# Reduction theorem for global/local conjectures on blocks of a finite group

Britta Späth

Annual conference of the DFG priority programme in representation theory, SPP 1388, March 2013

#### Central objects and notations:

- G a finite group
- $Irr(G) = \{ irreducible complex characters of G \}$ 
  - $\stackrel{1:1}{\leftrightarrow}$  {isomorphism classes of simple  $\mathbb{C}G$ -modules}
- p a prime
- $\mathbb{F}$  algebraically closed field of characteristic p
- $IBr(G) = \{ irreducible Brauer characters of G \}$ 
  - $\stackrel{\scriptstyle 1:1}{\leftrightarrow}$  {isomorphism classes of simple  $\mathbb{F}G$ -modules}

#### Central objects and notations:

Ga finite groupIrr(G)= {irreducible complex characters of G} $\stackrel{1:1}{\leftrightarrow}$  {isomorphism classes of simple  $\mathbb{C}G$ -modules}pa prime $\mathbb{F}$ algebraically closed field of characteristic pIBr(G)= {irreducible Brauer characters of G} $\stackrel{1:1}{\leftrightarrow}$  {isomorphism classes of simple  $\mathbb{F}G$ -modules}

Central objects and notations:

- G a finite group
- $Irr(G) = \{ irreducible complex characters of G \}$ 
  - $\stackrel{\scriptscriptstyle{\scriptstyle 1:1}}{\leftrightarrow} \{ {\sf isomorphism classes of simple } \mathbb{C}{G}{\sf -modules} \}$
- p a prime
- $\mathbb{F}$  algebraically closed field of characteristic p
- $IBr(G) = \{ irreducible Brauer characters of G \}$ 
  - $\stackrel{\scriptstyle 1:1}{\leftrightarrow}$  {isomorphism classes of simple  $\mathbb{F}G$ -modules}

Central objects and notations:

- G a finite group
- $Irr(G) = \{ irreducible complex characters of G \}$ 
  - $\stackrel{1:1}{\leftrightarrow} \{ \text{isomorphism classes of simple } \mathbb{C}G\text{-modules} \}$
- p a prime
- $\mathbb{F}$  algebraically closed field of characteristic p
- $IBr(G) = \{ irreducible Brauer characters of G \}$ 
  - $\stackrel{\scriptstyle 1:1}{\leftrightarrow}$  {isomorphism classes of simple  $\mathbb{F}G$ -modules}

Central objects and notations:

- G a finite group
- $Irr(G) = \{ irreducible complex characters of G \}$ 
  - $\stackrel{1:1}{\leftrightarrow} \{ \text{isomorphism classes of simple } \mathbb{C}G\text{-modules} \}$
- p a prime
- $\mathbb{F}$  algebraically closed field of characteristic p
- $IBr(G) = \{ irreducible Brauer characters of G \}$ 
  - $\stackrel{\scriptstyle 1:1}{\leftrightarrow}$  {isomorphism classes of simple  $\mathbb{F}G$ -modules}

Central objects and notations:

- G a finite group
- $Irr(G) = \{ irreducible complex characters of G \}$ 
  - $\stackrel{1:1}{\leftrightarrow} \{ \text{isomorphism classes of simple } \mathbb{C}G\text{-modules} \}$
- p a prime
- $\mathbb{F}$  algebraically closed field of characteristic p
- $IBr(G) = \{ irreducible Brauer characters of G \}$ 
  - $\stackrel{\scriptstyle{\scriptstyle{1:1}}}{\leftrightarrow}$  {isomorphism classes of simple  $\mathbb{F}G$ -modules}

Central objects and notations:

- G a finite group
- $Irr(G) = \{ irreducible complex characters of G \}$ 
  - $\stackrel{1:1}{\leftrightarrow} \{ \text{isomorphism classes of simple } \mathbb{C}G\text{-modules} \}$
- p a prime
- $\mathbb{F}$  algebraically closed field of characteristic p
- $IBr(G) = \{ irreducible Brauer characters of G \}$

 $\stackrel{::1}{\leftrightarrow} \{ \mathsf{isomorphism classes of simple } \mathbb{F}G\mathsf{-modules} \}$ 

Central objects and notations:

- G a finite group
- $Irr(G) = \{ irreducible complex characters of G \}$ 
  - $\stackrel{1:1}{\leftrightarrow} \{ \text{isomorphism classes of simple } \mathbb{C}G\text{-modules} \}$
- p a prime
- $\mathbb{F}$  algebraically closed field of characteristic p
- $IBr(G) = \{ irreducible Brauer characters of G \}$ 
  - $\stackrel{1:1}{\leftrightarrow} \{\text{isomorphism classes of simple } \mathbb{F}G\text{-modules}\}$

Central objects and notations:

- G a finite group
- $Irr(G) = \{ irreducible complex characters of G \}$ 
  - $\stackrel{1:1}{\leftrightarrow} \{ \text{isomorphism classes of simple } \mathbb{C}G\text{-modules} \}$
- p a prime
- $\mathbb{F}$  algebraically closed field of characteristic p
- $IBr(G) = \{ irreducible Brauer characters of G \}$ 
  - $\stackrel{1:1}{\leftrightarrow} \{\text{isomorphism classes of simple } \mathbb{F}G\text{-modules}\}$

- Using the classification of finite simple groups, strong statements on groups and their representations can be proven.
- The representations theory of *p*-solvable groups seems well-understood.
- Quasisimple groups have a rich geometric/combinatorial structure or are accessible via computer calculations.

- Using the classification of finite simple groups, strong statements on groups and their representations can be proven.
- The representations theory of *p*-solvable groups seems well-understood.
- Quasisimple groups have a rich geometric/combinatorial structure or are accessible via computer calculations.

- Using the classification of finite simple groups, strong statements on groups and their representations can be proven.
- The representations theory of *p*-solvable groups seems well-understood.
- Quasisimple groups have a rich geometric/combinatorial structure or are accessible via computer calculations.

- Using the classification of finite simple groups, strong statements on groups and their representations can be proven.
- The representations theory of *p*-solvable groups seems well-understood.
- Quasisimple groups have a rich geometric/combinatorial structure or are accessible via computer calculations.

- Using the classification of finite simple groups, strong statements on groups and their representations can be proven.
- The representations theory of *p*-solvable groups seems well-understood.
- Quasisimple groups have a rich geometric/combinatorial structure or are accessible via computer calculations.

```
We set \operatorname{Irr}_{p'}(G) := \{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\}.
```

McKay conjecture (1972)

Let  $P \in \operatorname{Syl}_p(G)$  a Sylow *p*-subgroup.

#### $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(\operatorname{N}_G(P))|.$

#### We set $\operatorname{Irr}_{p'}(G) := \{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\}.$

#### McKay conjecture (1972)

Let  $P \in Syl_p(G)$  a Sylow *p*-subgroup. Then

#### $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(\operatorname{N}_G(P))|.$

We set  $\operatorname{Irr}_{p'}(G) := \{ \chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1) \}.$ 

```
McKay conjecture (1972)
Let P \in Syl_p(G) a Sylow p-subgroup.
Then
```

$$|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|.$$

We set  $\operatorname{Irr}_{p'}(G) := \{ \chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1) \}.$ 

McKay conjecture (1972) Let  $P \in Syl_p(G)$  a Sylow *p*-subgroup. Then

$$|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|.$$

We set  $\operatorname{Irr}_{p'}(G) := \{ \chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1) \}.$ 

McKay conjecture (1972) Let  $P \in Syl_p(G)$  a Sylow *p*-subgroup. Then

$$|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|.$$

known for:

certain various families of groups, in general unproven

We set  $\operatorname{Irr}_{p'}(G) := \{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\}.$ 

McKay conjecture (1972) Let  $P \in Syl_p(G)$  a Sylow *p*-subgroup. Then

$$|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|.$$

We set  $\operatorname{Irr}_{p'}(G) := \{ \chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1) \}.$ 

McKay conjecture (1972) Let  $P \in Syl_p(G)$  a Sylow *p*-subgroup. Then

$$|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(\mathsf{N}_G(P))|.$$

Character Degrees in Irr(G) (with multiplicities):

 $|\operatorname{Irr}_{2'}(G)| = 8$ 

P = {upper unitriangular matrices} is a Sylow 2-subgroup

 $N_G(P) = \{ upper triangular matrices \}$ 

$$|\operatorname{Irr}_{2'}(\mathbb{N}_G(P))| = 8$$

Character Degrees in Irr(G) (with multiplicities):

 $1\ ,\ 7\ ,\ 14\ ,\ 20\ ,\ 21\ ,\ 21\ ,\ 21\ ,\ 28\ ,\ 35\ ,\ 45\ ,\ 45\ ,\ 56\ ,\ 64\ ,\ 70$ 

 $|\operatorname{Irr}_{2'}(G)| = 8$ 

P = {upper unitriangular matrices} is a Sylow 2-subgroup

 $N_G(P) = \{ upper triangular matrices \}$ 

$$|\operatorname{Irr}_{2'}(\operatorname{N}_{G}(P))| = 8$$

Character Degrees in Irr(G) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{2'}(G)| = 8$ 

P = {upper unitriangular matrices} is a Sylow 2-subgroup

 $N_G(P) = \{ upper triangular matrices \}$ 

$$|\operatorname{Irr}_{2'}(\mathsf{N}_G(P))| = 8$$

Character Degrees in Irr(G) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{2'}(G)| = 8$ 

P = {upper unitriangular matrices} is a Sylow 2-subgroup

 $N_G(P) = \{ upper triangular matrices \}$ 

$$|\operatorname{Irr}_{2'}(\mathbb{N}_G(P))| = 8$$

Character Degrees in Irr(G) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{2'}(G)| = 8$ 

 $P = {$ upper unitriangular matrices $}$  is a Sylow 2-subgroup

 $N_G(P) = \{ upper triangular matrices \}$ 

$$|\operatorname{Irr}_{2'}(\operatorname{N}_{G}(P))| = 8$$

Character Degrees in Irr(G) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{2'}(G)| = 8$ 

 $P = {$ upper unitriangular matrices $}$  is a Sylow 2-subgroup

 $N_G(P) = \{$ upper triangular matrices $\}$ 

$$|\operatorname{Irr}_{2'}(N_G(P))| = 8$$

Character Degrees in Irr(G) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{2'}(G)| = 8$ 

 $P = {$ upper unitriangular matrices $}$  is a Sylow 2-subgroup

 $N_G(P) = \{ upper triangular matrices \}$ 

Character Degrees in  $Irr(N_G(P))$  (with multiplicities):

$$\underbrace{1,\ldots,1}_{\text{8-times}},\underbrace{2,\ldots,2}_{\text{6-times}},4,4$$

 $|\operatorname{Irr}_{2'}(\operatorname{N}_G(P))| = 8$ 

Character Degrees in Irr(G) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{2'}(G)| = 8$ 

 $P = {$ upper unitriangular matrices $}$  is a Sylow 2-subgroup

 $N_G(P) = \{$ upper triangular matrices $\}$ 

Character Degrees in  $Irr(N_G(P))$  (with multiplicities):

$$1, \dots, 1, 2, \dots, 2, 4, 4$$

 $|\operatorname{Irr}_{2'}(\mathsf{N}_G(P))| = 8$ 

Character Degrees in Irr(G) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{2'}(G)| = 8$ 

 $P = {$ upper unitriangular matrices $}$  is a Sylow 2-subgroup

 $N_G(P) = \{$ upper triangular matrices $\}$ 

Character Degrees in  $Irr(N_G(P))$  (with multiplicities):

$$1, \dots, 1, 2, \dots, 2, 4, 4$$

 $|\operatorname{Irr}_{2'}(\mathsf{N}_G(P))| = 8$ 

Character Degrees in Irr(G) (with multiplicities):

$$|\operatorname{Irr}_{5'}(G)| = 9$$

A Sylow 5-subgroup P is isomorphic to  $\mathbb{Z}/5\mathbb{Z}$  and can be realised as a subgroup of the torus in  $SL_4(\mathbb{F}_{16})$ .

