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Topic

Central objects and notations:

G a finite group

Irr(G ) = {irreducible complex characters of G}
1:1↔ {isomorphism classes of simple CG -modules}

p a prime

F algebraically closed field of characteristic p

IBr(G ) = {irreducible Brauer characters of G}
1:1↔ {isomorphism classes of simple FG -modules}

Study Irr(G ) and IBr(G ) via subgroups of G !
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Philosophy

It is known:

Using the classification of finite simple groups, strong statements on
groups and their representations can be proven.

The representations theory of p-solvable groups seems
well-understood.

Quasisimple groups have a rich geometric/combinatorial structure or
are accessible via computer calculations.
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Conjecture - McKay

We set Irrp′(G ) := {χ ∈ Irr(G ) | p - χ(1)}.

McKay conjecture (1972)

Let P ∈ Sylp(G ) a Sylow p-subgroup.
Then

| Irrp′(G )| = | Irrp′(NG (P))|.

known for:
certain various families of groups, in general unproven
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Example: McKay Conjecture for G = SL4(F2) and p = 2

Character Degrees in Irr(G ) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

| Irr2′(G )| = 8

P = {upper unitriangular matrices} is a Sylow 2-subgroup

NG (P) = {upper triangular matrices}

Character Degrees in Irr(NG (P)) (with multiplicities):

1 , . . . , 1︸ ︷︷ ︸
8-times

, 2 , . . . , 2︸ ︷︷ ︸
6-times

, 4 , 4

| Irr2′(NG (P))| = 8
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Example: McKay Conjecture for G = SL4(F2) and p = 5
Character Degrees in Irr(G ) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

| Irr5′(G )| = 9

A Sylow 5-subgroup P is isomorphic to Z/5Z and can be realised as a
subgroup of the torus in SL4(F16).

NG (P) is isomorphic to F×16 o Gal(F16 : F2).

Character Degrees in Irr(NG (P)):

1 , . . . , 1︸ ︷︷ ︸
4-times

, 2 , 2 , 4 , 4 , 4

| Irr5′(NG (P))| = 9
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Example: McKay Conjecture for G = SL4(F2) and p = 3
Character Degrees in Irr(G ) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

| Irr3′(G )| = 9

A Sylow 3-subgroup P is isomorphic to Z/3Z× Z/3Z and can be realised
as a subgroup of the torus in SL4(F4).

NG (P) is isomorphic to

((F×4 o Gal(F4 : F2))× (F×4 o Gal(F4 : F2)))o Z/2Z.

Character Degrees in Irr(NG (P)) (with multiplicities):

1 , . . . , 1︸ ︷︷ ︸
4-times

, 2 , 4 , . . . , 4︸ ︷︷ ︸
4-times

,

| Irr3′(NG (P))| = 9
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as a subgroup of the torus in SL4(F4).

NG (P) is isomorphic to

((F×4 o Gal(F4 : F2))× (F×4 o Gal(F4 : F2)))o Z/2Z.

Character Degrees in Irr(NG (P)) (with multiplicities):

1 , . . . , 1︸ ︷︷ ︸
4-times

, 2 , 4 , . . . , 4︸ ︷︷ ︸
4-times

,

| Irr3′(NG (P))| = 9
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Modular representation theory

(K,O,F) p-modular system

O complete discrete evaluation ring, such that

K = Frak(O) field of characteristic 0

F := O/ J(O) a field with char(F) = p

O

K F
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Blocks of finite groups
FG not semisimple, whenever p | |G |

FG = B1 ⊕ · · · ⊕ Bs

indecomposable F[G × G ]-modules
called p-blocks of G
Bl(G ) = {B1, . . . ,Bs}

Via

OG

KG FG

Irr(G ) = Irr(KG ) is partitioned into subsets associated to p-blocks , i.e.

Irr(G ) =
.⋃

B∈Bl(G)

Irr(B).
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Defect group and Brauer correspondent of a block

Let B be a p-block of G .

