split sequence

$$
0 \rightarrow \tau(M) \rightarrow \bigoplus_{i=1}^{t} E_{i}^{m_{i}} \rightarrow M \rightarrow 0
$$

with $\tau(M), E_{i}$ indecomposable $E_{i} \neq E_{j}$ for $i \neq j$.

- The Auslander-Reiten quiver $\Gamma(A)$ is given by the following data
- vertices $\widehat{=}$ isomorphism classes of indecomposable objects
- arrows $[X] \rightarrow[Y] \widehat{=}$ maps $X \rightarrow Y$ occurring in almost split sequences

Auslander-Reiten theory

Understand $\bmod A$ in terms of Auslander-Reiten theory:

- For each non-projective indecomposable object M, there is a unique almost split sequence

$$
0 \rightarrow \tau(M) \rightarrow \bigoplus_{i=1}^{t} E_{i}^{m_{i}} \rightarrow M \rightarrow 0
$$

with $\tau(M), E_{i}$ indecomposable $E_{i} \neq E_{j}$ for $i \neq j$.

- The Auslander-Reiten quiver $\Gamma(A)$ is given by the following data
- vertices $\widehat{=}$ isomorphism classes of indecomposable objects
- arrows $[X] \rightarrow[Y] \widehat{=}$ maps $X \rightarrow Y$ occurring in almost split sequences
- We have meshes

$\operatorname{EIP}(n, r)$ is a torsion class

$\operatorname{EIP}(n, r)$ is a torsion class

- Recall:

$\operatorname{EIP}(n, r)$ is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class

$\operatorname{EIP}(n, r)$ is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.

EIP (n, r) is a torsion class

－Recall：A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images，direct sums and extensions．
－Given a torsion class $\mathcal{T} \subseteq \bmod A$ ，

EIP (n, r) is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class $\mathcal{T} \subseteq \bmod A, \mathcal{F}=\left\{N \mid \operatorname{Hom}_{A}(-, N)_{\mathcal{T}}=0\right\}$ is the corresponding torsion-free class.

EIP (n, r) is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class $\mathcal{T} \subseteq \bmod A, \mathcal{F}=\left\{N \mid \operatorname{Hom}_{A}(-, N)_{\mathcal{T}}=0\right\}$ is the corresponding torsion-free class.

Theorem

EIP (n, r) is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class $\mathcal{T} \subseteq \bmod A, \mathcal{F}=\left\{N \mid \operatorname{Hom}_{A}(-, N)_{\mathcal{T}}=0\right\}$ is the corresponding torsion-free class.

Theorem

The category EIP (n, r)

EIP (n, r) is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class $\mathcal{T} \subseteq \bmod A, \mathcal{F}=\left\{N \mid \operatorname{Hom}_{A}(-, N)_{\mathcal{T}}=0\right\}$ is the corresponding torsion-free class.

Theorem

The category $\operatorname{EIP}(n, r)$ is the torsion class \mathcal{T}

$\operatorname{EIP}(n, r)$ is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class $\mathcal{T} \subseteq \bmod A, \mathcal{F}=\left\{N \mid \operatorname{Hom}_{A}(-, N)_{\mathcal{T}}=0\right\}$ is the corresponding torsion-free class.

Theorem

The category $\operatorname{EIP}(n, r)$ is the torsion class \mathcal{T} of a torsion pair $(\mathcal{T}, \mathcal{F})$ in $\bmod B(n, r)$

$\operatorname{EIP}(n, r)$ is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class $\mathcal{T} \subseteq \bmod A, \mathcal{F}=\left\{N \mid \operatorname{Hom}_{A}(-, N)_{\mathcal{T}}=0\right\}$ is the corresponding torsion-free class.

Theorem

The category $\operatorname{EIP}(n, r)$ is the torsion class \mathcal{T} of a torsion pair $(\mathcal{T}, \mathcal{F})$ in $\bmod B(n, r)$ such that

$\operatorname{EIP}(n, r)$ is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class $\mathcal{T} \subseteq \bmod A, \mathcal{F}=\left\{N \mid \operatorname{Hom}_{A}(-, N)_{\mathcal{T}}=0\right\}$ is the corresponding torsion-free class.

