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Recall that the Hecke algebra H has a special basis
tHx | x P W u, the Kazhdan-Lusztig basis.

Our goal is to understand the Kazhdan-Lusztig positivity
conjectures:

Hx �
¸

hy ,xHy hy ,x P Z¥0rv s

HxHy �
¸
µzx ,yHz µzx ,y P Z¥0rv

�1s.

(There are other positivity conjectures which we ignore here.)
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Recall that Soergel introduced a monoidal category B of graded
bimodules over a polynomial ring and proved:

Soergel’s categorification theorem (2005):

The split Grothendieck group of B is isomorphic to the Hecke
algebra:

ch : K split
0 pBq �

Ñ H



To establish the positivity conjectures we establish:

Soergel’s conjecture:

chpBxq � Hx

I mentioned last time that the key to this conjecture is to prove
that Bx have interesting R-Hodge structures. Today I will try to
make this precise.
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We will axiomatize “Hodge theory in the pp, pq setting”.

The ingredients are:

1. a finite dimensional graded vector space H �
À

H i ,

2. a non-degenerate symmetric graded form

x�,�y : H � H Ñ R.

(graded means that xH i ,H jy � 0 unless i � j .)

Hence we normalize so that 0 is the “mirror” or Poincaré duality:

H�i � pH i q� for i P Z.
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Given any 2n dimensional manifold M we could obtain such an
H by setting H i :� H i�npM;Rq and

xα, βy �

»
M
α^ β

(Actually, not quite: the intersection pairing on a manifold is
graded symmetric. In order to get an H as above we should
assume that the odd cohomology of M vanishes.)

Now we introduce Lefschetz operators, which means that most
manifolds will fail to provide examples.
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A Lefschetz operator is a map L : H Ñ H of degree two, such
that

xLα, βy � xα, Lβy

for all α, β P H.

Example: If M is as above, then multiplication by any two
degree class H2pM,Rq provides a Lefschetz operator.

A Lefschetz operator L satisfies the hard Lefschetz theorem if for
all i ¥ 0, i iterates of L provide an isomorphism

Li : H�i �
Ñ H i .

This is equivalent to L being the e in an sl2pRq-action on H
with h equal to the “degree operator”: hα � mα for all α P Hm.
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The main example of operators satisfying the hard Lefschetz
theorem is as follows:

Let X � PnpCq be a projective algebraic variety. Let
β P H2pX ,Rq be the first Chern class of an ample line bundle on
X . Then multiplication by β satisfies the hard Lefschetz theorem.

This is the “hard Lefschetz theorem”; so-called because it is
hard!
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A folk history: Lefschetz “proved” the result in his famous book
in which every statement is true, and every proof is false. Hodge
gave a completely different and complete proof using his theory of
harmonic forms. Chern recaste Hodge’s proof in terms of the
representation theory of sl2pCq. Grothendieck christened the
theorem the “Theorème de Lefschetz vache”: it caused him much
suffering. Deligne used his theory of weights to make Lefschetz’s
proof, using Lefschetz pencils, rigourous.

Lefschetz’s “other” theorem is the weak Lefschetz theorem:
“almost all cohomology is contained in a hyperplane section”. This
is a much easier statement.
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Now we return to our axiomatic setting. Assume that L satisfies
the hard Lefschetz theorem.

We have two different structures: Li identifies H�i and H i , and
x�,�y pairs them. Putting these two structures together we get
the Lefschetz forms:

pα, βq�i
L :� xα, Liβy for all α, β P H�i .



Because L satisfies the hard Lefschetz theorem we have a
primitive decomposition

H �
à
i¥0

� à
i¥j¥0

LjP�i
L

�

where
P�i
L :� ker Li�1 � H�i

is the primitive subspace or “lowest weight vectors”.



Now assume that Hodd � 0 or Heven � 0. (H is parity).

In a fixed negative degree the primitive decomposition looks as
follows:

H�i � P�i
L ` LP�i�2

L ` � � � ` L�min {2Pmin
L .

Exercise: This decomposition is orthogonal with respect to the
Lefschetz form p�,�q�i

L .

We say that L satisfies the Hodge-Riemann bilinear relations if
the restriction of p�,�q�i

L to LiPmin�2i
L is p�1qi -definite.

