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Everything I will discuss is joint work with Ben Elias (MIT).

By adapting work of de Cataldo and Migliorini we have
discovered that Soergel bimodules are naturally equipped with real
Hodge structures.

Slogan: Soergel bimodules look like the real cohomology of
smooth projective algebraic varieties.

This lecture I will describe what Soergel bimodules are and some
ways of thinking about them. Next lecture I will go into more
detail and explain precisely what is meant by the slogan.
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Already when considering the platonic solids an important
distinction occurs. The groups A3 and B3 are crystallographic
(that is, stablize a lattice in R3), whilst the group H3 is not.

Many examples of finite Coxeter groups are provided by the
Weyl groups of compact Lie groups. For example the symmetries
of the butterfly is the Weyl group of SUp2q, the symmetries of the
hexagon or snowflake is the Weyl group of G2, the symmetries of
the tetrahedron is the Weyl group of SLp4q and the symmetries of
the octahedron is the Weyl group of SOp7q or Spp6q.

However it is important for the story that not all Coxeter groups
(for example the icosahedral group H3) belong to Lie groups.

Even simpler examples of this phenomenon is provided by the
dihedral groups: only the symmetries of the triangle, square and
hexagon occur as Weyl groups.
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Throughout pW ,Sq will denote a Coxeter system:

W � xs P S | s2 � 1, pstqmst � 1y

� xs P S | s2 � 1, st . . .loomoon
mst terms

� ts . . .loomoon
mst terms

y

(where mst P t2, 3, . . . ,8u).

For example, we could take W to be a real reflection group.



To a Coxeter system pW , Sq one may associate a simplicial
complex CC pW q called the Coxeter complex of W .

Let n � |S | denote the rank of W . Its construction is as follows:

� colour the n faces of the standard n � 1-simplex by the set S ,

� take one such simplex for each element w P W ,

� glue the simplex corresponding to w to that corresponding to
ws along the wall coloured by s.



For example, consider W � S3:

W � xs, t | s2 � t2 � pstq3y � te, s, t, st, ts, stsu.

e s t st ts sts
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sts � tst
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A general dihedral group:
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mst � 8:

tst ts t e s st sts. . . . . .

Any Coxeter complex for a rank 2 Coxeter group is
homeomorphic to a circle or the real line.

This fact can be used to “explain” the presentation of W .
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The Coxeter complex of S4 � 
 
 
 :

(barycentric subdivision of the tetrahedron).
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By construction |pW ,Sq| has a left action of W .

W also acts on the alcoves of |pW , Sq| on the right by

∆w � s � ∆ws .

This action is not simplicial, but is “local”: cross the wall
coloured by s.



The Coxeter complex provides a convenient way of visualising
the group algebra ZW of W . Recall that the group algebra ZW
consists of finite formal linear combinations

°
λww of elements of

W . The product in W induces a multipliction in ZW .

Hence we can picture an element of ZW as the assignment of
integers to each alcove, such that only finitely many are non-zero.
If we view ZW as a right module over itself it is easy to picture
the action of the elements of S :

5
� s � 5

Similarly (“s averaging operator”)

5
� p1 � sq �

5
5
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Let ` : W Ñ N denote the length function on W :

`pwq � length of a minimal expression for w in the generators s

� number of walls crossed in a minimal path id Ñ w in |pW ,Sq|.
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The Hecke algebra H is a quantization of ZW . It is an algebra
over Zrv�1s with basis tHx | x P W u parametrised by W . If we
write Hs :� Hs � vHid then the multiplication in H is determined
by

HxHs �

#
Hxs � vHx if `pxsq ¡ `pxq,

Hxs � v�1Hx if `pxsq   `pxq.

We can visualise this as follows: (“quantized averaging operator”)

id
h

� Hs �
h

vh

id
h

� Hs �
v�1h

h
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In 1979 Kazhdan and Lusztig defined a new basis for the Hecke
algebra using the combinatorial structure of W . We denote this
new basis by tHx | x P W u. It satisfies

Hx :� Hx �
¸
yPW

`pyq `pxq

hy ,xHy

with hy ,x P vZrv s. These polynomials are the Kazhdan-Lusztig
polynomials.





The definition is inductive. The first few Kazhdan-Lusztig basis
elements are easily defined:

H id :� Hid , Hs :� Hs � vHid for s P S .

Now the work begins. Suppose that we have calculated Hy for all
y with `pyq ¤ `pxq. Choose s P S with `pxsq ¡ `pxq and write

HxHs � Hxs �
¸

`pyq `pxsq

gyHy .

The formula for the action of Hs shows that gy P Zrv s for all
y   `pxsq. If all gy P vZrv s then Hxs :� HxHs . Otherwise we set

Hxs � HxHs �
¸
y

`pyq `pxq

gy p0qHy .
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For dihedral groups (rank 2) we always have hy ,x � v `pxq�`pyq

(Kazhdan-Lusztig basis elements are smooth.)