Theorem

The category $\operatorname{EIP}(n, r)$ is the torsion class \mathcal{T} of a torsion pair $(\mathcal{T}, \mathcal{F})$ in $\bmod B(n, r)$ such that

- $\operatorname{EKP}(n, r) \subset \mathcal{F}$

EIP (n, r) is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class $\mathcal{T} \subseteq \bmod A, \mathcal{F}=\left\{N \mid \operatorname{Hom}_{A}(-, N)_{\mathcal{T}}=0\right\}$ is the corresponding torsion-free class.

Theorem

The category $\operatorname{EIP}(n, r)$ is the torsion class \mathcal{T} of a torsion pair $(\mathcal{T}, \mathcal{F})$ in $\bmod B(n, r)$ such that

- $\operatorname{EKP}(n, r) \subset \mathcal{F}$
- \mathcal{T} is closed under the Auslander-Reiten translate τ

EIP (n, r) is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class $\mathcal{T} \subseteq \bmod A, \mathcal{F}=\left\{N \mid \operatorname{Hom}_{A}(-, N)_{\mathcal{T}}=0\right\}$ is the corresponding torsion-free class.

Theorem

The category $\operatorname{EIP}(n, r)$ is the torsion class \mathcal{T} of a torsion pair $(\mathcal{T}, \mathcal{F})$ in $\bmod B(n, r)$ such that

- $\operatorname{EKP}(n, r) \subset \mathcal{F}$
- \mathcal{T} is closed under the Auslander-Reiten translate τ
- \mathcal{T} contains all preinjective modules.

EIP (n, r) is a torsion class

- Recall: A full subcategory $\mathcal{T} \subseteq \bmod A$ is called torsion class provided \mathcal{T} is closed under images, direct sums and extensions.
- Given a torsion class $\mathcal{T} \subseteq \bmod A, \mathcal{F}=\left\{N \mid \operatorname{Hom}_{A}(-, N)_{\mathcal{T}}=0\right\}$ is the corresponding torsion-free class.

Theorem

The category $\operatorname{EIP}(n, r)$ is the torsion class \mathcal{T} of a torsion pair $(\mathcal{T}, \mathcal{F})$ in $\bmod B(n, r)$ such that

- $\operatorname{EKP}(n, r) \subset \mathcal{F}$
- \mathcal{T} is closed under the Auslander-Reiten translate τ
- \mathcal{T} contains all preinjective modules.

Let $\Gamma(n, r)$ denote the Auslander-Reiten quiver of $B(n, r)$.

$\mathbb{Z} A_{\infty}$－components of $\Gamma(n, r)$

$\mathbb{Z} A_{\infty}$-components of $\Gamma(n, r)$

Corollary

$\mathbb{Z} A_{\infty}$－components of $\Gamma(n, r)$

Corollary
Assume that \mathcal{C} is a $\mathbb{Z} A_{\infty}$－component of $\Gamma(n, r)$ such that

$\mathbb{Z} A_{\infty}$-components of $\Gamma(n, r)$

Corollary

Assume that \mathcal{C} is a $\mathbb{Z} A_{\infty}$-component of $\Gamma(n, r)$ such that $\operatorname{EIP}(n, r) \cap \mathcal{C}$ and $\operatorname{EKP}(n, r) \cap \mathcal{C}$ are non-empty.

$\mathbb{Z} A_{\infty}$-components of $\Gamma(n, r)$

Corollary

Assume that \mathcal{C} is a $\mathbb{Z} A_{\infty}$-component of $\Gamma(n, r)$ such that $\operatorname{EIP}(n, r) \cap \mathcal{C}$ and $\operatorname{EKP}(n, r) \cap \mathcal{C}$ are non-empty. Then they form disjoint cones in \mathcal{C}.

$\mathbb{Z} A_{\infty}$-components of $\Gamma(n, r)$

Corollary

Assume that \mathcal{C} is a $\mathbb{Z} A_{\infty}$-component of $\Gamma(n, r)$ such that $\operatorname{EIP}(n, r) \cap \mathcal{C}$ and $\operatorname{EKP}(n, r) \cap \mathcal{C}$ are non-empty. Then they form disjoint cones in \mathcal{C}.

- The size of the gap $\mathcal{W}(\mathcal{C}) \in \mathbb{N}_{0}$ is an invariant of \mathcal{C}.

$\mathbb{Z} A_{\infty}$-components of $\Gamma(n, r)$

Corollary

Assume that \mathcal{C} is a $\mathbb{Z} A_{\infty}$-component of $\Gamma(n, r)$ such that $\operatorname{EIP}(n, r) \cap \mathcal{C}$ and $\operatorname{EKP}(n, r) \cap \mathcal{C}$ are non-empty. Then they form disjoint cones in \mathcal{C}.