Local data of B :

defect group D of B, p-subgroup of G

the p-block b of NG (D) with defect group D, such that bG = B.
This block is called Brauer correspondent of B.

Definition :

Let χ ∈ Irr(B). The height of χ, denoted by ht(χ) is defined by

pht(χ) =
χ(1)p|D|
|G |p

.

Note ht(χ) ≥ 0.

Always: Irr0(B) := {χ ∈ Irr(B) | ht(χ) = 0} 6= ∅
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Blocks with p′-characters

Lemma

Let P be a Sylow p-subgroup of G and Bl(G | P) the set of p-blocks with
defect group P. Then

Irrp′(G ) =
.⋃

B∈Bl(G |P)

Irr0(B).

Proof.

Let χ ∈ Irrp′(G ) and B ∈ Bl(G ) be the block with χ ∈ Irr(B).
Then P is the defect group of B.
Hence χ ∈ Irr0(B).
On the other hand Irr0(B) ⊆ Irrp′(G ).
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Example: 5-blocks of G = SL4(F2)

Character Degrees in Irr(G ) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

SL4(F2) has seven 5-blocks:

there are two 5-blocks B1 and B2 that have a Sylow 5-subgroup of
SL4(F2) as defect group

every other block contains exactly one character and has 1 as defect
group

All characters have height 0.

Note: Irr5′(G ) = Irr0(B1) ∪ Irr0(B2).
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Example: 2-blocks of G = SL4(F2)

SL4(F2) has two 2-blocks:

B1 has a Sylow 2-subgroup of SL4(F2) as defect group

degree 1 7 14 20 21 21 21 28 35 45 45 56 70
height 0 0 1 1 0 0 0 2 0 0 0 2 1

B2 has the trivial group as defect group and
degree 64
height 0

Note: Irr2′(G ) = Irr0(B1).
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Alperin-McKay Conjecture:

Alperin-McKay conjecture (1975)

Let G be a finite group, B a p-block of G and b the Brauer correspondent
of B. Then

| Irr0(B)| = | Irr0(b)|.

known for p-solvable groups and various specific blocks or groups
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Alperin-McKay conjecture for a 5-block of G = SL4(F2)
Recall: The 5-block B1

character degrees in Irr(B1) 1 14 21 56 64
height 0 0 0 0 0

| Irr0(B1)| = 5

B1 has a Sylow 5-subgroup P of SL4(F2) as defect group

Brauer correspondent b1 of B1 is a block of NG (P),

NG (P) ∼= F×16 o Gal(F16 : F2)

character degrees in Irr(b1) 1 1 1 1 4
height 0 0 0 0 0

| Irr0(b1)| = 5

15
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Alperin-McKay conj. for another 5-block of G = SL4(F2)

Recall: The 5-blocks B2

character degrees in Irr(B2) 7 21 56 64
height 0 0 0 0

| Irr0(B2)| = 4

B2 has a Sylow 5-subgroup P of SL4(F2) as defect group

Brauer correspondent b2 of B2, block of NG (P):

character degrees in Irr(b2) 2 2 4 4
height 0 0 0 0

| Irr0(b2)| = 4

Note Irr5′(G ) = Irr0(B1) ∪ Irr0(B2) and Irr5′(NG (P)) = Irr0(b1) ∪ Irr0(b2).
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Alperin-McKay conjecture implies the McKay conjecture

Proof.

Irrp′(G ) =
.⋃

B∈Bl(G |P)

Irr0(B),

where Bl(G | P) is the set of p-blocks of G with defect group P,
Alperin-McKay for B:

| Irr0(B)| = | Irr0(b)|,

where b is the Brauer correspondent of B, a p-block of NG (P) with defect
group P

Irrp′(NG (P)) =
.⋃

b∈Bl(NG (P)|P)

Irr0(b),

where Bl(G | P) is the set of p-blocks of NG (P) with defect group P

| Irrp′(G )| = | Irrp′(NG (P))|.