In other words, the signs of p�,�q�i
L alternate in the above

decomposition.
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A side note:

The definiteness in the Hodge-Riemann bilinear relations plays a
key role in our proof. This rich source of information disappears
completely if we pass to C.

Also an understanding of these forms over Z (in particular their
non-degeneracy) is closely linked to Lusztig’s modular conjecture.

We suspect (but haven’t checked) that Soergel’s conjecture fails
for certain representations of affine Weyl groups which admit no
R-forms! Hence the appearance of R might be an essential feature,
and not a means to an end. Perhaps this also explains why complex
reflection groups don’t have a good Soergel bimodule theory.
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We now state the main results:

We let h be a real reflection representation of W and an element
ρ P h� having the property that

xwpρq, α_s y ¡ 0 ô sw ¡ w .

For example, it is always possible to find such a ρ if h is the
geometric representation.

One should think that ρ is the “class of an ample line bundle”,
whether or not this makes sense.
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Example: If h is the Cartan subalgebra of a complex semi-simple
Lie algebra g and ∆ is a fixed choice of simple roots (determining
the simple reflections S � W ) in the Weyl group of W then γ P h�

satisfies the above condition if and only if γ is “strictly dominant”:

xγ, α_y ¡ 0 for all α P ∆

If γ is in addition integral then this is the condition for γ to be the
class of an ample line bundle on the corresponding flag variety.



Recall that to our choice of h we can associate the category B of
Soergel bimodules:

We consider R the regular functions on h (also known as the
symmetric algeba on h�). This is simply a multivariate polynomial
ring over R. We grade R so that deg h� � 2. Because W acts on
h it also acts on R via graded algebra automorphisms.

We consider R �Bim the monoidal category of R-bimodules and
abbreviate MM 1 � M bR M 1.



For s P S let Bs :� R bRs Rp1q. Consider

B �
full Karoubian subcategory of R � Bim

generated by Bspmq for all s P S , m P Z.

In other words, the objects B are the graded R-bimodule direct
summands of bimodules of the form

BsBt . . .Bu � R bRs R bRu R b � � � bRu Rpmq

for arbitrary sequences st . . . u and m P Z.



As we discussed last time, Soergel showed that the
indecomposable Soergel bimodules are classified by x P W . Given
any expression w � st . . . u of length m let

Bw :� BsBt . . .Bu � R bRs R bRt 9bRuRpmq.

This is a Bott-Samelson bimodule.

Then Bx may be characterised as the unique direct summand of

Bx :� BsBt . . .Bu

where x � st . . . u is a reduced expression for x , which does not
occur as a direct summand of a shift of Bw for any expression w of
length strictly less than m.



Example: Remember the situation for W � S3 and
R � RrX1,X2,X3s. We saw that

Bid � R,Bs � Bs ,Bt � Bt ,Bst � BsBt ,Bts � BtBs

and
BsBtBs � Bsts ` Bs BtBsBt � Bsts ` Bt .

and we have: Bsts � pR bRs,t Rqp3q.



Recall that Bx is an R-bimodule. A key to the proof is to
understand the “Soergel modules”:

Bx :� Bx bR R.

whereas Bx is an infinite dimensional R-bimodule, Bx is a finite
dimensional self-dual graded R-vector space.

In situations where one “has geometry” the Bx correspond to
equivariant (intersection) cohomology whereas Bx corresponds to
ordinary (intersection) cohomology.

Question: What are the Hodge-Riemann bilinear relations in
equivariant cohomology? Is there a useful theory waiting here?
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As always, one should keep in mind the case when W is finite
with longest element w0. Then

Bw0 � R bRW Rp`pw0qq

and
Bw0 � R{pRW

� qp`pw0qq

is the coinvariant ring.



Hence we can realize Bx
`
� Bx for a reduced expression x for x .

Now Bx is a graded ring, and is equipped with a symmetric
“intersection form”

x�,�y : Bx � Bx Ñ R

given by
xf , gy :� Trpfgq

for some map Tr : Bx Ñ R (take the coefficient of a natural “top”
class in a basis for Bx as a right R-bimodule).