- The size of the gap $\mathcal{W}(\mathcal{C}) \in \mathbb{N}_{0}$ is an invariant of \mathcal{C}.
- $\mathcal{W}(\mathcal{C})=0 \Rightarrow \mathcal{C} \subseteq \operatorname{CJT}(n, r)$.

$n=2$ ：The r－Kronecker

$n=2$: The r-Kronecker

- $B(2, r)$ is the path algebra \mathcal{K}_{r} of the r-Kronecker

$n=2$: The r-Kronecker

- $B(2, r)$ is the path algebra \mathcal{K}_{r} of the r-Kronecker

$n=2$ ：The r－Kronecker

－$B(2, r)$ is the path algebra \mathcal{K}_{r} of the r－Kronecker

－The Auslander－Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of

$n=2$: The r-Kronecker

- $B(2, r)$ is the path algebra \mathcal{K}_{r} of the r-Kronecker

- The Auslander-Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of
- a preinjective component \mathcal{I}

$n=2$ ：The r－Kronecker

－$B(2, r)$ is the path algebra \mathcal{K}_{r} of the r－Kronecker

－The Auslander－Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of
－a preinjective component $\mathcal{I} \subseteq \operatorname{EIP}(2, r)$ ，

$n=2$ ：The r－Kronecker

－$B(2, r)$ is the path algebra \mathcal{K}_{r} of the r－Kronecker

－The Auslander－Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of
－a preinjective component $\mathcal{I} \subseteq \operatorname{EIP}(2, r)$ ，
－a preprojective component \mathcal{P}

$n=2$: The r-Kronecker

- $B(2, r)$ is the path algebra \mathcal{K}_{r} of the r-Kronecker

- The Auslander-Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of
- a preinjective component $\mathcal{I} \subseteq \operatorname{EIP}(2, r)$,
- a preprojective component $\mathcal{P} \subseteq \operatorname{EKP}(2, r)$,

$n=2$: The r-Kronecker

- $B(2, r)$ is the path algebra \mathcal{K}_{r} of the r-Kronecker

- The Auslander-Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of
- a preinjective component $\mathcal{I} \subseteq \operatorname{EIP}(2, r)$,
- a preprojective component $\mathcal{P} \subseteq \operatorname{EKP}(2, r)$,
- $r=2$: homogeneous tubes \mathcal{T}_{λ}

$n=2$ ：The r－Kronecker

－$B(2, r)$ is the path algebra \mathcal{K}_{r} of the r－Kronecker

－The Auslander－Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of
－a preinjective component $\mathcal{I} \subseteq \operatorname{EIP}(2, r)$ ，
－a preprojective component $\mathcal{P} \subseteq \operatorname{EKP}(2, r)$ ，
－$r=2$ ：homogeneous tubes \mathcal{T}_{λ} with add $\mathcal{T}_{\lambda} \cap \operatorname{CJT}(2,2)=0$ ．

$n=2$: The r-Kronecker

- $B(2, r)$ is the path algebra \mathcal{K}_{r} of the r-Kronecker

- The Auslander-Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of
- a preinjective component $\mathcal{I} \subseteq \operatorname{EIP}(2, r)$,
- a preprojective component $\mathcal{P} \subseteq \operatorname{EKP}(2, r)$,
- $r=2$: homogeneous tubes \mathcal{T}_{λ} with add $\mathcal{T}_{\lambda} \cap \operatorname{CJT}(2,2)=0$.
- $r>2: \mathbb{Z} A_{\infty}$-components (wild case).

$n=2$: The r-Kronecker

- $B(2, r)$ is the path algebra \mathcal{K}_{r} of the r-Kronecker

- The Auslander-Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of
- a preinjective component $\mathcal{I} \subseteq \operatorname{EIP}(2, r)$,
- a preprojective component $\mathcal{P} \subseteq \operatorname{EKP}(2, r)$,
- $r=2$: homogeneous tubes \mathcal{T}_{λ} with add $\mathcal{T}_{\lambda} \cap \operatorname{CJT}(2,2)=0$.
- $r>2: \mathbb{Z} A_{\infty}$-components (wild case).