17



Alperin-McKay conjecture implies the McKay conjecture

Proof.

Irrp′(G ) =
.⋃

B∈Bl(G |P)

Irr0(B),

where Bl(G | P) is the set of p-blocks of G with defect group P,
Alperin-McKay for B:

| Irr0(B)| = | Irr0(b)|,

where b is the Brauer correspondent of B, a p-block of NG (P) with defect
group P

Irrp′(NG (P)) =
.⋃

b∈Bl(NG (P)|P)

Irr0(b),

where Bl(G | P) is the set of p-blocks of NG (P) with defect group P

| Irrp′(G )| = | Irrp′(NG (P))|.

17



Alperin-McKay conjecture implies the McKay conjecture

Proof.

Irrp′(G ) =
.⋃

B∈Bl(G |P)

Irr0(B),

where Bl(G | P) is the set of p-blocks of G with defect group P,
Alperin-McKay for B:

| Irr0(B)| = | Irr0(b)|,

where b is the Brauer correspondent of B, a p-block of NG (P) with defect
group P

Irrp′(NG (P)) =
.⋃

b∈Bl(NG (P)|P)

Irr0(b),

where Bl(G | P) is the set of p-blocks of NG (P) with defect group P

| Irrp′(G )| = | Irrp′(NG (P))|.

17



Alperin-McKay conjecture implies the McKay conjecture

Proof.

Irrp′(G ) =
.⋃

B∈Bl(G |P)

Irr0(B),

where Bl(G | P) is the set of p-blocks of G with defect group P,
Alperin-McKay for B:

| Irr0(B)| = | Irr0(b)|,

where b is the Brauer correspondent of B, a p-block of NG (P) with defect
group P

Irrp′(NG (P)) =
.⋃

b∈Bl(NG (P)|P)

Irr0(b),

where Bl(G | P) is the set of p-blocks of NG (P) with defect group P

| Irrp′(G )| = | Irrp′(NG (P))|.

17



Alperin-McKay conjecture implies the McKay conjecture

Proof.

Irrp′(G ) =
.⋃

B∈Bl(G |P)

Irr0(B),

where Bl(G | P) is the set of p-blocks of G with defect group P,
Alperin-McKay for B:

| Irr0(B)| = | Irr0(b)|,

where b is the Brauer correspondent of B, a p-block of NG (P) with defect
group P

Irrp′(NG (P)) =
.⋃

b∈Bl(NG (P)|P)

Irr0(b),

where Bl(G | P) is the set of p-blocks of NG (P) with defect group P

| Irrp′(G )| = | Irrp′(NG (P))|.

17



Alperin weight conjecture

Definition

A p-weight of G is a pair (Q, ψ), where

Q ≤ G is a p-group, and

ψ ∈ Irr(NG (Q)/Q) with ψ(1)p = |NG (Q)/Q|p.

Then (Q, ψ) is called a p-weight of a block bG , if ψ as character of
NG (Q) belongs to b ∈ Bl(NG (P)). (bG is a p-block of G given by
induction of b.)

Alperin weight conjecture (1984)

Let B ∈ Bl(G ).

1 | IBr(G )| = #{G -conjugacy class of p-weights of G}.
2 | IBr(B)| = #{G -conjugacy class of p-weights of B}.
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Alperin weight conjecture for G := SL4(F2) and p = 2

Recall: SL4(F2) has two 2-blocks, B1 and B2

B2 has defect 1 and only one Brauer character.
Then (1, χ) is the unique 2-weight of B2, where χ ∈ Irr(B2).

B1 has 7 Brauer characters
2-weights of B1: (Op(M), StL),
where M is some parabolic subgroup of SL4(F2), L an associated Levi
subgroup and StL the Steinberg character of L. There are 7 such
2-weights of B1.
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Brauer’s height zero conjecture

Brauer’s height zero conjecture (1955)

Let B be a p-block of G and D its defect group.
Every character of B has height zero if and only if D is abelian.

