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Motivation

G = PSL2(C), ǧ := sl2(R)⊗ C and K = SO2(R)

H C := {(ǧ,K)-modules of finite length} with integral infinitisimal
character

X Adams-Barbasch-Vogan parameter space of G . (will be defined later)

Koszul Duality roughly identifies:

H C Db
G (X )oo
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G = PSL2(C), ǧ := Lie SL2(C) and K = SO2(R)

H C := {(ǧ,K)-modules of finite length} with integral infinitisimal
character

X Adams-Barbasch-Vogan parameter space of G . (will be defined later)

Koszul Duality roughly identifies:

H C

F⊗

DD Db
G (X )oo

F finite dimensional SL2(C) representation.

Oliver Straser Koszul Duality and Geometric Satake for SL2(R)



Koszul Duality
Geometric Satake

Connecting both pictures
Geometric Tensoration
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Question

Is there a nice (geometric) desciption of “?”
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H C := {(ǧ,K)-modules of finite length} with integral infinitisimal
character

X Adams-Barbasch-Vogan parameter space of G . (will be defined later)

Koszul Duality roughly identifies:

H C

F⊗

DD Db
G (X )oo

?

GG

F finite dimensional SL2(C) representation.

Question

Is there a nice (geometric) desciption of “?”

Oliver Straser Koszul Duality and Geometric Satake for SL2(R)



Koszul Duality
Geometric Satake

Connecting both pictures
Geometric Tensoration

Outline

1 Koszul Duality

2 Geometric Satake

3 Connecting both pictures

4 Geometric Tensoration

Oliver Straser Koszul Duality and Geometric Satake for SL2(R)



Koszul Duality
Geometric Satake

Connecting both pictures
Geometric Tensoration

Some Notation

G = PSL2(C), fix a Borel B and a maximal torus T ⊂ B determining a
system of pos. roots.

ǧ ⊃ ȟ cartanian. Via the Harish-Chandra isomorphism we indentify the set
of integral infinitisimal characters with N0

{Inf. Chars. of ǧ} ∼= ȟ∗/W ⊃ N0ρ ∼= N0

For any infinitisimal character n ∈ N0

H C n = {M ∈H C | (n(z)− z)kM = 0 for k � 0 and ∀z ∈ Z(U(ǧ))}

and the category of Harish-Chandra Modules with integral infinitisimal
character

H C = ⊕n∈N0H C n

is stable under tensoring with finite dimensional SL2(C) representations.
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ǧ ⊃ ȟ cartanian. Via the Harish-Chandra isomorphism we indentify the set
of integral infinitisimal characters with N0
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Some More Notation

Let X be a complex variety (equipped with the analytic topology) acted
upon by some linear algebraic group G , then

Db
G (X )

denotes the Bernstein-Lunts equivariant derived category.

If the G -orbits on X are of finite number then these orbits define a
stratification of X .

The category of equivariant perverse sheaves

PervG (X )

is artinian. (i.e. abelian and every object has finite length)

Let Dss
G (X ) full additive subcategory of semisimple objects of Db

G (X ). (An
object in Db

G (X ) is called semisimple if it is isomorphic to finte direct sum
of shifted simple objects of PervG (X ))
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Geometric Parameter Spaces

Definition (Adams-Barbasch-Vogan)

Let Y := {g ∈ G |g 2 = 1},

X (n) :=

{
G ×B Y if n > 0

Y if n = 0

is called the Geometric Parameter Space for n ∈ N0.

Theorem (Soergel, 02)

For any n ∈ N0 there exists an graded Version H C Z
n of H C n such that

PH C Z
n
∼= Dss

G (X (n))
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Affine Grassmannians

K = C((t)) O := C[[t]]

G(K) and G(O)

tn := (t →
(

t−n 0
0 1

)
) ∈ hom(C×,T ) ⊂ G(K)

G(K)n := G(O)tnG(O)

G(K) =
⊔
n∈N0

G(K)n “Bruhat decomposition”

Grn :=
⊔

0≤k≤n

G(K)k/G(O) is a projective variety

Grn ↪→ Grn+1 is a closed embedding
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Gr := G(K)/G(O) ∼= lim−→Grn “Affine Grassmannian”

Gr carries a natural (left)-G(O)-action.

Db
G(O)(Gr) := lim−→Db

G(O)(Gri ) and PervG(O)(Gr) := lim−→PervG(O)(Gri )

Gr carries also a “continious” G(K)-action. This gives a-bifunctor

∗ : Db
G(O)(Gr)× Db

G(O)(Gr)→ Db
G(O)(Gr)

Theorem (Geometric Satake Isomorphism, Mirkovic-Vilonen)

There exists an equivalence of tensor categories

S : (PervG(O)(Gr), ∗)→ (RepC(SL2(C)),⊗)

Oliver Straser Koszul Duality and Geometric Satake for SL2(R)



Koszul Duality
Geometric Satake

Connecting both pictures
Geometric Tensoration

Gr := G(K)/G(O) ∼= lim−→Grn “Affine Grassmannian”

Gr carries a natural (left)-G(O)-action.