Proposition

$n=2$: The r-Kronecker

- $B(2, r)$ is the path algebra \mathcal{K}_{r} of the r-Kronecker

- The Auslander-Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of
- a preinjective component $\mathcal{I} \subseteq \operatorname{EIP}(2, r)$,
- a preprojective component $\mathcal{P} \subseteq \operatorname{EKP}(2, r)$,
- $r=2$: homogeneous tubes \mathcal{T}_{λ} with add $\mathcal{T}_{\lambda} \cap \operatorname{CJT}(2,2)=0$.
- $r>2: \mathbb{Z} A_{\infty}$-components (wild case).

Proposition

Let \mathcal{C} be a $\mathbb{Z} A_{\infty}$-component of $\Gamma\left(\mathcal{K}_{r}\right), r>2$.

$n=2$: The r-Kronecker

- $B(2, r)$ is the path algebra \mathcal{K}_{r} of the r-Kronecker

- The Auslander-Reiten quiver $\Gamma\left(\mathcal{K}_{r}\right)$ consists of
- a preinjective component $\mathcal{I} \subseteq \operatorname{EIP}(2, r)$,
- a preprojective component $\mathcal{P} \subseteq \operatorname{EKP}(2, r)$,
- $r=2$: homogeneous tubes \mathcal{T}_{λ} with add $\mathcal{T}_{\lambda} \cap \operatorname{CJT}(2,2)=0$.
- $r>2: \mathbb{Z} A_{\infty}$-components (wild case).

Proposition

Let \mathcal{C} be a $\mathbb{Z} A_{\infty}$-component of $\Gamma\left(\mathcal{K}_{r}\right), r>2$. Then $\operatorname{EIP}(2, r) \cap \mathcal{C}$ and $\operatorname{EKP}(2, r) \cap \mathcal{C}$ are non-empty disjoint cones.

The modules $W_{m, 2}^{(r)}$

The modules $W_{m, 2}^{(r)}$

Where in $\Gamma\left(\mathcal{K}_{r}\right)$ do we find modules of the form $W_{m, 2}^{(r)}$?

The modules $W_{m, 2}^{(r)}$

Where in $\Gamma\left(\mathcal{K}_{r}\right)$ do we find modules of the form $W_{m, 2}^{(r)}$?

- $r=2$: W-modules correspond to the preinjectives.

The modules $W_{m, 2}^{(r)}$

Where in $\Gamma\left(\mathcal{K}_{r}\right)$ do we find modules of the form $W_{m, 2}^{(r)}$?

- $r=2$: W-modules correspond to the preinjectives.
- $r>2$: generalized W-modules are injective or in $\mathbb{Z} A_{\infty}$-components.

The modules $W_{m, 2}^{(r)}$

Where in $\Gamma\left(\mathcal{K}_{r}\right)$ do we find modules of the form $W_{m, 2}^{(r)}$ ？
－$r=2$ ：W－modules correspond to the preinjectives．
－$r>2$ ：generalized W－modules are injective or in $\mathbb{Z} A_{\infty}$－components．

Theorem

The modules $W_{m, 2}^{(r)}$

Where in $\Gamma\left(\mathcal{K}_{r}\right)$ do we find modules of the form $W_{m, 2}^{(r)}$ ？
－$r=2$ ：W－modules correspond to the preinjectives．
－$r>2$ ：generalized W－modules are injective or in $\mathbb{Z} A_{\infty}$－components．

Theorem

Let $r>2, m \geq 3$ ．

The modules $W_{m, 2}^{(r)}$

Where in $\Gamma\left(\mathcal{K}_{r}\right)$ do we find modules of the form $W_{m, 2}^{(r)}$ ？
－$r=2$ ：W－modules correspond to the preinjectives．
－$r>2$ ：generalized W－modules are injective or in $\mathbb{Z} A_{\infty}$－components．

Theorem

Let $r>2, m \geq 3$ ．The $\mathbb{Z} A_{\infty}$－component \mathcal{C}_{m} containing $W_{m, 2}^{(r)}$ ，

The modules $W_{m, 2}^{(r)}$

Where in $\Gamma\left(\mathcal{K}_{r}\right)$ do we find modules of the form $W_{m, 2}^{(r)}$?

- $r=2$: W-modules correspond to the preinjectives.
- $r>2$: generalized W-modules are injective or in $\mathbb{Z} A_{\infty}$-components.