Example: G is a p-group

Then there is only one p-block B of G .
G is the defect group of B.
The height zero characters of B are the p′-characters of G .
All characters of G have p′-degree if and only if G is abelian.
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Example: Brauer’s height zero conjecture for SL4(F2)

SL4(F2) has two 2-blocks:

B1 has a Sylow 2-subgroup P as defect group, where

P = {upper unitriangular matrices}.

degree 1 7 14 20 21 21 21 28 35 45 45 56 70
height 0 0 1 1 0 0 0 2 0 0 0 2 1

The defect group is non-abelian and Irr0(B1) 6= Irr(B1).

B2 has the trivial group as defect group and Irr(B2) = Irr0(B2).

degree 64
height 0

21
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Reductions and Results

Theorem

All mentioned conjectures are true for p-solvable groups

A group is p-solvable if all its simple composition factors are cyclic or a
p′-group.

Furthermore results are known for specific blocks and families of groups.

Knowledge on nonabelian quasisimple groups seems missing.
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One direction of Brauer’s height zero conjecture

Definition

A group is quasisimple if G = [G ,G ] and G/Z(G ) is simple.

Theorem (HZC1) (Berger-Knörr, Kessar-Malle)

Let G be a finite group, B ∈ Bl(G ) and D a defect group. Then

D is abelian⇒ Irr0(B) = Irr(B).

History of the proof:

Berger-Knörr (1988): ”HZC1” is true, if it holds for all quasisimple groups.

Kessar-Malle (2011): ”HSC1” holds for all quasisimple groups (based on
work of Olsson, Cabanes-Enguehard, Enguehard, Bonnafé-Rouquier)
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Reductions - McKay and Alperin weight conjecture

Theorem (Isaacs-Malle-Navarro, 2007)

The McKay conjecture is true if all quasisimple groups are McKay-good.

Theorem (Navarro-Tiep, 2010)

The non-blockwise version of Alperin’s weight conjecture is true if all
quasisimple group are AWC(Alperin-weight)-good.

Both proven using induction on |G | and relative version of those
conjectures.
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Reductions - with blocks

Theorem (S., 2011)

The Alperin-McKay conjecture is true if all quasisimple groups are
AM-good.

Theorem (S., 2013)

The blockwise version of Alperin’s weight conjecture is true if all
quasisimple groups are BAW(blockwise Alperin weight)-good.

Again proven by induction on |G | and relative version of those conjectures.
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When is a quasisimple group good?

Philosophy:

There is a correspondence between the considered sets of characters
that is equivariant with respect to automorphisms of the group
stabilizing those sets.

Characters χ and χ′ associated to each other via this correspondence
have the same ”Clifford-theory”, i.e. after inducing χ and χ′ to some
groups they decompose in the same way.
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Let p be a prime, Ŝ a quasisimple group and B a block of Ŝ .

Definition

The block B is AM-good, if the defect group of B is central.
The block B is AM-good, if for the non-central defect group D of B

1 there exists a group M with

M is stable under Aut(Ŝ)B,D and N
Ŝ

(D) ≤ M � Ŝ

2 for b ∈ Bl(M) with bŜ = B, there exists a Aut(Ŝ)B,D-equivariant
bijection

Ω : Irr0(B) −→ Irr0(b).
3 for every faithful χ ∈ Irr0(B) there exists a group A such that

I Ŝ C A and A/CA(Ŝ) ∼= Aut(Ŝ)χ
I χ has an extension χ̃ ∈ Irr(A),
I Ω(χ) has an extension χ̃′ ∈ Irr(M NA(D)),
I ResA

CA(Ŝ)
(χ̃) and Res

M NA(D)