Db
G(O)(Gr) := lim−→Db

G(O)(Gri ) and PervG(O)(Gr) := lim−→PervG(O)(Gri )

Gr carries also a “continious” G(K)-action. This gives a-bifunctor

∗ : Db
G(O)(Gr)× Db

G(O)(Gr)→ Db
G(O)(Gr)

Theorem (Geometric Satake Isomorphism, Mirkovic-Vilonen)

There exists an equivalence of tensor categories

S : (PervG(O)(Gr), ∗)→ (RepC(SL2(C)),⊗)

Oliver Straser Koszul Duality and Geometric Satake for SL2(R)



Koszul Duality
Geometric Satake

Connecting both pictures
Geometric Tensoration

Gr := G(K)/G(O) ∼= lim−→Grn “Affine Grassmannian”

Gr carries a natural (left)-G(O)-action.

Db
G(O)(Gr) := lim−→Db

G(O)(Gri ) and PervG(O)(Gr) := lim−→PervG(O)(Gri )

Gr carries also a “continious” G(K)-action. This gives a-bifunctor

∗ : Db
G(O)(Gr)× Db

G(O)(Gr)→ Db
G(O)(Gr)

Theorem (Geometric Satake Isomorphism, Mirkovic-Vilonen)

There exists an equivalence of tensor categories

S : (PervG(O)(Gr), ∗)→ (RepC(SL2(C)),⊗)

Oliver Straser Koszul Duality and Geometric Satake for SL2(R)



Koszul Duality
Geometric Satake

Connecting both pictures
Geometric Tensoration

Gr := G(K)/G(O) ∼= lim−→Grn “Affine Grassmannian”

Gr carries a natural (left)-G(O)-action.

Db
G(O)(Gr) := lim−→Db

G(O)(Gri ) and PervG(O)(Gr) := lim−→PervG(O)(Gri )

Gr carries also a “continious” G(K)-action.

This gives a-bifunctor

∗ : Db
G(O)(Gr)× Db

G(O)(Gr)→ Db
G(O)(Gr)

Theorem (Geometric Satake Isomorphism, Mirkovic-Vilonen)

There exists an equivalence of tensor categories

S : (PervG(O)(Gr), ∗)→ (RepC(SL2(C)),⊗)

Oliver Straser Koszul Duality and Geometric Satake for SL2(R)



Koszul Duality
Geometric Satake

Connecting both pictures
Geometric Tensoration

Gr := G(K)/G(O) ∼= lim−→Grn “Affine Grassmannian”

Gr carries a natural (left)-G(O)-action.

Db
G(O)(Gr) := lim−→Db

G(O)(Gri ) and PervG(O)(Gr) := lim−→PervG(O)(Gri )

Gr carries also a “continious” G(K)-action. This gives a-bifunctor

∗ : Db
G(O)(Gr)× Db

G(O)(Gr)→ Db
G(O)(Gr)

Theorem (Geometric Satake Isomorphism, Mirkovic-Vilonen)

There exists an equivalence of tensor categories

S : (PervG(O)(Gr), ∗)→ (RepC(SL2(C)),⊗)

Oliver Straser Koszul Duality and Geometric Satake for SL2(R)



Koszul Duality
Geometric Satake

Connecting both pictures
Geometric Tensoration

Gr := G(K)/G(O) ∼= lim−→Grn “Affine Grassmannian”

Gr carries a natural (left)-G(O)-action.

Db
G(O)(Gr) := lim−→Db

G(O)(Gri ) and PervG(O)(Gr) := lim−→PervG(O)(Gri )

Gr carries also a “continious” G(K)-action. This gives a-bifunctor

∗ : Db
G(O)(Gr)× Db

G(O)(Gr)→ Db
G(O)(Gr)

Theorem (Geometric Satake Isomorphism, Mirkovic-Vilonen)

There exists an equivalence of tensor categories

S : (PervG(O)(Gr), ∗)→ (RepC(SL2(C)),⊗)

Oliver Straser Koszul Duality and Geometric Satake for SL2(R)



Koszul Duality
Geometric Satake

Connecting both pictures
Geometric Tensoration

So far:

Rep(SL2(C)) ←→ G(O) # Gr
H C ←→ G # (

⊔
i∈N0

X (n))

We may define

X :=
⊔
i∈N0

X (n)

and
Db

G (X) :=
⊕
n∈N0

Db
G (X (n))

We would like to have a convolution product

PervG(O)(Gr)× Db
G (X)→ Db

G (X)

Problem

Unfortunately G(K) has no obvious action on X
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We would like to have a convolution product

PervG(O)(Gr)× Db
G (X)→ Db

G (X)

Problem

Unfortunately G(K) has no obvious action on X
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Lemma

Let X n := G(O)tnG(O)×G(O) Y . There exists an equivalence of categories

Db
G(O)(X

n) ∼= Db
G (X (n))

preserving the perverse t-structure.