However in higher rank the situation quickly becomes more
interesting...



















































































Kazhdan-Lusztig positivity conjecture (1979):

hx ,y P Z¥0rv s

Established for crystallographic W by Kazhdan and Lusztig in
1980, using Deligne’s proof of the Weil conjectures.

Crystallographic: mst P t2, 3, 4, 6,8u.
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Why are Kazhdan-Lusztig polynomials hard?

Polo’s Theorem (1999)

For any P P 1 � qZ¥0rqs there exists an m such that vmPpv�2q
occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

Roughly: all positive polynomials are Kazhdan-Lusztig
polynomials!
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The most complicated Kazhdan-Lusztig-Vogan polynomial
computed by the Atlas of Lie groups and Representations project:

152q22�3 472q21 � 38 791q20 � 293 021q19 � 1 370 892q18�

�4 067 059q17 � 7 964 012q16 � 11 159 003q15�

�11 808 808q14 � 9 859 915q13 � 6 778 956q12�

�3 964 369q11 � 2 015 441q10 � 906 567q9�

�363 611q8 � 129 820q7 � 41 239q6�

�11 426q5 � 2 677q4 � 492q3 � 61q2 � 3q

(This polynomial is associated to the reflection group of type E8.
See www.liegroups.org.)

www.liegroups.org


Why are Kazhdan-Lusztig polynomials useful?



Infinite dimensional highest weight representations of
semi-simple Lie algebras.

Kazhdan-Lusztig conjecture (1979):

chLpx � 0q �
¸
y¥x

p�1q`pxq�`pyqhw0y ,w0xp1qch∆py � 0q.

(A major generalisation of the Weyl character formula.)

Implications for representations of real Lie groups.
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The Kazhdan-Lusztig conjecture was proved 1981 by
Beilinson-Bernstein and Brylinski-Kashiwara using every trick in
the book: algebraic differential equations “D-modules”; the
Riemann-Hilbert correspondence (monodromy of differential
equations); the theory of perverse sheaves (algebraic topology of
singular varieties); Deligne’s theory of weights (arithmetic
geometry):

“The amazing feature of the proof is that it does not try to
solve the problem but just keeps translating it in languages of
different areas of mathematics (further and further away from the
original problem) until it runs into Deligne’s method of weight
filtrations which is capable to solve it.

So have a seat; it is going to be a long journey.”
– Joseph Bernstein.
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Kazhdan-Lusztig polynomials also play an important role in:

i) Lusztig’s description of the character table of a finite group of
Lie type.

ii) rational representations of reductive algebraic groups in
positive characteristic (Lusztig’s conjecture);

iii) character formulae for simple modules for affine Lie algebras
and quantum groups at roots of unity (conformal field theory);

iv) the geometric Langlands correspondence (geometric Satake);

v) symmetric polynomials, Macdonald polynomials,
Littelwood-Richardson coefficients;

vi) many connections to combinatorics;

vii) Kazhdan-Lusztig polynomials might end up helping us
understand the HOMFLYPT polynomial of a link...
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Theorem (Elias-W)

The Kazhdan-Lusztig positivity conjecture holds.

More precisely we establish a conjecture of Wolfgang Soergel
about his bimodules. We also use Hodge theoretic ideas of de
Cataldo and Migliorini in a crucial way.

Using results of Soergel we obtain an algebraic proof of the
Kazhdan-Lusztig conjecture, as well as algebraic proofs of many of
the results mentioned on the previous slide.
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Our goal is to understand the Kazhdan-Lusztig positivity
conjectures:

Hx �
¸

hy ,xHy hy ,x P Z¥0rv s

HxHy �
¸
µzx ,yHz µzx ,y P Z¥0rv

�1s.

A basic principle in combinatorics to show that a number is
positive is to show that it is the cardinality of a set or the
dimension of a vector space.

This is a baby example of categorification. One upgrades a
number to an object in a category (in this example a set or vector
space).
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Given an abelian category A its Grothendieck group is

K0pAq �
à
MPA

rMs{

�
� rMs � rM 1s � rM2s

for all short exact sequences
0 Ñ M 1 Ñ M Ñ M2 Ñ 0

�

.

Given an additive category B its split Grothendieck group is

K split
0 pBq �

à
BPB

rBs{

�
rBs � rB 1s � rB2s

whenever B � B 1 ` B2



.

The passage from a category to its (split) Grothendieck group is
the process of decategorification. Finding interesting inverses to
this procedure is the process of categorification.
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Categorifying the Hecke algebra:

For simplicity assume that W � OpV q is a finite reflection
group. Set

R � polynomial functions on V

graded such that V � � R has degree 2. If we choose a basis
X1, . . . ,Xm of V � then R is simply the polynomial ring
RrX1, . . . ,Xms. Because W acts on V , it also acts on R. For any
simple reflection s P S consider Rs � R the subalgebra of
s-invariants (also a polynomial ring).

Let R � Bim denote the monoidal category of graded
R-bimodules: MM 1 :� M bR M 1.

We denote by p1q the grading shift operator: Mp1qi � M i�1.