Theorem

Let $r>2, m \geq 3$. The $\mathbb{Z} A_{\infty}$-component \mathcal{C}_{m} containing $W_{m, 2}^{(r)}$, satisfies $\mathcal{W}\left(\mathcal{C}_{m}\right)=0$.

The modules $W_{m, 2}^{(r)}$

Where in $\Gamma\left(\mathcal{K}_{r}\right)$ do we find modules of the form $W_{m, 2}^{(r)}$?

- $r=2$: W-modules correspond to the preinjectives.
- $r>2$: generalized W-modules are injective or in $\mathbb{Z} A_{\infty}$-components.

Theorem

Let $r>2, m \geq 3$. The $\mathbb{Z} A_{\infty}$-component \mathcal{C}_{m} containing $W_{m, 2}^{(r)}$, satisfies $\mathcal{W}\left(\mathcal{C}_{m}\right)=0$. In particular, $\mathcal{C}_{m} \subseteq \operatorname{CJT}(2, r)$.

$n \geq 3$ ：One－point extensions

$n \geq 3$: One-point extensions

- The one-point extension

$$
\mathcal{K}_{r}\left[M_{3,2}^{(r)}\right]=\left(\begin{array}{cc}
\mathcal{K}_{r} & M_{3,2}^{(r)} \\
0 & k
\end{array}\right)
$$

$n \geq 3$: One-point extensions

- The one-point extension

$$
\mathcal{K}_{r}\left[M_{3,2}^{(r)}\right]=\left(\begin{array}{cc}
\mathcal{K}_{r} & M_{3,2}^{(r)} \\
0 & k
\end{array}\right)
$$

is isomorphic to $B(3, r)$.

$n \geq 3$: One-point extensions

- The one-point extension

$$
\mathcal{K}_{r}\left[M_{3,2}^{(r)}\right]=\left(\begin{array}{cc}
\mathcal{K}_{r} & M_{3,2}^{(r)} \\
0 & k
\end{array}\right)
$$

is isomorphic to $B(3, r)$.

- $r=2$:

$n \geq 3$: One-point extensions

- The one-point extension

$$
\mathcal{K}_{r}\left[M_{3,2}^{(r)}\right]=\left(\begin{array}{cc}
\mathcal{K}_{r} & M_{3,2}^{(r)} \\
0 & k
\end{array}\right)
$$

is isomorphic to $B(3, r)$.

- $r=2$: extending 1

$n \geq 3$: One-point extensions

- The one-point extension

$$
\mathcal{K}_{r}\left[M_{3,2}^{(r)}\right]=\left(\begin{array}{cc}
\mathcal{K}_{r} & M_{3,2}^{(r)} \\
0 & k
\end{array}\right)
$$

is isomorphic to $B(3, r)$.

- $r=2$: extending $1 \overbrace{\bar{\gamma}_{2}}^{\gamma_{1}} 2$

$n \geq 3$ ：One－point extensions

－The one－point extension

$$
\mathcal{K}_{r}\left[M_{3,2}^{(r)}\right]=\left(\begin{array}{cc}
\mathcal{K}_{r} & M_{3,2}^{(r)} \\
0 & k
\end{array}\right)
$$

is isomorphic to $B(3, r)$ ．
－$r=2$ ：extending $1 \overbrace{\bar{\gamma}_{2}}^{\gamma_{1}} 2$ by
yields $0 \overbrace{\overline{v_{2}}{ }^{1}}^{1} \overbrace{\overline{\gamma_{2}}}^{{ }^{1}} 1$ with relations $\gamma_{2} \cdot v_{1}=\gamma_{1} \cdot v_{2}$ ．

W-modules determine $\mathbb{Z} A_{\infty}$-components

W－modules determine $\mathbb{Z} A_{\infty}$－components

－Inductively：$B(n, r) \cong \mathcal{K}_{r}\left[M_{3,2}^{(r)}\right] \cdots\left[M_{n, n-1}^{(r)}\right]$

W－modules determine $\mathbb{Z} A_{\infty}$－components

－Inductively：$B(n, r) \cong \mathcal{K}_{r}\left[M_{3,2}^{(r)}\right] \cdots\left[M_{n, n-1}^{(r)}\right]$

Ringel：

W-modules determine $\mathbb{Z} A_{\infty}$-components

- Inductively: $B(n, r) \cong \mathcal{K}_{r}\left[M_{3,2}^{(r)}\right] \cdots\left[M_{n, n-1}^{(r)}\right]$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension $A[X]$.