So we may replace X by

X̃ :=
⊔
n∈N0

X n

(each X n is open and closed in X̃ )
We have an EQUALITY OF SETS

X̃ = G(K)×G(O) Y

but still G(K) does not operate continously on X̃
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Now we will change the topology of X̃ a little, such that G(K) acts
continiously as follows:

Xn :=
⊔

0≤k≤n X k is a quasi-projective variety

Xn ↪→ Xn+1 is a closed embedding

X := G(K)×G(O) Y = lim−→Xn “Affine Parameter Space”

Db
G(O)(X ) := lim−→Db

G(O)(Xn)

Proposition

There exists a bi-functor

∗ : Db
G(O)(Gr)× Db

G(O)(X )→ Db
G(O)(X )

generalizing the convolution bi-functor on the Affine Grassmannian.
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Remark

Note that
X̃ 6= X

since
X ⊃ X n =

⊔
0≤k∈{n,n−2,n−4,...}X k

X̃ ⊃ X n = X n

but we have a canonical inclusion

j : X̃ ↪→ X

Definition

Let F ∈ PervG(O)(Gr). Geometric Tensorfunctor F ∗̃ is defined as follows:

Db
G(O)(X̃ )
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Main Theorem

Recall: By Koszul Duality Dss
G(O)(X̃ ) is a graded version of the “projective

objects” of H C .

Under this equivalence we have a functor

for : Dss
G(O)(X̃ )→ PH C

“forget the grading”

Theorem

Geometric Tensoration is the Koszul-Dual of Tensoration with finite
dimensional representations.
If F is a finite dimensional rational SL2(C)-representation and S(F ) it’s Satake
equivalent, then the following diagram commutes.

PH C

F⊗

��

Dss
G (X̃ )

S(F )∗̃
��

for
oo

PH C Dss
G (X̃ )

for
oo
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Corollary

For each finite dimensional representation F of SL2(C) there exists a graded lift
F ⊗̃ : H C Z →H C Z of the functor F ⊗ : H C →H C ,

such that

For the trivial representation C we have an isomorphism of functors

C⊗̃ ∼= id

For F1, F2 ∈ Rep(SL2(C)) we have an isomorphism of functors

(F1 ⊗ F2)⊗̃ ∼= F1⊗̃(F2⊗̃ )
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Some Properties of the Geometric Tensor Functor

Definition (Geometric Translation Functors)

For k,m, n ∈ N0 let L(|n −m|) be the unique simple finite dimensional
representation with highest weight |n −m| and jk : X k → X the inclusion.

Db
G(O)(X

m)
Rjm! //

Tm,n

��

Db
G(O)(X )

S(L(|n−m|))∗

��

Db
G(O)(X

n) Db
G(O)(X )

j∗n

oo

Theorem

For any F ∈ PervG(O)(Gr), there exists an isomorphism of functors

F∗̃ ∼=
{

some finite sum of compositions
of geometric translation functors

}
non canonically.
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Theorem

Let π : G ×B Y → Y the quotient map. Then

Tm,n
∼=


π∗[1] if m = 0, n 6= 0

π∗[1] if n = 0, m 6= 0

id else

Corollary

i) Geometric Tensoration preserves semi-simplicity.

ii) Geometric Tensoration is (weakly) associative, this means there exists
isomorphism of functors

(F1 ∗ F2)∗̃ ∼= F1∗̃(F2∗̃ )
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Thank You!
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Convolution

Assume G(K) acts continously on X , where X ∈ {Gr ,X }. Philisophically the
convolution bi-functor

∗ : Db
G(O)(Gr)× Db

G(O)(X ) → Db
G(O)(X )

is defined as follows:

For F ∈ Db
G(O)(Gr) define F ∗ by

Db
G(O)(X )

F∗

��

F�
// Db

G(O)×G(O)(Gr × X )

p∗1 ×id

��

Db
G(O)3 (G(K)× X )

res∆

��

Db
G(O)2 (G(K)× X )

(q∗)−1

��

Db
G(O)(X ) Db

G(O)2 (G(K)×G(O) X )
m!oo
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