 $N_G(P)$  is isomorphic to  $\mathbb{F}_{16}^{\times} \rtimes \text{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ .

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{5'}(G)| = 9$ 

A Sylow 5-subgroup P is isomorphic to  $\mathbb{Z}/5\mathbb{Z}$  and can be realised as a subgroup of the torus in  $SL_4(\mathbb{F}_{16})$ .

 $N_G(P)$  is isomorphic to  $\mathbb{F}_{16}^{\times} \rtimes \text{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ .

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{5'}(G)| = 9$ 

A Sylow 5-subgroup P is isomorphic to  $\mathbb{Z}/5\mathbb{Z}$  and can be realised as a subgroup of the torus in  $SL_4(\mathbb{F}_{16})$ .

 $N_G(P)$  is isomorphic to  $\mathbb{F}_{16}^{\times} \rtimes \text{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ .

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{5'}(G)| = 9$ 

A Sylow 5-subgroup P is isomorphic to  $\mathbb{Z}/5\mathbb{Z}$  and can be realised as a subgroup of the torus in  $SL_4(\mathbb{F}_{16})$ .

 $N_G(P)$  is isomorphic to  $\mathbb{F}_{16}^{\times} \rtimes \text{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ .

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{5'}(G)| = 9$ 

A Sylow 5-subgroup P is isomorphic to  $\mathbb{Z}/5\mathbb{Z}$  and can be realised as a subgroup of the torus in  $SL_4(\mathbb{F}_{16})$ .

 $N_G(P)$  is isomorphic to  $\mathbb{F}_{16}^{\times} \rtimes \text{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ .
1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{5'}(G)| = 9$ 

A Sylow 5-subgroup P is isomorphic to  $\mathbb{Z}/5\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_{16}$ ).

 $N_G(P)$  is isomorphic to  $\mathbb{F}_{16}^{\times} \rtimes \text{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ .

Character Degrees in  $Irr(N_G(P))$ :

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{5'}(G)| = 9$ 

A Sylow 5-subgroup P is isomorphic to  $\mathbb{Z}/5\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_{16}$ ).

 $N_G(P)$  is isomorphic to  $\mathbb{F}_{16}^{\times} \rtimes \text{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ .

Character Degrees in  $Irr(N_G(P))$ :

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{5'}(G)| = 9$ 

A Sylow 5-subgroup P is isomorphic to  $\mathbb{Z}/5\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_{16}$ ).

 $N_G(P)$  is isomorphic to  $\mathbb{F}_{16}^{\times} \rtimes \text{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ .

Character Degrees in  $Irr(N_G(P))$ :

$$\underbrace{1,\ldots,1}_{4\text{-times}}, 2, 2, 4, 4, 4$$

 $|\operatorname{Irr}_{5'}(\operatorname{N}_G(P))| = 9$ 

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{5'}(G)| = 9$ 

A Sylow 5-subgroup P is isomorphic to  $\mathbb{Z}/5\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_{16}$ ).

 $N_G(P)$  is isomorphic to  $\mathbb{F}_{16}^{\times} \rtimes \text{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ .

Character Degrees in  $Irr(N_G(P))$ :

 $|\operatorname{Irr}_{5'}(\mathsf{N}_G(P))| = 9$ 

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{5'}(G)| = 9$ 

A Sylow 5-subgroup P is isomorphic to  $\mathbb{Z}/5\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_{16}$ ).

 $N_G(P)$  is isomorphic to  $\mathbb{F}_{16}^{\times} \rtimes \text{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ .

Character Degrees in  $Irr(N_G(P))$ :

 $|\operatorname{Irr}_{5'}(\mathsf{N}_G(P))| = 9$ 

 $1\ ,\ 7\ ,\ 14\ ,\ 20\ ,\ 21\ ,\ 21\ ,\ 21\ ,\ 28\ ,\ 35\ ,\ 45\ ,\ 45\ ,\ 56\ ,\ 64\ ,\ 70$ 

 $|\operatorname{Irr}_{3'}(G)| = 9$ 

A Sylow 3-subgroup *P* is isomorphic to  $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_4$ ).

 $N_G(P)$  is isomorphic to

 $((\mathbb{F}_4^{\times} \rtimes \operatorname{Gal}(\mathbb{F}_4 : \mathbb{F}_2)) \times (\mathbb{F}_4^{\times} \rtimes \operatorname{Gal}(\mathbb{F}_4 : \mathbb{F}_2))) \rtimes \mathbb{Z}/2\mathbb{Z}.$ 

$$|\operatorname{Irr}_{3'}(\mathsf{N}_G(P))| = 9$$

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{3'}(G)| = 9$ 

A Sylow 3-subgroup *P* is isomorphic to  $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_4$ ).

 $N_G(P)$  is isomorphic to

 $((\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2)) \times (\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2))) \rtimes \mathbb{Z}/2\mathbb{Z}.$ 

$$|\operatorname{Irr}_{3'}(\mathsf{N}_G(P))| = 9$$

 $1 \ , \ 7 \ , \ 14 \ , \ 20 \ , \ 21 \ , \ 21 \ , \ 21 \ , \ 28 \ , \ 35 \ , \ 45 \ , \ 45 \ , \ 56 \ , \ 64 \ , \ 70$ 

 $|\operatorname{Irr}_{3'}(G)| = 9$ 

A Sylow 3-subgroup P is isomorphic to  $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_4$ ).

 $N_G(P)$  is isomorphic to

 $((\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2)) \times (\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2))) \rtimes \mathbb{Z}/2\mathbb{Z}.$ 

$$|\operatorname{Irr}_{3'}(\mathsf{N}_G(P))| = 9$$

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{3'}(G)| = 9$ 

A Sylow 3-subgroup P is isomorphic to  $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$  and can be realised as a subgroup of the torus in  $SL_4(\mathbb{F}_4)$ .

 $N_G(P)$  is isomorphic to

 $((\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2)) \times (\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2))) \rtimes \mathbb{Z}/2\mathbb{Z}.$ 

$$|\operatorname{Irr}_{3'}(\mathsf{N}_G(P))| = 9$$

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{3'}(G)| = 9$ 

A Sylow 3-subgroup P is isomorphic to  $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_4$ ).

 $N_G(P)$  is isomorphic to

 $((\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2)) \times (\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2))) \rtimes \mathbb{Z}/2\mathbb{Z}.$ 

$$|\operatorname{Irr}_{3'}(\mathsf{N}_G(P))| = 9$$

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $|\operatorname{Irr}_{3'}(G)| = 9$ 

A Sylow 3-subgroup P is isomorphic to  $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_4$ ).

 $N_G(P)$  is isomorphic to

 $((\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4:\mathbb{F}_2)) \times (\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4:\mathbb{F}_2))) \rtimes \mathbb{Z}/2\mathbb{Z}.$ 

$$|\operatorname{Irr}_{3'}(\operatorname{N}_G(P))| = 9$$

 $|\operatorname{Irr}_{3'}(G)| = 9$ 

A Sylow 3-subgroup P is isomorphic to  $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_4$ ).

 $N_G(P)$  is isomorphic to

 $((\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2)) \times (\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2))) \rtimes \mathbb{Z}/2\mathbb{Z}.$ 

Character Degrees in  $Irr(N_G(P))$  (with multiplicities):



 $|\operatorname{Irr}_{3'}(\mathbb{N}_G(P))| = 9$ 

 $|\operatorname{Irr}_{3'}(G)| = 9$ 

A Sylow 3-subgroup P is isomorphic to  $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$  and can be realised as a subgroup of the torus in SL<sub>4</sub>( $\mathbb{F}_4$ ).

 $N_G(P)$  is isomorphic to

 $((\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2)) \times (\mathbb{F}_4^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_4 : \mathbb{F}_2))) \rtimes \mathbb{Z}/2\mathbb{Z}.$ 

Character Degrees in  $Irr(N_G(P))$  (with multiplicities):



 $|\operatorname{Irr}_{3'}(\mathsf{N}_G(P))| = 9$ 

r) *p*-modular system

complete discrete evaluation ring, such that

- = Frak(O) field of characteristic 0
- $\mathbb{F}:=\mathcal{O}/\operatorname{J}(\mathcal{O})$  a field with  $\operatorname{char}(\mathbb{F})=p$



## $(\mathcal{K},\mathcal{O},\mathbb{F})$

#### *p*-modular system

complete discrete evaluation ring, such that = Frak(O) field of characteristic 0 = O/J(O) a field with char( $\mathbb{F}$ ) = p



# $\begin{array}{ll} (\mathcal{K}, \mathcal{O}, \mathbb{F}) & p \text{-modular system} \\ \mathcal{O} & \text{complete discrete evaluation ring, such that} \\ \mathcal{K} = \mathrm{Frak}(\mathcal{O}) & \text{field of characteristic 0} \\ \mathbb{F} := \mathcal{O}/\mathsf{J}(\mathcal{O}) & \text{a field with char}(\mathbb{F}) = p \end{array}$



 $(\mathcal{K}, \mathcal{O}, \mathbb{F})$  *p*-modular system

 $\mathcal{O}$ 

complete discrete evaluation ring, such that

 $\mathcal{K} = \mathsf{Frak}(\mathcal{O})$  field of characteristic 0

 $:= \mathcal{O} / \mathsf{J}(\mathcal{O})$  a field with  $\mathsf{char}(\mathbb{F}) = p$ 