W－modules determine $\mathbb{Z} A_{\infty}$－components

－Inductively：$B(n, r) \cong \mathcal{K}_{r}\left[M_{3,2}^{(r)}\right] \cdots\left[M_{n, n-1}^{(r)}\right]$

Ringel：
－Lifting properties of almost split sequences over A to a one－point extension $A[X]$ ．
－Splitting properties of almost split sequences over $A[X]$ after restriction to A ．

W-modules determine $\mathbb{Z} A_{\infty}$-components

- Inductively: $B(n, r) \cong \mathcal{K}_{r}\left[M_{3,2}^{(r)}\right] \cdots\left[M_{n, n-1}^{(r)}\right]$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension $A[X]$.
- Splitting properties of almost split sequences over $A[X]$ after restriction to A.

Theorem

W-modules determine $\mathbb{Z} A_{\infty}$-components

- Inductively: $B(n, r) \cong \mathcal{K}_{r}\left[M_{3,2}^{(r)}\right] \cdots\left[M_{n, n-1}^{(r)}\right]$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension $A[X]$.
- Splitting properties of almost split sequences over $A[X]$ after restriction to A.

Theorem

Let $n \geq 3, m>n$.

W-modules determine $\mathbb{Z} A_{\infty}$-components

- Inductively: $B(n, r) \cong \mathcal{K}_{r}\left[M_{3,2}^{(r)}\right] \cdots\left[M_{n, n-1}^{(r)}\right]$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension $A[X]$.
- Splitting properties of almost split sequences over $A[X]$ after restriction to A.

Theorem

Let $n \geq 3, m>n$. The module $W_{m, n}^{(r)}$ belongs to a $\mathbb{Z} A_{\infty}$-component $\mathcal{C}_{m}^{(r)}$ of $\Gamma(n, r)$ such that

W-modules determine $\mathbb{Z} A_{\infty}$-components

- Inductively: $B(n, r) \cong \mathcal{K}_{r}\left[M_{3,2}^{(r)}\right] \cdots\left[M_{n, n-1}^{(r)}\right]$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension $A[X]$.
- Splitting properties of almost split sequences over $A[X]$ after restriction to A.

Theorem

Let $n \geq 3, m>n$. The module $W_{m, n}^{(r)}$ belongs to a $\mathbb{Z} A_{\infty}$-component $\mathcal{C}_{m}^{(r)}$ of $\Gamma(n, r)$ such that

- for $r>2: \mathcal{W}\left(\mathcal{C}_{m}^{(r)}\right)=0$.

W-modules determine $\mathbb{Z} A_{\infty}$-components

- Inductively: $B(n, r) \cong \mathcal{K}_{r}\left[M_{3,2}^{(r)}\right] \cdots\left[M_{n, n-1}^{(r)}\right]$

Ringel:

- Lifting properties of almost split sequences over A to a one-point extension $A[X]$.
- Splitting properties of almost split sequences over $A[X]$ after restriction to A.

Theorem

Let $n \geq 3, m>n$. The module $W_{m, n}^{(r)}$ belongs to a $\mathbb{Z} A_{\infty}$-component $\mathcal{C}_{m}^{(r)}$ of $\Gamma(n, r)$ such that

- for $r>2: \mathcal{W}\left(\mathcal{C}_{m}^{(r)}\right)=0$.
- for $r=2: \mathcal{C}_{m}^{(2)} \subset \operatorname{CJT}(n, 2)$.

Lifting of almost split sequences

Let A be an algebra, $M \in \bmod A \rightsquigarrow A[M]=\left(\begin{array}{cc}A & M \\ 0 & k\end{array}\right)$.

Lemma (Ringel)

Let A be an algebra, M an A-module. Let furthermore

$$
0 \rightarrow \tau(N) \rightarrow E \rightarrow N \rightarrow 0
$$

be an Auslander-Reiten sequence in mod A. Then

$$
0 \rightarrow\binom{\tau(N)}{\operatorname{Hom}_{A}(M, \tau(N))} \rightarrow\binom{E}{\operatorname{Hom}_{A}(M, \tau(N))} \rightarrow\binom{N}{0} \rightarrow 0
$$

is an Auslander-Reiten sequence in $\bmod A[M]$, where $m \cdot \varphi=\varphi(m)$ for $m \in M, \varphi \in \operatorname{Hom}_{A}(M, \tau(N))$.