For s P S let Bs :� R bRs R. Consider

B �
full Karoubian subcategory of R � Bim

generated by Bspmq for all s P S , m P Z.

In other words, the objects B are the graded R-bimodule direct
summands of bimodules of the form

BsBt . . .Bu � R bRs R bRu R b � � � bRu Rpmq

for arbitrary sequences st . . . u and m P Z.

Let K split
0 pBq denote the split Grothendieck group of B. It is an

algebra over Zrv�1s via v rBs :� Bp1q and rB 1srB2s � rB 1B2s.



Soergel’s categorification theorem (2005):

The split Grothendieck group of B is isomorphic to the Hecke
algebra:

ch : K split
0 pBq �

Ñ H



First example: W � S2 � tid , su acting on R.

Then R � RrX s with sX � �X and Rs � RrX 2s.

Any polynomial is the sum of an even and an odd polynomial.
Hence we have an isomorphism of RrX 2s-bimodules:

R � RrX s � RrX 2s ` XRrX 2s � Rs ` Rsp�2q.

Hence

BsBs � R bRs R bRs Rp2q � R bRs pRs ` Rsp�2qq bRs Rp2q �

� pR bRs Rqp2q ` pR bRs Rq � Bsp1q ` Bsp�1q.

This categorifies the relation H2
s � v�1Hs � vHs and shows that

(up to isomorphism and shifts) there are only two indecomposable
Soergel bimodules: Bid � R and Bs .



Second example: W � S3 acting on R � RrX1,X2,X3s by
permutations of the variables. Set s � p1, 2q and t � p2, 3q. Then
Rs � RrX1 � X2,X1X2,X3s etc. and one can check (with some
effort) the following facts:

1. Bs , Bt , BsBt and BtBs are cyclic (hence indecomposable)
R-bimodules.

2. one has isomorphisms of graded R-bimodules

BsBtBs � Bsts ` Bs BtBsBt � Bsts ` Bt

where Bsts � R bRs,t Rp3q.

3. BstsBs � Bstsp1q ` Bstsp�1q � BstsBt .

All these isomorphisms categorify facts in the Hecke algebra (e.g.
HsHt � Hst , HstsHs � pv � v�1qHsts etc.)
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BsBtBs � Bsts ` Bs BtBsBt � Bsts ` Bt

where Bsts � R bRs,t Rp3q.
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All these isomorphisms categorify facts in the Hecke algebra (e.g.
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They also show that the set of indecomposable Soergel
bimodules (up to isomorphism and shifts) consist of

tR � Bid ,Bs ,Bt ,Bst ,Bts ,Bstsu.



To prove his categorification theorem, Soergel establishes the
existence and uniqueness of indecomposable bimodules Bx whose
classes give a basis for K split

0 pBq and conjectures:

Soergel’s conjecture:

chpBxq � Hx

One can check Soergel’s conjecture by hand in the previous two
examples.

ñKazhdan-Lusztig positivity conjectures.

Soergel also explained how his category of bimodules sees
everything about category O.

In particular his conjecture implies the Kazhdan-Lusztig
conjecture on characters of simple highest weight modules.
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An important role in our inductive proof of Soergel’s conjecture
is played by certain much stronger statements about the bimodules
Bx .

Set Bx :� Bx bR R. This is a finite dimensional graded vector
with left R action on the left. It is equipped with a non-degenerate
symmetric “intersection form” x�,�y.

Example: if w0 P W denotes the longest element then
Bw0 � R bRW Rp`pw0qq and hence

Bw0 � R{pRW q�p`pw0qq

is the “coinvariant algebra”: pRW q� denotes the ideal of R
generated by W -invariant polynomials of positive degree.



We show that Bx “looks like the cohomology of a smooth
projective variety”.

For any ρ P V � in the interior of the fundamental alcove we
have:

i) (Hard-Lefschetz theorem) left multiplication by ρi gives an
isomorphism

pBxq
�i Ñ pBxq

i

1. (Hodge-Riemann bilinear relations) The restriction of the form
pα, βq :� xα, ρiβy to the kernel of ρi�1 in pBxq

�i is definite.



What does this say for the coinvariant algebra?

If W is a Weyl group then R{pRW q� is isomorphic to the
cohomology ring of the flag variety. Flag varieties are smooth
projective varieties and these properties follow from classical Hodge
theory.

If W is not a Weyl group (for example the symmetries of the
icosahedron), there is no algebraic variety with the coinvariant
algebra as cohomology.

Here even for H3 the Hodge-Riemann bilinear relations are new,
and the only proofs of hard Lefschetz were computer assisted.



To any element of any Coxeter group W one has a space which
looks like the cohomology of a smooth projective variety!

I will finish with two questions:

i) Is there any geometric interpretation of these spaces? (One
can ask a similar question for the intersection cohomology of
non-rational polytopes.)

ii) What does Kazhdan-Lusztig theory mean in the
non-crystallographic case?





For more images of two-sided cells in hyperbolic groups see Paul Gunnell’s web page.