 $(\mathcal{K}, \mathcal{O}, \mathbb{F})$  *p*-modular system

 $\mathcal{O}$ 

complete discrete evaluation ring, such that

- $\mathcal{K} = \mathsf{Frak}(\mathcal{O})$  field of characteristic 0
- $\mathbb{F}:=\mathcal{O}/\operatorname{\mathsf{J}}(\mathcal{O})$  a field with  $\operatorname{char}(\mathbb{F})=p$



 $(\mathcal{K}, \mathcal{O}, \mathbb{F})$  *p*-modular system

 $\mathcal{O}$ 

complete discrete evaluation ring, such that

- $\mathcal{K} = \mathsf{Frak}(\mathcal{O})$  field of characteristic 0
- $\mathbb{F}:=\mathcal{O}/\operatorname{\mathsf{J}}(\mathcal{O})$  a field with  $\operatorname{char}(\mathbb{F})=p$



•  $\mathbb{F}G$  not semisimple, whenever  $p \mid |G|$ 

$$\mathbb{F}G = B_1 \oplus \cdots \oplus B_s$$

• 
$$Bl(G) = \{B_1, \ldots, B_s\}$$

Via



$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B).$$

•  $\mathbb{F}G$  not semisimple, whenever  $p \mid |G|$ 

 $\mathbb{F}G = B_1 \oplus \cdots \oplus B_s$ 

- indecomposable 𝔽[𝒪 × 𝒪]-modules called p-blocks of 𝒪
- $\mathsf{Bl}(G) = \{B_1, \ldots, B_s\}$

Via



$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B).$$

•  $\mathbb{F}G$  not semisimple, whenever  $p \mid |G|$  $\longrightarrow \mathbb{F}G = B_1 \oplus \cdots \oplus B_s$ 

• 
$$\mathsf{Bl}(G) = \{B_1, \ldots, B_s\}$$

Via



$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B).$$

•  $\mathbb{F}G$  not semisimple, whenever  $p \mid |G|$ 

$$\longrightarrow \mathbb{F}G = B_1 \oplus \cdots \oplus B_s$$

indecomposable 𝔅[𝔅 × 𝔅]-modules <sup>|</sup> − called *p*-blocks of 𝔅

• 
$$\mathsf{Bl}(G) = \{B_1, \ldots, B_s\}$$

Via



$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B).$$

•  $\mathbb{F}G$  not semisimple, whenever  $p \mid |G|$ 

$$\longrightarrow \mathbb{F}G = B_1 \oplus \cdots \oplus B_s$$

- indecomposable 𝔅[𝔅 × 𝔅]-modules <sup>|</sup> − called *p*-blocks of 𝔅
- $Bl(G) = \{B_1, ..., B_s\}$

Via



$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B).$$

•  $\mathbb{F}G$  not semisimple, whenever  $p \mid |G|$ 

$$\longrightarrow \mathbb{F}G = B_1 \oplus \cdots \oplus B_s$$

- indecomposable 𝔅[𝔅 × 𝔅]-modules <sup>|</sup> − called *p*-blocks of 𝔅
- $Bl(G) = \{B_1, ..., B_s\}$

## Via



$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B).$$

•  $\mathbb{F}G$  not semisimple, whenever  $p \mid |G|$ 

$$\longrightarrow \mathbb{F}G = B_1 \oplus \cdots \oplus B_s$$

- indecomposable 𝔅[𝔅 × 𝔅]-modules <sup>↑</sup> called *p*-blocks of 𝔅
- $Bl(G) = \{B_1, ..., B_s\}$

Via



$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B).$$

•  $\mathbb{F}G$  not semisimple, whenever  $p \mid |G|$ 

$$\longrightarrow \mathbb{F}G = B_1 \oplus \cdots \oplus B_s$$

- indecomposable 𝔅[𝔅 × 𝔅]-modules <sup>|</sup> − called *p*-blocks of 𝔅
- $Bl(G) = \{B_1, ..., B_s\}$

Via



$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B).$$

## Defect group and Brauer correspondent of a block Let B be a p-block of G.

#### Local data of *B*:

- defect group D of B, p-subgroup of G
- the p-block b of N<sub>G</sub>(D) with defect group D, such that b<sup>G</sup> = B.
  This block is called Braner correspondent of B.

#### Definition :

$$p^{\mathsf{ht}(\chi)} = \frac{\chi(1)_p |D|}{|G|_p}$$

- Note  $ht(\chi) \ge 0$ .
- Always:  $Irr_0(B) := \{\chi \in Irr(B) \mid ht(\chi) = 0\} \neq \emptyset$

Let B be a p-block of G.

#### Local data of *B*:

- defect group D of B, p-subgroup of G
- the *p*-block *b* of N<sub>G</sub>(D) with defect group D, such that b<sup>G</sup> = B.
  This block is called Brauer correspondent of B.

## Definition :

$$p^{\mathsf{ht}(\chi)} = \frac{\chi(1)_P |D|}{|G|_P}$$

- Note  $ht(\chi) \ge 0$ .
- Always:  $Irr_0(B) := \{\chi \in Irr(B) \mid ht(\chi) = 0\} \neq \emptyset$

Let B be a p-block of G.

#### Local data of *B*:

#### • defect group D of B, p-subgroup of G

the *p*-block *b* of N<sub>G</sub>(D) with defect group D, such that b<sup>G</sup> = B.
 This block is called Brauer correspondent of B.

## Definition :

$$p^{\mathsf{ht}(\chi)} = \frac{\chi(1)_P |D|}{|G|_P}$$

- Note  $ht(\chi) \ge 0$ .
- Always:  $Irr_0(B) := \{\chi \in Irr(B) \mid ht(\chi) = 0\} \neq \emptyset$

Let B be a p-block of G.

#### Local data of B:

- defect group D of B, p-subgroup of G
- the *p*-block *b* of N<sub>G</sub>(D) with defect group D, such that b<sup>G</sup> = B.
  This block is called Brauer correspondent of B.

#### Definition :

$$p^{\mathsf{ht}(\chi)} = rac{\chi(1)_P |D|}{|G|_P}$$

- Note  $ht(\chi) \ge 0$ .
- Always:  $Irr_0(B) := \{\chi \in Irr(B) \mid ht(\chi) = 0\} \neq \emptyset$

Let B be a p-block of G.

#### Local data of B:

- defect group D of B, p-subgroup of G
- the *p*-block *b* of  $N_G(D)$  with defect group *D*, such that  $b^G = B$ . This block is called **Brauer correspondent of** *B*.

#### Definition :

Let  $\chi \in Irr(B)$ . The height of  $\chi$ , denoted by  $ht(\chi)$  is defined by

 $p^{\mathsf{ht}(\chi)} = rac{\chi(1)_P |D|}{|G|_P}$ 

- Note  $ht(\chi) \ge 0$ .
- Always:  $Irr_0(B) := \{\chi \in Irr(B) \mid ht(\chi) = 0\} \neq \emptyset$

Let B be a p-block of G.

#### Local data of B:

- defect group D of B, p-subgroup of G
- the *p*-block *b* of  $N_G(D)$  with defect group *D*, such that  $b^G = B$ . This block is called **Brauer correspondent of** *B*.

#### Definition :

$$p^{\mathsf{ht}(\chi)} = \frac{\chi(1)_p |D|}{|G|_p}.$$

- Note  $ht(\chi) \ge 0$ .
- Always:  $Irr_0(B) := \{\chi \in Irr(B) \mid ht(\chi) = 0\} \neq \emptyset$

Let B be a p-block of G.

#### Local data of B:

- defect group D of B, p-subgroup of G
- the *p*-block *b* of N<sub>G</sub>(D) with defect group D, such that b<sup>G</sup> = B.
  This block is called Brauer correspondent of B.

#### Definition :

$$p^{\mathsf{ht}(\chi)} = \frac{\chi(1)_p |D|}{|G|_p}.$$

- Note  $ht(\chi) \ge 0$ .
- Always:  $Irr_0(B) := \{\chi \in Irr(B) \mid ht(\chi) = 0\} \neq \emptyset$

Let B be a p-block of G.

#### Local data of B:

- defect group D of B, p-subgroup of G
- the *p*-block *b* of N<sub>G</sub>(D) with defect group D, such that b<sup>G</sup> = B.
  This block is called Brauer correspondent of B.

#### Definition :

$$p^{\mathsf{ht}(\chi)} = \frac{\chi(1)_p |D|}{|G|_p}.$$

- Note ht(χ) ≥ 0.
- Always:  $Irr_0(B) := \{\chi \in Irr(B) \mid ht(\chi) = 0\} \neq \emptyset$

# Blocks with p'-characters

#### Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with defect group P. Then

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B).$$

#### Proof.

Let  $\chi \in \operatorname{Irr}_{p'}(G)$  and  $B \in \operatorname{Bl}(G)$  be the block with  $\chi \in \operatorname{Irr}(B)$ . Then P is the defect group of B. Hence  $\chi \in \operatorname{Irr}_0(B)$ . On the other hand  $\operatorname{Irr}_0(B) \subseteq \operatorname{Irr}_{p'}(G)$ .
#### Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with defect group P. Then

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B).$$

#### Proof.

Let  $\chi \in \operatorname{Irr}_{p'}(G)$  and  $B \in \operatorname{Bl}(G)$  be the block with  $\chi \in \operatorname{Irr}(B)$ . Then P is the defect group of B. Hence  $\chi \in \operatorname{Irr}_0(B)$ . On the other hand  $\operatorname{Irr}_0(B) \subseteq \operatorname{Irr}_{p'}(G)$ .

#### Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with defect group P. Then

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B).$$

#### Proof.

#### Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with defect group P. Then

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B).$$

#### Proof.

#### Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with defect group P. Then

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B).$$

#### Proof.

#### Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with defect group P. Then

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B).$$

#### Proof.

#### Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with defect group P. Then

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B).$$

#### Proof.

Character Degrees in Irr(G) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

 $SL_4(\mathbb{F}_2)$  has seven 5-blocks:

- there are two 5-blocks  $B_1$  and  $B_2$  that have a Sylow 5-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group
- every other block contains exactly one character and has 1 as defect group

All characters have height 0.

Character Degrees in Irr(G) (with multiplicities):

1 , 7 , 14 , 20 , 21 , 21 , 21 , 28 , 35 , 45 , 45 , 56 , 64 , 70

#### $SL_4(\mathbb{F}_2)$ has seven 5-blocks:

- there are two 5-blocks  $B_1$  and  $B_2$  that have a Sylow 5-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group
- every other block contains exactly one character and has 1 as defect group

All characters have height 0.

Character Degrees in Irr(G) (with multiplicities):

**1** , **7** , **14** , 20 , **21** , **21** , **21** , **28** , **35** , **45** , **45** , **56** , **64** , **7**0

 $SL_4(\mathbb{F}_2)$  has seven 5-blocks:

• there are two 5-blocks  $B_1$  and  $B_2$  that have a Sylow 5-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group

 every other block contains exactly one character and has 1 as defect group

All characters have height 0.