It is easy to see combinatorially that x�,�y induces a
non-degenerate form

x�,�yR : Bx � Bx Ñ R

where Bx � Bx bR R.



Hence we can realize Bx
`
� Bx for a reduced expression x for x .

The first miracle:

x�,�y restricts to a non-degenerate form on Bx .

(This is a priori far from obvious and is established as part of our
induction.)

Hence Bx is equipped with a canonical form. If one knows
Soergel’s conjecture then such a form is unique up to a scalar.
However a concrete realization of this form is useful in inductive
arguments.

Hence Bx is a finite dimensional R-vector space equipped with
non-degenerate symmetric graded form
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It is obvious by construction that left multiplication by ρ on Bx

provides a Lefschetz operator (i.e. xρb, b1y � xb, ρb1y for all
b, b1 P Bx).

Main theorem:

Left multiplication by ρ on Bx induces a Lefschetz operator
satisfying the hard Lefschetz theorem and Hodge-Riemann bilinear
relations.
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We establish everything at once in a complicated induction. Our
proof is very much in the Hodge line of thinking. It would be very
interesting to give a Lefschetz style proof...

We adapt beautiful ideas of de Cataldo and Migliorini:

M.A. de Cataldo, L. Migliorini, The Hard Lefschetz Theorem
and the topology of semismall maps, Ann. Scient. Ec. Norm.
Sup., (2002), 759-772.

However the adaption is by no means immediate. The biggest
problem is finding a substitute for the weak Lefschetz theorem. We
notice that the first differential on a Rouquier complex:

Bx Ñ
à
y x

By
`my

provides a substitute for the weak Lefschetz theorem.

This should have other applications!
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Here is one key idea, stolen from de Cataldo and Migliorini:

Limit lemma: Suppose that Lζ is a continuous family of
Lefschetz operators parametrized by an interval I � R. If all
members satisfy the hard Lefschetz theorem, and one satisfies the
Hodge-Riemann bilinear relations, then all satisfy the
Hodge-Riemann bilinear relations.

Proof: The Lefschetz forms p�,�q�i
Lζ

are all non-degenerate (by

hard Lefschetz) symmetric, and have the right signature for one
value of ζ. Hence they always have the right signature, because
signatures of symmetric real matrices can’t change in families. qed

By considering families of deformed Lefschetz operators one can
sometimes make all problems disappear as ζ Ñ8.
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Another key idea is that “local intersection forms” (controlling
the decomposition of BxBs) can be embedded into primitive
subspaces in BxBs .

Because a definite form restricted to a subspace stays definite
these “local intersection forms” are definite, and hence
non-degenerate.

This reduces the problem to establishing the Hodge-Riemann
bilinear relations for BxBs .
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Other applications:

If σ is an automorphism of the Dynkin diagram then W σ is a
Coxeter group, with simple generators given by the products of
orbits of σ on the simple reflections.

One obtains in this way a “Hecke algebra with unequal
parameters”. It has a Kazhdan-Lusztig basis, however the
Kazhdan-Lusztig polynomials are no longer positive.

(The study of these polynomials is important when one
considers quasi-split finite reductive algebraic.)



We can prove all of Lusztig’s conjectures about Kazhdan-Lusztig
basis for unequal parameter Hecke algebras which come from
diagram automorphisms. The basic idea is to realize the unequal
parameter Hecke algebra as the equivariant K -theory of the
category of Soergel bimodules attached to W . The
Kazhdan-Lusztig polynomials emerge as the traces of σ on hom
spaces. (All of this is a straightforward adaption of ideas of
Lusztig.)

We need Soergel’s conjecture to prove that certain idempotents
behave nicely.
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Recently, Lusztig and Vogan defined a module for the Hecke
algebra with basis the (twisted) involutions in W . We can
categorify their construction, and prove their conjectures on its
basis.



One nice consequence: any Kazhdan-Lusztig polynomial hx ,y

attached to involutions x and y in any Coxeter group W has a
canonical decomposition

hx ,y � h�x ,y � h�x ,y .

where h�x ,y and h�x ,y are positive polynomials.



Twenty lectures and exercises (with Ben Elias) on these ideas:

http://people.mpim-bonn.mpg.de/geordie/aarhus/



Thanks for listening!