CA(Ŝ)
(χ̃′) are multiples of the same irreducible

character
I ResAJ (χ̃) and Res

M NA(D)
M NJ (D)(χ̃′) lie in blocks with the same Brauer

correspondent for every group J with Ŝ ≤ J ≤ A
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I χ has an extension χ̃ ∈ Irr(A),
I Ω(χ) has an extension χ̃′ ∈ Irr(M NA(D)),
I ResA

CA(Ŝ)
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I χ has an extension χ̃ ∈ Irr(A),
I Ω(χ) has an extension χ̃′ ∈ Irr(M NA(D)),
I ResA

CA(Ŝ)
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Ŝ
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(χ̃) and Res

M NA(D)

CA(Ŝ)
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Ŝ
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I Ŝ C A and A/CA(Ŝ) ∼= Aut(Ŝ)χ
I χ has an extension χ̃ ∈ Irr(A),
I Ω(χ) has an extension χ̃′ ∈ Irr(M NA(D)),
I ResA

CA(Ŝ)
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AM-good and BAW-good groups

Definition

A quasisimple group Ŝ is AM-good, if all blocks B of Ŝ are AM-good, i.e.
the above strengthened equivariant version of the Alperin-McKay
conjecture holds for B.

Definition

A quasisimple group Ŝ is BAW-good, if all blocks B of Ŝ are BAW-good,
i.e. an certain strengthened equivariant version of the blockwise Alperin
weight conjecture holds for B.
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the above strengthened equivariant version of the Alperin-McKay
conjecture holds for B.

Definition
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SL4(F2) is AM-good for p = 2

Aut(SL4(F2)) = SL4(F2)o 〈Γ〉

Here Γ is given by x 7→ J(x⊥)−1J, where J corresponds to the longest
element of Sn.

Take

1 B1 the 2-block with maximal defect,

2 b1 be the Brauer correspondent of B1, the principal block of P.
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SL4(F2) is AM-good for p = 2

Steps to check:

| Irr0(B1)| = | Irr0(b1)|
Γ fixes in Irr0(b1) four characters

Γ fixes in Irr0(B1) four characters

Hence there exists a Γ-equivariant bijection Ω : Irr0(B1) −→ Irr0(b1).

Let χ ∈ Irr0(B1) and Ω(χ) ∈ Irr0(b1).

The last condition is trivial if χ is not Γ-invariant.

Otherwise let A := SL4(F2)o 〈Γ〉. Hence A/ SL4(F2) is cyclic

Note that χ extends to A and Ω(χ) extends to P o 〈Γ〉. Hence the last
condition is satisfied here as well.

B1 is AM-good for 2.

Blocks with trivial defect group are always AM-good.
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Idea for the proof and behind the inductive conditions - I

Projective representation

We call P : G → GLn(C) a projective representations, if the induced
map G → PGLn(C) is a group morphism.

G GLn(C)

PGLn(C)

P

For a projective representation P there exists a map α : G × G → C∗ with

P(g)P(g ′) = α(g , g ′)P(gg ′) for every g , g ′ ∈ G .

This map α : G × G → C∗ is the factor set of P.
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Idea for the proof and behind the inductive conditions - II

Suppose N C G and θ ∈ Irr(N).

Extending to projective representation of Gθ:
We find a projective representation P of some Gθ, such that P|N is a
representation affording θ and the factor set of P is constant on
N × N-cosets.

Tensoring with projective representation of Gθ/N:
We can tensor P with a (irreducible) projective representation of Gθ/N
whose factor set is inverse to the one of P. Then P ⊗Q is a
representation of Gθ.

Induction of character to G :
Let ψ be a character afforded by P ⊗Q then IndG

Gθ
(ψ) is irreducible.

All constituents of IndG
N(θ) are obtained that way.
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Implications of AM-Goodness

Theorem (Navarro-S.)