Character Degrees in Irr(G) (with multiplicities):

**1** , **7** , **14** , 20 , **21** , **21** , **21** , **28** , **35** , **45** , **45** , **56** , **64** , **7**0

 $SL_4(\mathbb{F}_2)$  has seven 5-blocks:

- there are two 5-blocks  $B_1$  and  $B_2$  that have a Sylow 5-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group
- every other block contains exactly one character and has 1 as defect group

All characters have height 0.

Character Degrees in Irr(G) (with multiplicities):

**1** , **7** , **14** , 20 , **21** , **21** , **21** , **28** , **35** , **45** , **45** , **56** , **64** , **7**0

 $SL_4(\mathbb{F}_2)$  has seven 5-blocks:

- there are two 5-blocks  $B_1$  and  $B_2$  that have a Sylow 5-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group
- every other block contains exactly one character and has 1 as defect group

All characters have height 0.

Character Degrees in Irr(G) (with multiplicities):

**1** , **7** , **14** , 20 , **21** , **21** , **21** , **28** , **35** , **45** , **45** , **56** , **64** , **7**0

 $SL_4(\mathbb{F}_2)$  has seven 5-blocks:

- there are two 5-blocks  $B_1$  and  $B_2$  that have a Sylow 5-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group
- every other block contains exactly one character and has 1 as defect group

All characters have height 0.

#### $SL_4(\mathbb{F}_2)$ has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group

#### • $B_2$ has the trivial group as defect group and

degree ( height

#### $SL_4(\mathbb{F}_2)$ has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group

| degre<br>heigh | e<br>t | 1<br>0 | 7 14<br>0 1 | 20<br>1 | 21<br>0 | 21<br>0 | 21<br>0 | 28<br>2 | 35<br>0 | 45<br>0 | 45<br>0 | 56<br>2 | 70<br>1 |
|----------------|--------|--------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                | has    | the    | trivial     | group   | as      | defect  | group   | and     |         |         |         |         |         |
|                |        |        |             |         |         |         |         |         |         |         |         |         |         |

#### $SL_4(\mathbb{F}_2)$ has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group

|   | degree<br>height | e 1<br>0 |     | 7<br>0 | 14<br>1 | 20<br>1 | 21<br>0 | 21<br>0 | 21<br>0 | 28<br>2 | <mark>35</mark><br>0 | <mark>45</mark><br>0 | <mark>45</mark><br>0 | 56<br>2 | 70<br>1 |
|---|------------------|----------|-----|--------|---------|---------|---------|---------|---------|---------|----------------------|----------------------|----------------------|---------|---------|
| • |                  |          | the | trivi  | al g    | group   | as      | defect  | group   | and     |                      |                      |                      |         |         |
|   |                  |          |     |        |         |         |         |         |         |         |                      |                      |                      |         |         |

#### $SL_4(\mathbb{F}_2)$ has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group

| degree | 1 | 7 | 14 | 20 | 21 | 21 | 21 | 28 | 35 | 45 | 45 | 56 | 70 |
|--------|---|---|----|----|----|----|----|----|----|----|----|----|----|
| height | 0 | 0 | 1  | 1  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 2  | 1  |

•  $B_2$  has the trivial group as defect group and

degree 6 height 0

 $SL_4(\mathbb{F}_2)$  has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group

 $SL_4(\mathbb{F}_2)$  has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup of  $SL_4(\mathbb{F}_2)$  as defect group

### Alperin-McKay conjecture (1975)

Let G be a finite group, B a p-block of G and b the Brauer correspondent of B. Then

 $|\operatorname{Irr}_0(B)| = |\operatorname{Irr}_0(b)|.$ 

### Alperin-McKay conjecture (1975)

Let G be a finite group, B a p-block of G and b the Brauer correspondent of B. Then

 $|\operatorname{Irr}_0(B)| = |\operatorname{Irr}_0(b)|.$ 

### Alperin-McKay conjecture (1975)

Let G be a finite group, B a p-block of G and b the Brauer correspondent of B. Then

 $|\operatorname{Irr}_0(B)| = |\operatorname{Irr}_0(b)|.$ 

### Alperin-McKay conjecture (1975)

Let G be a finite group, B a p-block of G and b the Brauer correspondent of B. Then

 $|\operatorname{Irr}_0(B)| = |\operatorname{Irr}_0(b)|.$ 

### Alperin-McKay conjecture (1975)

Let G be a finite group, B a p-block of G and b the Brauer correspondent of B. Then

 $|\operatorname{Irr}_0(B)| = |\operatorname{Irr}_0(b)|.$ 

character degrees in  $Irr(B_1)$ 114215664height00000

 $|\operatorname{Irr}_0(B_1)|=5$ 

 $B_1$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_1$  of  $B_1$  is a block of  $N_G(P)$ ,

 $\mathsf{N}_G(P)\cong \mathbb{F}_{16}^ imes ext{ Gal}(\mathbb{F}_{16}:\mathbb{F}_2)$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_1) & 1 & 1 & 1 & 1 & 4 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

 $\begin{array}{c|c} \text{character degrees in Irr}(B_1) & 1 & 14 & 21 & 56 & 64 \\ \text{height} & 0 & 0 & 0 & 0 \end{array}$ 

 $|\operatorname{Irr}_0(B_1)|=5$ 

 $B_1$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_1$  of  $B_1$  is a block of  $N_G(P)$ ,

 $\mathsf{N}_G(P) \cong \mathbb{F}_{16}^{ imes} 
times \mathsf{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_1) & 1 & 1 & 1 & 1 & 4 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(B_1) & 1 & 14 & 21 & 56 & 64 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

 $|\operatorname{Irr}_0(B_1)|=5$ 

 $B_1$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_1$  of  $B_1$  is a block of  $N_G(P)$ ,

 $\mathsf{N}_G(P) \cong \mathbb{F}_{16}^{ imes} 
times \mathsf{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_1) & 1 & 1 & 1 & 1 & 4 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(B_1) & 1 & 14 & 21 & 56 & 64 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

### $|\operatorname{Irr}_0(B_1)| = 5$

 $B_1$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_1$  of  $B_1$  is a block of  $N_G(P)$ ,

$$\mathsf{N}_G(P)\cong \mathbb{F}_{16}^ imes \operatorname{\mathsf{Gal}}(\mathbb{F}_{16}:\mathbb{F}_2)$$

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_1) & 1 & 1 & 1 & 1 & 4 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(B_1) & 1 & 14 & 21 & 56 & 64 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

### $|\operatorname{Irr}_0(B_1)|=5$

#### $B_1$ has a Sylow 5-subgroup P of $SL_4(\mathbb{F}_2)$ as defect group

Brauer correspondent  $b_1$  of  $B_1$  is a block of  $N_G(P)$ ,

$$\mathsf{N}_G(P)\cong \mathbb{F}_{16}^ imes \operatorname{\mathsf{Gal}}(\mathbb{F}_{16}:\mathbb{F}_2)$$

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_1) & 1 & 1 & 1 & 1 & 4 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

character degrees in  $Irr(B_1)$ 114215664height00000

 $|\operatorname{Irr}_0(B_1)|=5$ 

 $B_1$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_1$  of  $B_1$  is a block of  $N_G(P)$ ,

 $\mathsf{N}_G(P) \cong \mathbb{F}_{16}^{\times} \rtimes \mathsf{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_1) & 1 & 1 & 1 & 1 & 4 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(B_1) & 1 & 14 & 21 & 56 & 64 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

 $|\operatorname{Irr}_0(B_1)|=5$ 

 $B_1$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_1$  of  $B_1$  is a block of  $N_G(P)$ ,

$$\mathsf{N}_G(P) \cong \mathbb{F}_{16}^{ imes} 
times \mathsf{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$$

character degrees in 
$$Irr(b_1)$$
1114height0000

 $||rr_0(b_1)| = 5$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(B_1) & 1 & 14 & 21 & 56 & 64 \\ \text{height} & 0 & 0 & 0 & 0 & 0 \end{array}$ 

 $|\operatorname{Irr}_0(B_1)|=5$ 

 $B_1$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_1$  of  $B_1$  is a block of  $N_G(P)$ ,

$$\mathsf{N}_G(P) \cong \mathbb{F}_{16}^{ imes} 
times \mathsf{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$$

$$\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_1) & 1 & 1 & 1 & 1 \\ \text{height} & 0 & 0 & 0 & 0 \end{array}$$

 $||rr_0(b_1)| = 5$ 

character degrees in  $Irr(B_1)$ 114215664height00000

 $|\operatorname{Irr}_0(B_1)|=5$ 

 $B_1$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_1$  of  $B_1$  is a block of  $N_G(P)$ ,

$$\mathsf{N}_G(P) \cong \mathbb{F}_{16}^{ imes} 
times \mathsf{Gal}(\mathbb{F}_{16} : \mathbb{F}_2)$$

$$\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_1) & 1 & 1 & 1 & 1 \\ \text{height} & 0 & 0 & 0 & 0 \end{array}$$

 $\begin{array}{c|c} \text{character degrees in Irr}(B_2) & 7 & 21 & 56 & 64 \\ \text{height} & 0 & 0 & 0 & 0 \end{array}$ 

 $|\mathrm{Irr}_0(B_2)|=4$ 

 $B_2$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_2$  of  $B_2$ , block of  $N_G(P)$ :

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_2) & 2 & 2 & 4 & 4 \\ \text{height} & 0 & 0 & 0 & 0 \end{array}$ 

$$|\operatorname{Irr}_0(b_2)| = 4$$

Note  $\operatorname{Irr}_{5'}(G) = \operatorname{Irr}_0(B_1) \cup \operatorname{Irr}_0(B_2)$  and  $\operatorname{Irr}_{5'}(N_G(P)) = \operatorname{Irr}_0(b_1) \cup \operatorname{Irr}_0(b_2)$ .

| character degrees in $Irr(B_2)$ | 7 | 21 | 56 | 64 |
|---------------------------------|---|----|----|----|
| height                          | 0 | 0  | 0  | 0  |

 $|\operatorname{Irr}_0(B_2)| = 4$ 

 $B_2$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_2$  of  $B_2$ , block of  $N_G(P)$ :

character degrees in  $Irr(b_2)$  2 2 4 4 height 0 0 0 0

$$|\operatorname{Irr}_0(b_2)| = 4$$

Note  $\operatorname{Irr}_{5'}(G) = \operatorname{Irr}_0(B_1) \cup \operatorname{Irr}_0(B_2)$  and  $\operatorname{Irr}_{5'}(\operatorname{N}_G(P)) = \operatorname{Irr}_0(b_1) \cup \operatorname{Irr}_0(b_2)$ .

| character degrees in $Irr(B_2)$ | 7 | 21 | 56 | 64 |
|---------------------------------|---|----|----|----|
| height                          | 0 | 0  | 0  | 0  |

 $|\operatorname{Irr}_0(B_2)| = 4$ 

 $B_2$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_2$  of  $B_2$ , block of  $N_G(P)$ :

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_2) & 2 & 2 & 4 & 4 \\ \text{height} & 0 & 0 & 0 & 0 \end{array}$ 

$$|\operatorname{Irr}_{0}(b_{2})| = 4$$

Note  $Irr_{5'}(G) = Irr_0(B_1) \cup Irr_0(B_2)$  and  $Irr_{5'}(N_G(P)) = Irr_0(b_1) \cup Irr_0(b_2)$ .

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(B_2) & 7 & 21 & 56 & 64 \\ \text{height} & 0 & 0 & 0 & 0 \end{array}$ 

 $|\operatorname{Irr}_0(B_2)| = 4$ 

 $B_2$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_2$  of  $B_2$ , block of  $N_G(P)$ :

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(b_2) & 2 & 2 & 4 & 4 \\ \text{height} & 0 & 0 & 0 & 0 \end{array}$ 

 $|\operatorname{Irr}_0(b_2)| = 4$ 

Note  $Irr_{5'}(G) = Irr_0(B_1) \cup Irr_0(B_2)$  and  $Irr_{5'}(N_G(P)) = Irr_0(b_1) \cup Irr_0(b_2)$ .
Alperin-McKay conj. for another 5-block of  $G = SL_4(\mathbb{F}_2)$ Recall: The 5-blocks  $B_2$ 

character degrees in  $Irr(B_2)$  7 21 56 64 height 0 0 0 0

 $|\operatorname{Irr}_0(B_2)| = 4$ 

 $B_2$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_2$  of  $B_2$ , block of  $N_G(P)$ :

character degrees in  $Irr(b_2)$  2 4 4 height 0 0 0 0

$$|\operatorname{Irr}_0(b_2)| = 4$$

Note  $Irr_{5'}(G) = Irr_0(B_1) \cup Irr_0(B_2)$  and  $Irr_{5'}(N_G(P)) = Irr_0(b_1) \cup Irr_0(b_2)$ 

Alperin-McKay conj. for another 5-block of  $G = SL_4(\mathbb{F}_2)$ Recall: The 5-blocks  $B_2$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(B_2) & 7 & 21 & 56 & 64 \\ \text{height} & 0 & 0 & 0 & 0 \end{array}$ 

 $|\operatorname{Irr}_0(B_2)| = 4$ 

 $B_2$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_2$  of  $B_2$ , block of  $N_G(P)$ :

character degrees in  $Irr(b_2)$  2 2 4 4 height 0 0 0 0

$$|\operatorname{Irr}_0(b_2)| = 4$$

Note  $Irr_{5'}(G) = Irr_0(B_1) \cup Irr_0(B_2)$  and  $Irr_{5'}(N_G(P)) = Irr_0(b_1) \cup Irr_0(b_2)$ 

Alperin-McKay conj. for another 5-block of  $G = SL_4(\mathbb{F}_2)$ Recall: The 5-blocks  $B_2$ 

 $\begin{array}{c|c} \text{character degrees in } \operatorname{Irr}(B_2) & 7 & 21 & 56 & 64 \\ \text{height} & 0 & 0 & 0 & 0 \end{array}$ 

 $|\operatorname{Irr}_0(B_2)| = 4$ 

 $B_2$  has a Sylow 5-subgroup P of  $SL_4(\mathbb{F}_2)$  as defect group

Brauer correspondent  $b_2$  of  $B_2$ , block of  $N_G(P)$ :

character degrees in  $Irr(b_2)$  2 2 4 4 height 0 0 0 0

$$|\operatorname{Irr}_0(b_2)| = 4$$

Note  $Irr_{5'}(G) = Irr_0(B_1) \cup Irr_0(B_2)$  and  $Irr_{5'}(N_G(P)) = Irr_0(b_1) \cup Irr_0(b_2)$ .

### Proof.

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{BI}(G|P)} \operatorname{Irr}_0(B),$$

where BI(G | P) is the set of *p*-blocks of *G* with defect group *P*, Alperin-McKay for *B*:

 $|\operatorname{Irr}_0(B)| = |\operatorname{Irr}_0(b)|,$ 

where b is the Brauer correspondent of B, a p-block of  $N_G(P)$  with defect group P

$$\operatorname{Irr}_{p'}(\mathbb{N}_G(P)) = \bigcup_{b \in \operatorname{Bl}(\mathbb{N}_G(P)|P)} \operatorname{Irr}_0(b),$$

where BI( $G \mid P$ ) is the set of *p*-blocks of N<sub>G</sub>(P) with defect group P $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|.$ 

Proof.

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B),$$

where BI(G | P) is the set of *p*-blocks of *G* with defect group *P*, Alperin-McKay for *B*:

 $|\operatorname{Irr}_0(B)| = |\operatorname{Irr}_0(b)|,$ 

where b is the Brauer correspondent of B, a p-block of  $N_G(P)$  with defect group P

$$\operatorname{Irr}_{p'}(\mathbb{N}_{G}(P)) = \bigcup_{b \in \operatorname{Bl}(\mathbb{N}_{G}(P)|P)} \operatorname{Irr}_{0}(b),$$

where BI( $G \mid P$ ) is the set of *p*-blocks of N<sub>G</sub>(P) with defect group P $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|.$ 

Proof.

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B),$$

where BI(G | P) is the set of *p*-blocks of *G* with defect group *P*, Alperin-McKay for *B*:

$$|\operatorname{Irr}_0(B)| = |\operatorname{Irr}_0(b)|,$$

where b is the Brauer correspondent of B, a p-block of  $N_G(P)$  with defect group P

$$\operatorname{Irr}_{P'}(N_G(P)) = \bigcup_{b \in \operatorname{Bl}(N_G(P)|P)} \operatorname{Irr}_0(b),$$

where BI( $G \mid P$ ) is the set of *p*-blocks of N<sub>G</sub>(P) with defect group P $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|.$ 

Proof.

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B),$$

where BI(G | P) is the set of *p*-blocks of *G* with defect group *P*, Alperin-McKay for *B*:

$$|\operatorname{Irr}_0(B)| = |\operatorname{Irr}_0(b)|,$$

where b is the Brauer correspondent of B, a p-block of  $N_G(P)$  with defect group P

$$\operatorname{Irr}_{p'}(\mathsf{N}_G(P)) = \bigcup_{b \in \mathsf{Bl}(\mathsf{N}_G(P)|P)} \operatorname{Irr}_0(b),$$

where BI(G | P) is the set of *p*-blocks of  $N_G(P)$  with defect group *P* 

 $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|.$ 

Proof.

$$\operatorname{Irr}_{p'}(G) = \bigcup_{B \in \operatorname{Bl}(G|P)} \operatorname{Irr}_0(B),$$

where BI(G | P) is the set of *p*-blocks of *G* with defect group *P*, Alperin-McKay for *B*:

$$|\operatorname{Irr}_0(B)| = |\operatorname{Irr}_0(b)|,$$

where b is the Brauer correspondent of B, a p-block of  $N_G(P)$  with defect group P

$$\operatorname{Irr}_{p'}(\mathsf{N}_G(P)) = \bigcup_{b \in \mathsf{Bl}(\mathsf{N}_G(P)|P)} \operatorname{Irr}_0(b),$$

where BI(G | P) is the set of *p*-blocks of  $N_G(P)$  with defect group *P* 

$$|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(\mathsf{N}_G(P))|.$$

### Definition

A *p*-weight of G is a pair  $(Q, \psi)$ , where

•  $Q \leq G$  is a *p*-group, and

•  $\psi \in \operatorname{Irr}(N_G(Q)/Q)$  with  $\psi(1)_p = |N_G(Q)/Q|_p$ .

Then  $(Q, \psi)$  is called a *p*-weight of a block  $b^G$ , if  $\psi$  as character of  $N_G(Q)$  belongs to  $b \in Bl(N_G(P))$ .  $(b^G$  is a *p*-block of *G* given by induction of *b*.)

Alperin weight conjecture (1984)

### Definition

### A *p*-weight of G is a pair $(Q, \psi)$ , where

•  $Q \leq G$  is a *p*-group, and

•  $\psi \in \operatorname{Irr}(N_G(Q)/Q)$  with  $\psi(1)_p = |N_G(Q)/Q|_p$ .

Then  $(Q, \psi)$  is called a *p*-weight of a block  $b^G$ , if  $\psi$  as character of  $N_G(Q)$  belongs to  $b \in Bl(N_G(P))$ .  $(b^G$  is a *p*-block of *G* given by induction of *b*.)

## Alperin weight conjecture (1984)

- $|\operatorname{IBr}(G)| = \#\{G \operatorname{-conjugacy class of } p \operatorname{-weights of } G\}$
- $|\operatorname{IBr}(B)| = \# \{ G \operatorname{-conjugacy class of } p \operatorname{-weights of } B \}.$

### Definition

### A *p*-weight of G is a pair $(Q, \psi)$ , where

•  $Q \leq G$  is a *p*-group, and

•  $\psi \in \operatorname{Irr}(N_G(Q)/Q)$  with  $\psi(1)_p = |N_G(Q)/Q|_p$ .

Then  $(Q, \psi)$  is called a *p*-weight of a block  $b^G$ , if  $\psi$  as character of  $N_G(Q)$  belongs to  $b \in Bl(N_G(P))$ .  $(b^G$  is a *p*-block of *G* given by induction of *b*.)

## Alperin weight conjecture (1984)

- $|\operatorname{IBr}(G)| = \#\{G \operatorname{-conjugacy class of } p \operatorname{-weights of } G\}$ .
- $|\operatorname{IBr}(B)| = \#\{G \operatorname{-conjugacy class of } p \operatorname{-weights of } B\}$ .

### Definition

### A *p*-weight of G is a pair $(Q, \psi)$ , where

•  $Q \leq G$  is a *p*-group, and

•  $\psi \in \operatorname{Irr}(N_G(Q)/Q)$  with  $\psi(1)_p = |N_G(Q)/Q|_p$ .

Then  $(Q, \psi)$  is called a *p*-weight of a block  $b^G$ , if  $\psi$  as character of  $N_G(Q)$  belongs to  $b \in Bl(N_G(P))$ .  $(b^G$  is a *p*-block of *G* given by induction of *b*.)

## Alperin weight conjecture (1984)

- $|\operatorname{IBr}(G)| = \#\{G \operatorname{-conjugacy class of } p \operatorname{-weights of } G\}$
- $|\operatorname{IBr}(B)| = \# \{ G \operatorname{-conjugacy class of } p \operatorname{-weights of } B \}.$

### Definition

### A *p*-weight of G is a pair $(Q, \psi)$ , where

- $Q \leq G$  is a *p*-group, and
- $\psi \in \operatorname{Irr}(N_G(Q)/Q)$  with  $\psi(1)_p = |N_G(Q)/Q|_p$ .