Let B ∈ Bl(G ) with defect group D and b ∈ Bl(NG (D)) the Brauer
correspondent of b. Suppose that G is a normal subgroup of A. Assume
that all non-abelian simple groups involved in G and their extensions are
AM-good.
There exists an NA(D)-equivariant bijection

Ω : Irr0(B) −→ Irr0(b),
such that for every θ ∈ Irr0(B) and θ′ := Ω(θ) there is a bijection

{ constituents of IndA
G (θ)} −→ { constituents of Ind

M NA(D)
M (θ′)}.
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What about Brauer’s height zero conjecture?

Theorem (Navarro-Tiep, 2012)

Let θ ∈ Irr(Z(G )). If all irreducible constituents of IndG
Z(G)(θ) have

p′-degree, then G/Z(G ) has an abelian Sylow p-subgroup.

Together with Murai’s statement:

Theorem (Navarro-S.)

Let G be a finite group. Assume that

BHZ holds for all quasisimple groups,

all simple groups involved in G and their central extensions are
AM-good.

Then BHZ, especially ”BHZ ⇒” holds for G .

”BHZ ⇒”: If all characters of B have height zero, then the defect group
of B is abelian.
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Results on quasisimple groups

Theorem

The central extensions of the following simple groups are good (=
AM-good and BAW-good):

sporadic groups (An-Dietrich, Breuer, Malle) (few exceptions)

alternating groups (Alperin-Fong, Malle, Olsson, S.)

simple groups of Lie type over Fq with p | q (Maslowski,
Navarro-Tiep, S.)

Sp6(2i ) (Schaeffer Fry)
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Open: groups of Lie type over Fq with p - q

Theorem (Malle, S., 2007)

Let Ŝ be a quasisimple group such that Ŝ/Z(Ŝ) is a simple group of Lie
type. Let p be a prime different from the characteristic of the field
underlying Ŝ and P a Sylow p-subgroup of Ŝ. Then there exists a group
N ≥ N

Ŝ
(P) and a bijection

Ω : Irrp′(Ŝ) −→ Irrp′(N)

Problem: Ω is given by parametrizing the sets with the same labels (but
labelling depends on choices!)
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Theorem (Cabanes-S., 2012)

1 Quasisimple groups of type 3D4, E8, F4, 2F4 and G2 are
McKay-good.

2 Let Ŝ be a quasisimple group of type 3D4 E8, F4 or G2. For ` ≥ 5
the blocks of Ŝ whose defect groups are Sylow p-subgroups are
BAW-good.

3 Let Ŝ be a quasisimple group of type of 3D4 E8, F4 or G2. For ` ≥ 7
the blocks of Ŝ whose defect groups are Sylow p-subgroups are
AM-good.

Theorem (Cabanes-S., 2013)

The groups SLn(q) and SUn(q) and their quotients are McKay-good.
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Challenges with Ŝ := SLn(Fq) (and p - q)

Automorphisms of SLn(Fq):

GLn(Fq) acts on SLn(Fq) by conjugation

graph automorphism Γ with g 7→ (g⊥)−1

Galois automorphisms of Fq induce automorphisms on SLn(Fq)

There is a torus T of SLn(Fq) such that NSLn(Fq)(T) plays the role of
N
Ŝ

(P) for a Sylow p-subgroup P.
Indirect proof of the McKay-goodness uses:

Special shape of stabilizers of characters (not every subgroup of
Aut(SLn(Fq)) occurs as the stabilizer of a character of SLn(Fq)
(proven by use of Kawanaka’s generalized Gelfand-Graev characters)

similar result on characters of NSLn(Fq)(T)

bijection between some characters of GLn(Fq) and NGLn(Fq)(T)
(using Jordan decomposition of characters and d-Harish-Chandra
theory)
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Corollary

Let Ŝ be a quasisimple quotient of SLn(q) and SUn(q). The blocks of Ŝ
whose defect groups are Sylow p-subgroups are AM-good.

Hope:

A key ingredient on GGGR’s is missing in other types, but some of the
results can be transferred to other types.
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Thank you!
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