Then  $(Q, \psi)$  is called a *p*-weight of a block  $b^G$ , if  $\psi$  as character of  $N_G(Q)$  belongs to  $b \in Bl(N_G(P))$ .  $(b^G$  is a *p*-block of *G* given by induction of *b*.)

## Alperin weight conjecture (1984)

- $|\operatorname{IBr}(G)| = \#\{G \operatorname{-conjugacy class of } p \operatorname{-weights of } G\}$ .
- $|\operatorname{IBr}(B)| = \# \{ G \operatorname{-conjugacy class of } p \operatorname{-weights of } B \}.$

### Definition

### A *p*-weight of G is a pair $(Q, \psi)$ , where

- $Q \leq G$  is a *p*-group, and
- $\psi \in \operatorname{Irr}(N_G(Q)/Q)$  with  $\psi(1)_p = |N_G(Q)/Q|_p$ .

Then  $(Q, \psi)$  is called a *p*-weight of a block  $b^G$ , if  $\psi$  as character of  $N_G(Q)$  belongs to  $b \in Bl(N_G(P))$ .  $(b^G$  is a *p*-block of *G* given by induction of *b*.)

### Alperin weight conjecture (1984)

Let B ∈ Bl(G).
IBr(G)| = #{G-conjugacy class of p-weights of G}.
IBr(B)| = #{G-conjugacy class of p-weights of B}.

### Definition

### A *p*-weight of G is a pair $(Q, \psi)$ , where

- $Q \leq G$  is a *p*-group, and
- $\psi \in \operatorname{Irr}(N_G(Q)/Q)$  with  $\psi(1)_p = |N_G(Q)/Q|_p$ .

Then  $(Q, \psi)$  is called a *p*-weight of a block  $b^G$ , if  $\psi$  as character of  $N_G(Q)$  belongs to  $b \in Bl(N_G(P))$ .  $(b^G$  is a *p*-block of *G* given by induction of *b*.)

Alperin weight conjecture (1984)

Let  $B \in Bl(G)$ .

•  $|\operatorname{IBr}(G)| = \#\{G \text{-conjugacy class of } p \text{-weights of } G\}.$ 

 $| |Br(B)| = \# \{ G \text{-conjugacy class of } p \text{-weights of } B \}.$ 

### Definition

#### A *p*-weight of G is a pair $(Q, \psi)$ , where

- $Q \leq G$  is a *p*-group, and
- $\psi \in \operatorname{Irr}(N_G(Q)/Q)$  with  $\psi(1)_{\rho} = |N_G(Q)/Q|_{\rho}$ .

Then  $(Q, \psi)$  is called a *p*-weight of a block  $b^G$ , if  $\psi$  as character of  $N_G(Q)$  belongs to  $b \in Bl(N_G(P))$ . ( $b^G$  is a *p*-block of *G* given by induction of *b*.)



### Definition

#### A *p*-weight of G is a pair $(Q, \psi)$ , where

- $Q \leq G$  is a *p*-group, and
- $\psi \in \operatorname{Irr}(N_G(Q)/Q)$  with  $\psi(1)_{\rho} = |N_G(Q)/Q|_{\rho}$ .

Then  $(Q, \psi)$  is called a *p*-weight of a block  $b^G$ , if  $\psi$  as character of  $N_G(Q)$  belongs to  $b \in Bl(N_G(P))$ . ( $b^G$  is a *p*-block of *G* given by induction of *b*.)

# Alperin weight conjecture (1984) Let $B \in Bl(G)$ . $(IBr(G)) = #{G-conjugacy class of$ *p*-weights of*G* $}.$ $<math>(IBr(B)) = #{G-conjugacy class of$ *p*-weights of*B* $}.$

### Definition

#### A *p*-weight of G is a pair $(Q, \psi)$ , where

- $Q \leq G$  is a *p*-group, and
- $\psi \in \operatorname{Irr}(N_G(Q)/Q)$  with  $\psi(1)_{\rho} = |N_G(Q)/Q|_{\rho}$ .

Then  $(Q, \psi)$  is called a *p*-weight of a block  $b^G$ , if  $\psi$  as character of  $N_G(Q)$  belongs to  $b \in Bl(N_G(P))$ . ( $b^G$  is a *p*-block of *G* given by induction of *b*.)

### Alperin weight conjecture (1984)

- $|\operatorname{IBr}(G)| = \#\{G\text{-conjugacy class of } p\text{-weights of } G\}.$
- $| |Br(B)| = \# \{ G \text{-conjugacy class of } p \text{-weights of } B \}.$

Recall:  $\mathsf{SL}_4(\mathbb{F}_2)$  has two 2-blocks,  $B_1$  and  $B_2$ 

- $B_2$  has defect 1 and only one Brauer character. Then  $(1, \chi)$  is the unique 2-weight of  $B_2$ , where  $\chi \in Irr(B_2)$ .
- $B_1$  has 7 Brauer characters 2-weights of  $B_1$ :  $(O_p(M), St_L)$ , where M is some parabolic subgroup of  $SL_4(\mathbb{F}_2)$ , L is subgroup and  $St_L$  the Steinberg character of L. The

2-weights of  $B_1$ .

- $B_2$  has defect 1 and only one Brauer character. Then  $(1, \chi)$  is the unique 2-weight of  $B_2$ , where  $\chi \in Irr(B_2)$ .
- $B_1$  has 7 Brauer characters 2-weights of  $B_1$ :  $(O_p(M), St_L)$ , where M is some parabolic subgroup of  $SL_4(\mathbb{F}_2)$ , L an associated Levi subgroup and  $St_L$  the Steinberg character of L. There are 7 such 2-weights of  $B_1$ .

- $B_2$  has defect 1 and only one Brauer character. Then  $(1, \chi)$  is the unique 2-weight of  $B_2$ , where  $\chi \in Irr(B_2)$ .
- B<sub>1</sub> has 7 Brauer characters
   2-weights of B<sub>1</sub>: (O<sub>p</sub>(M), St<sub>L</sub>),
   where M is some parabolic subgroup of SL<sub>4</sub>(F<sub>2</sub>), L an associated Levi subgroup and St<sub>L</sub> the Steinberg character of L. There are 7 such
   2-weights of B<sub>1</sub>.

- $B_2$  has defect 1 and only one Brauer character. Then  $(1, \chi)$  is the unique 2-weight of  $B_2$ , where  $\chi \in Irr(B_2)$ .
- $B_1$  has 7 Brauer characters 2-weights of  $B_1$ :  $(O_p(M), St_L)$ , where M is some parabolic subgroup of  $SL_4(\mathbb{F}_2)$ , L an associated Levi subgroup and  $St_L$  the Steinberg character of L. There are 7 such 2-weights of  $B_1$ .

Recall: SL<sub>4</sub>( $\mathbb{F}_2$ ) has two 2-blocks,  $B_1$  and  $B_2$ 

- $B_2$  has defect 1 and only one Brauer character. Then  $(1, \chi)$  is the unique 2-weight of  $B_2$ , where  $\chi \in Irr(B_2)$ .
- B<sub>1</sub> has 7 Brauer characters

2-weights of  $B_1$ :  $(O_p(M), St_L)$ ,

where M is some parabolic subgroup of SL<sub>4</sub>( $\mathbb{F}_2$ ), L an associated Levi subgroup and St<sub>L</sub> the Steinberg character of L. There are 7 such 2-weights of  $B_1$ .

Recall: SL<sub>4</sub>( $\mathbb{F}_2$ ) has two 2-blocks,  $B_1$  and  $B_2$ 

- $B_2$  has defect 1 and only one Brauer character. Then  $(1, \chi)$  is the unique 2-weight of  $B_2$ , where  $\chi \in Irr(B_2)$ .
- B<sub>1</sub> has 7 Brauer characters
   2-weights of B<sub>1</sub>: (O<sub>p</sub>(M), St<sub>L</sub>),

where M is some parabolic subgroup of SL<sub>4</sub>( $\mathbb{F}_2$ ), L an associated Levi subgroup and St<sub>L</sub> the Steinberg character of L. There are 7 such 2-weights of  $B_1$ .

- $B_2$  has defect 1 and only one Brauer character. Then  $(1, \chi)$  is the unique 2-weight of  $B_2$ , where  $\chi \in Irr(B_2)$ .
- $B_1$  has 7 Brauer characters 2-weights of  $B_1$ :  $(O_p(M), St_L)$ , where M is some parabolic subgroup of  $SL_4(\mathbb{F}_2)$ , L an associated Levi subgroup and  $St_L$  the Steinberg character of L. There are 7 such 2-weights of  $B_1$ .

## Brauer's height zero conjecture (1955)

Let B be a p-block of G and D its defect group.

Every character of *B* has height zero if and only if *D* is abelian.

#### Example: G is a p-group

Then there is only one p-black B of G

the neutron of the ne

characters of G have pl-degree if and only if G is abelian.

## Brauer's height zero conjecture (1955)

Let *B* be a *p*-block of *G* and *D* its defect group. Every character of *B* has height zero if and only if *D* is abelian.

### Example: *G* is a *p*-group

## Brauer's height zero conjecture (1955)

Let *B* be a *p*-block of *G* and *D* its defect group. Every character of *B* has height zero if and only if *D* is abelian.

### Example: *G* is a *p*-group

## Brauer's height zero conjecture (1955)

Let *B* be a *p*-block of *G* and *D* its defect group. Every character of *B* has height zero if and only if *D* is abelian.

### Example: *G* is a *p*-group

## Brauer's height zero conjecture (1955)

Let *B* be a *p*-block of *G* and *D* its defect group. Every character of *B* has height zero if and only if *D* is abelian.

### Example: G is a p-group

## Brauer's height zero conjecture (1955)

Let *B* be a *p*-block of *G* and *D* its defect group. Every character of *B* has height zero if and only if *D* is abelian.

## Example: G is a p-group

#### Then there is only one p-block B of G.

*G* is the defect group of *B*. The height zero characters of *B* are the p'-characters of *G*. All characters of *G* have p'-degree if and only if *G* is abelian

## Brauer's height zero conjecture (1955)

Let B be a p-block of G and D its defect group. Every character of B has height zero if and only if D is abelian.

## Example: G is a p-group

Then there is only one p-block B of G.

#### G is the defect group of B.

The height zero characters of *B* are the *p*′-characters of *G*. All characters of *G* have *p*′-degree if and only if *G* is abelian.

## Brauer's height zero conjecture (1955)

Let B be a p-block of G and D its defect group. Every character of B has height zero if and only if D is abelian.

## Example: G is a p-group

## Brauer's height zero conjecture (1955)

Let B be a p-block of G and D its defect group. Every character of B has height zero if and only if D is abelian.

## Example: G is a p-group

Example: Brauer's height zero conjecture for  $SL_4(\mathbb{F}_2)$ 

 $SL_4(\mathbb{F}_2)$  has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup P as defect group, where  $P = \{\text{upper unitriangular matrices}\}.$ 

ht | 0

Example: Brauer's height zero conjecture for  $SL_4(\mathbb{F}_2)$ 

 $SL_4(\mathbb{F}_2)$  has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup P as defect group, where  $P = \{\text{upper unitriangular matrices}\}.$ 


$SL_4(\mathbb{F}_2)$  has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup P as defect group, where  $P = \{\text{upper unitriangular matrices}\}.$ 



ht (

 $SL_4(\mathbb{F}_2)$  has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup P as defect group, where  $P = \{\text{upper unitriangular matrices}\}.$ 



 $SL_4(\mathbb{F}_2)$  has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup P as defect group, where  $P = \{\text{upper unitriangular matrices}\}.$ 

 degree
 1
 7
 14
 20
 21
 21
 28
 35
 45
 45
 56
 70

 height
 0
 0
 1
 1
 0
 0
 2
 0
 0
 0
 2
 1

The defect group is non-abelian and  $Irr_0(B_1) \neq Irr(B_1)$ .

•  $B_2$  has the trivial group as defect group and  $Irr(B_2) = Irr_0(B_2)$ .

 $SL_4(\mathbb{F}_2)$  has two 2-blocks:

•  $B_1$  has a Sylow 2-subgroup P as defect group, where  $P = \{\text{upper unitriangular matrices}\}.$ 

 degree
 1
 7
 14
 20
 21
 21
 28
 35
 45
 45
 56
 70

 height
 0
 0
 1
 1
 0
 0
 2
 0
 0
 2
 1

The defect group is non-abelian and  $Irr_0(B_1) \neq Irr(B_1)$ .

•  $B_2$  has the trivial group as defect group and  $Irr(B_2) = Irr_0(B_2)$ .

| degree | 64 |
|--------|----|
| height | 0  |

#### Theorem

All mentioned conjectures are true for p-solvable groups

A group is *p*-solvable if all its simple composition factors are cyclic or a p'-group.

Furthermore results are known for specific blocks and families of groups.

Knowledge on nonabelian quasisimple groups seems missing.

#### Theorem

All mentioned conjectures are true for p-solvable groups

A group is *p*-**solvable** if all its simple composition factors are cyclic or a *p*'-group.

Furthermore results are known for specific blocks and families of groups.

Knowledge on nonabelian quasisimple groups seems missing.

#### Theorem

All mentioned conjectures are true for p-solvable groups

A group is *p*-solvable if all its simple composition factors are cyclic or a p'-group.

Furthermore results are known for specific blocks and families of groups. Knowledge on nonabelian quasisimple groups seems missing.

#### Theorem

All mentioned conjectures are true for p-solvable groups

A group is *p*-solvable if all its simple composition factors are cyclic or a p'-group.

Furthermore results are known for specific blocks and families of groups.

Knowledge on nonabelian quasisimple groups seems missing.

#### Theorem

All mentioned conjectures are true for p-solvable groups

A group is *p*-solvable if all its simple composition factors are cyclic or a p'-group.

Furthermore results are known for specific blocks and families of groups.

Knowledge on nonabelian quasisimple groups seems missing.

### Definition

A group is **quasisimple** if G = [G, G] and G/Z(G) is simple.

Theorem (HZC1) (Berger-Knörr, Kessar-Malle)

Let G be a finite group,  $B \in Bl(G)$  and D a defect group. Then

D is abelian  $\Rightarrow \operatorname{Irr}_0(B) = \operatorname{Irr}(B)$ .

History of the proof:

### Definition

A group is **quasisimple** if G = [G, G] and G/Z(G) is simple.

Theorem (HZC1) (Berger-Knörr, Kessar-Malle)

Let G be a finite group,  $B\in \mathsf{Bl}(G)$  and D a defect group. Then

D is abelian  $\Rightarrow Irr_0(B) = Irr(B)$ .

History of the proof:

### Definition

A group is **quasisimple** if G = [G, G] and G/Z(G) is simple.

Theorem (HZC1) (Berger-Knörr, Kessar-Malle)

Let G be a finite group,  $B \in Bl(G)$  and D a defect group. Then

D is abelian  $\Rightarrow \operatorname{Irr}_0(B) = \operatorname{Irr}(B)$ .

History of the proof:

### Definition

A group is **quasisimple** if G = [G, G] and G/Z(G) is simple.

Theorem (HZC1) (Berger-Knörr, Kessar-Malle)

Let G be a finite group,  $B \in Bl(G)$  and D a defect group. Then

D is abelian  $\Rightarrow \operatorname{Irr}_0(B) = \operatorname{Irr}(B)$ .

### History of the proof:

### Definition

A group is **quasisimple** if G = [G, G] and G/Z(G) is simple.

Theorem (HZC1) (Berger-Knörr, Kessar-Malle)

Let G be a finite group,  $B \in Bl(G)$  and D a defect group. Then

D is abelian  $\Rightarrow Irr_0(B) = Irr(B)$ .

History of the proof:

Berger-Knörr (1988): "HZC1" is true, if it holds for all quasisimple groups.

work of Olsson, Cabanes-Enguehard, Enguehard, Bonnafé-Rouquier)

### Definition

A group is **quasisimple** if G = [G, G] and G/Z(G) is simple.

Theorem (HZC1) (Berger-Knörr, Kessar-Malle)

Let G be a finite group,  $B \in Bl(G)$  and D a defect group. Then

D is abelian  $\Rightarrow \operatorname{Irr}_0(B) = \operatorname{Irr}(B)$ .

History of the proof:

# Reductions - McKay and Alperin weight conjecture

### Theorem (Isaacs-Malle-Navarro, 2007)

The McKay conjecture is true if all quasisimple groups are McKay-good.

### Theorem (Navarro-Tiep, 2010)

The non-blockwise version of Alperin's weight conjecture is true if all quasisimple group are AWC(Alperin-weight)-good.

Both proven using induction on |G| and relative version of those conjectures.

# Reductions - McKay and Alperin weight conjecture

### Theorem (Isaacs-Malle-Navarro, 2007)

The McKay conjecture is true if all quasisimple groups are McKay-good.

### Theorem (Navarro-Tiep, 2010)

The non-blockwise version of Alperin's weight conjecture is true if all quasisimple group are AWC(Alperin-weight)-good.

Both proven using induction on |G| and relative version of those conjectures.

# Reductions - McKay and Alperin weight conjecture

### Theorem (Isaacs-Malle-Navarro, 2007)

The McKay conjecture is true if all quasisimple groups are McKay-good.

### Theorem (Navarro-Tiep, 2010)

The non-blockwise version of Alperin's weight conjecture is true if all quasisimple group are AWC(Alperin-weight)-good.

Both proven using induction on |G| and relative version of those conjectures.

### Theorem (S., 2011)

*The Alperin-McKay conjecture is true if all quasisimple groups are AM-good.* 

### Theorem (S., 2013)

The blockwise version of Alperin's weight conjecture is true if all quasisimple groups are BAW(blockwise Alperin weight)-good.

### Theorem (S., 2011)

The Alperin-McKay conjecture is true if all quasisimple groups are AM-good.

### Theorem (S., 2013)

The blockwise version of Alperin's weight conjecture is true if all quasisimple groups are BAW(blockwise Alperin weight)-good.

### Theorem (S., 2011)

The Alperin-McKay conjecture is true if all quasisimple groups are AM-good.

### Theorem (S., 2013)

The blockwise version of Alperin's weight conjecture is true if all quasisimple groups are BAW(blockwise Alperin weight)-good.

### Theorem (S., 2011)

The Alperin-McKay conjecture is true if all quasisimple groups are AM-good.

### Theorem (S., 2013)

The blockwise version of Alperin's weight conjecture is true if all quasisimple groups are BAW(blockwise Alperin weight)-good.

- There is a correspondence between the considered sets of characters that is equivariant with respect to automorphisms of the group stabilizing those sets.
- Characters  $\chi$  and  $\chi'$  associated to each other via this correspondence have the same "Clifford-theory", i.e. after inducing  $\chi$  and  $\chi'$  to some groups they decompose in the same way.

- There is a correspondence between the considered sets of characters that is equivariant with respect to automorphisms of the group stabilizing those sets.
- Characters  $\chi$  and  $\chi'$  associated to each other via this correspondence have the same "Clifford-theory", i.e. after inducing  $\chi$  and  $\chi'$  to some groups they decompose in the same way.

- There is a correspondence between the considered sets of characters that is equivariant with respect to automorphisms of the group stabilizing those sets.
- Characters  $\chi$  and  $\chi'$  associated to each other via this correspondence have the same "Clifford-theory", i.e. after inducing  $\chi$  and  $\chi'$  to some groups they decompose in the same way.

- There is a correspondence between the considered sets of characters that is equivariant with respect to automorphisms of the group stabilizing those sets.
- Characters  $\chi$  and  $\chi'$  associated to each other via this correspondence have the same "Clifford-theory", i.e. after inducing  $\chi$  and  $\chi'$  to some groups they decompose in the same way.

### Definition

The block *B* is **AM-good**, if the defect group of *B* is central. The block *B* is **AM-good**, if for the non-central defect group *D* of *B* 

 $\bigcirc$  there exists a group M with

M is stable under  $\operatorname{Aut}(\widehat{S})_{B,D}$  and  $\operatorname{N}_{\widehat{S}}(D) \leq M \lneq \widehat{S}$ 

② for b ∈ Bl(M) with b<sup>S</sup> = B, there exists a Aut(S)<sub>B,D</sub>-equivariant bijection

 $\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$ 

- $\widehat{S} \lhd A$  and  $A / \mathsf{C}_A(\widehat{S}) \cong \operatorname{Aut}(\widehat{S})_\chi$
- $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
- $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
- ► Res<sup>A</sup><sub>C<sub>A</sub>(S)</sub>(X̃) and Res<sup>M N<sub>A</sub>(D)</sup><sub>C<sub>A</sub>(S̃)</sub>(X̃') are multiples of the same irreducible character
- Res<sup>A</sup><sub>J</sub>( \$\tilde{\chi}\$) and Res<sup>M N<sub>A</sub>(D)</sup><sub>M N<sub>J</sub>(D)</sub>(\$\tilde{\chi}\$') lie in blocks with the same Brauer correspondent for every group J with \$\tilde{S}\$ ≤ J ≤ A

#### Definition

The block *B* is **AM-good**, if the defect group of *B* is central. The block *B* is **AM-good**, if for the non-central defect group *D* of *B* 

 $\bigcirc$  there exists a group M with

M is stable under Aut $(\widehat{S})_{B,D}$  and  $\operatorname{N}_{\widehat{S}}(D) \leq M \lneq \widehat{S}$ 

If or b ∈ Bl(M) with b<sup>S</sup> = B, there exists a Aut(S)<sub>B,D</sub>-equivariant bijection

 $\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$ 

- $\widehat{S} \lhd A$  and  $A / \mathsf{C}_A(\widehat{S}) \cong \operatorname{Aut}(\widehat{S})_\chi$
- $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
- $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
- ► Res<sup>A</sup><sub>C<sub>A</sub>(S)</sub>(X̃) and Res<sup>M N<sub>A</sub>(D)</sup><sub>C<sub>A</sub>(S̃)</sub>(X̃') are multiples of the same irreducible character
- Res<sup>A</sup><sub>J</sub>( \$\tilde{\chi}\$) and Res<sup>M N<sub>A</sub>(D)</sup><sub>M N<sub>J</sub>(D)</sub>(\$\tilde{\chi}\$') lie in blocks with the same Brauer correspondent for every group J with \$\tilde{S}\$ ≤ J ≤ A

### Definition

The block *B* is **AM-good**, if the defect group of *B* is central. The block *B* is **AM-good**, if for the non-central defect group *D* of *B* 

 $\bigcirc$  there exists a group M with

M is stable under  $\operatorname{Aut}(\widehat{S})_{B,D}$  and  $\operatorname{N}_{\widehat{S}}(D) \leq M \lneq \widehat{S}$ 

② for b ∈ Bl(M) with b<sup>S</sup> = B, there exists a Aut(S)<sub>B,D</sub>-equivariant bijection

 $\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$ 

- $\widehat{S} \lhd A$  and  $A / \mathsf{C}_A(\widehat{S}) \cong \operatorname{Aut}(\widehat{S})_\chi$
- $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
- $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
- ► Res<sup>A</sup><sub>C<sub>A</sub>(S)</sub>(X̃) and Res<sup>M N<sub>A</sub>(D)</sup><sub>C<sub>A</sub>(S̃)</sub>(X̃') are multiples of the same irreducible character
- Res<sup>A</sup><sub>J</sub>( \$\tilde{\chi}\$) and Res<sup>M N<sub>A</sub>(D)</sup><sub>M N<sub>J</sub>(D)</sub>(\$\tilde{\chi}\$') lie in blocks with the same Brauer correspondent for every group J with \$\tilde{S}\$ ≤ J ≤ A

#### Definition

The block B is **AM-good**, if the defect group of B is central. The block B is **AM-good**, if for the non-central defect group D of B

there exists a group M with

*M* is stable under Aut $(\widehat{S})_{B,D}$  and  $N_{\widehat{S}}(D) \le M \le \widehat{S}$ 

bijection

 $\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$ 

- $\widehat{S} \lhd A$  and  $A / \mathsf{C}_A(\widehat{S}) \cong \operatorname{Aut}(\widehat{S})_\chi$
- $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
- $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
- ► Res<sup>A</sup><sub>C<sub>A</sub>(S)</sub>(X̃) and Res<sup>M N<sub>A</sub>(D)</sup><sub>C<sub>A</sub>(S̃)</sub>(X̃') are multiples of the same irreducible character
- Res<sup>A</sup><sub>J</sub>(*X̃*) and Res<sup>M N<sub>A</sub>(D)</sup><sub>M N<sub>J</sub>(D)</sub>(*X̃*') lie in blocks with the same Brauer correspondent for every group J with *S̃* ≤ J ≤ A

#### Definition

The block B is **AM-good**, if the defect group of B is central. The block B is **AM-good**, if for the non-central defect group D of B

there exists a group M with

M is stable under  $\operatorname{Aut}(\widehat{S})_{B,D}$  and  $\operatorname{N}_{\widehat{S}}(D) \leq M \lneq \widehat{S}$  $\bigcirc$  for  $b \in \operatorname{Bl}(M)$  with  $b^{\widehat{S}} = B$ , there exists a  $\operatorname{Aut}(\widehat{S})_{B,D}$ -equivariant

bijection

 $\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$ 

- $\widehat{S} \lhd A$  and  $A / \mathsf{C}_A(\widehat{S}) \cong \operatorname{Aut}(\widehat{S})_\chi$
- $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
- $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
- ► Res<sup>A</sup><sub>C<sub>A</sub>(S)</sub>(X̃) and Res<sup>M N<sub>A</sub>(D)</sup><sub>C<sub>A</sub>(S̃)</sub>(X̃') are multiples of the same irreducible character
- Res<sup>A</sup><sub>J</sub>(*X̃*) and Res<sup>M N<sub>A</sub>(D)</sup><sub>M N<sub>J</sub>(D)</sub>(*X̃*') lie in blocks with the same Brauer correspondent for every group J with *S̃* ≤ J ≤ A

#### Definition

The block B is **AM-good**, if the defect group of B is central. The block B is **AM-good**, if for the non-central defect group D of B

**1** there exists a group M with

M is stable under  $\operatorname{Aut}(\widehat{S})_{B,D}$  and  $\operatorname{N}_{\widehat{S}}(D) \leq M \lneq \widehat{S}$ 

If or b ∈ Bl(M) with b<sup>S</sup> = B, there exists a Aut(S)<sub>B,D</sub>-equivariant bijection

 $\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$ 

- $\widehat{S} \lhd A$  and  $A / \mathsf{C}_A(\widehat{S}) \cong \operatorname{Aut}(\widehat{S})_\chi$
- $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
- $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
- Res<sup>A</sup><sub>C<sub>A</sub>(S)</sub>(X̃) and Res<sup>M N<sub>A</sub>(D)</sup>(X̃') are multiples of the same irreducible character
- Res<sup>A</sup><sub>J</sub>(*X̃*) and Res<sup>M N<sub>A</sub>(D)</sup><sub>M N<sub>J</sub>(D)</sub>(*X̃*') lie in blocks with the same Brauer correspondent for every group J with *S̃* ≤ J ≤ A

#### Definition

The block B is **AM-good**, if the defect group of B is central. The block B is **AM-good**, if for the non-central defect group D of B

**1** there exists a group M with

M is stable under Aut $(\widehat{S})_{B,D}$  and  $N_{\widehat{S}}(D) \le M \le \widehat{S}$ 

Solution
If the probability of the second seco

 $\Omega: Irr_0(B) \longrightarrow Irr_0(b).$ 

- ${ullet}$  for every faithful  $\chi\in {\sf Irr}_0(B)$  there exists a group A such that
  - $\widehat{S} \lhd A$  and  $A / \mathsf{C}_A(\widehat{S}) \cong \operatorname{Aut}(\widehat{S})_\chi$
  - $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
  - $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
  - Res<sup>A</sup><sub>C<sub>A</sub>(S)</sub>(X̃) and Res<sup>M N<sub>A</sub>(D)</sup>(X̃') are multiples of the same irreducible character
  - Res<sup>A</sup><sub>J</sub>(*X̃*) and Res<sup>M N<sub>A</sub>(D)</sup><sub>M N<sub>J</sub>(D)</sub>(*X̃*') lie in blocks with the same Brauer correspondent for every group J with *S̃* ≤ J ≤ A

#### Definition

The block B is **AM-good**, if the defect group of B is central. The block B is **AM-good**, if for the non-central defect group D of B

**1** there exists a group M with

M is stable under Aut $(\widehat{S})_{B,D}$  and  $N_{\widehat{S}}(D) \le M \le \widehat{S}$ 

Solution
If the set of the set o

 $\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$ 

- **③** for every faithful  $\chi \in Irr_0(B)$  there exists a group A such that
  - $\widehat{S} \lhd A$  and  $A / \mathsf{C}_A(\widehat{S}) \cong \operatorname{Aut}(\widehat{S})_\chi$
  - $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
  - $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
  - ▶  $\operatorname{Res}_{C_{A}(\widehat{S})}^{A}(\widetilde{\chi})$  and  $\operatorname{Res}_{C_{A}(\widehat{S})}^{M N_{A}(D)}(\widetilde{\chi}')$  are multiples of the same irreducible character
  - Res<sup>A</sup><sub>J</sub>(*X̃*) and Res<sup>M N<sub>A</sub>(D)</sup><sub>M N<sub>J</sub>(D)</sub>(*X̃*') lie in blocks with the same Brauer correspondent for every group J with *S̃* ≤ J ≤ A

#### Definition

The block B is **AM-good**, if the defect group of B is central. The block B is **AM-good**, if for the non-central defect group D of B

**1** there exists a group M with

M is stable under Aut $(\widehat{S})_{B,D}$  and  $N_{\widehat{S}}(D) \le M \le \widehat{S}$ 

Solution
Solution<

$$\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$$

- **③** for every faithful  $\chi \in Irr_0(B)$  there exists a group A such that
  - $\widehat{S} \lhd A \text{ and } A / \mathsf{C}_{\mathcal{A}}(\widehat{S}) \cong \mathsf{Aut}(\widehat{S})_{\chi}$
  - $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
  - $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
  - Res<sup>A</sup><sub>C<sub>A</sub>(S)</sub>(X̃) and Res<sup>M N<sub>A</sub>(D)</sup>(X̃') are multiples of the same irreducible character
  - Res<sup>A</sup><sub>J</sub>( \$\tilde{\chi}\$) and Res<sup>M N<sub>A</sub>(D)</sup><sub>M N<sub>J</sub>(D)</sub>(\$\tilde{\chi}\$') lie in blocks with the same Brauer correspondent for every group J with \$\tilde{S}\$ ≤ J ≤ A

#### Definition

The block B is **AM-good**, if the defect group of B is central. The block B is **AM-good**, if for the non-central defect group D of B

**1** there exists a group M with

M is stable under Aut $(\widehat{S})_{B,D}$  and  $N_{\widehat{S}}(D) \le M \le \widehat{S}$ 

Solution
If the exists a Aut( $\widehat{S}$ )<sub>B,D</sub>-equivariant bijection

$$\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$$

- $\models \ \widehat{S} \lhd A \text{ and } A / \mathsf{C}_{\mathsf{A}}(\widehat{S}) \cong \mathsf{Aut}(\widehat{S})_{\chi}$
- $\chi$  has an extension  $\widetilde{\chi} \in \mathsf{Irr}(A)$ ,
- $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
- Res<sup>A</sup><sub>C<sub>A</sub>(Ŝ)</sub>(x̃) and Res<sup>M N<sub>A</sub>(D)</sup><sub>C<sub>A</sub>(Ŝ)</sub>(x̃') are multiples of the same irreducible character
- Res<sup>A</sup><sub>J</sub>(X̃) and Res<sup>M N<sub>A</sub>(D)</sup><sub>M N<sub>J</sub>(D)</sub>(X̃') lie in blocks with the same Brauer correspondent for every group J with Ŝ ≤ J ≤ A
Let p be a prime,  $\hat{S}$  a quasisimple group and B a block of  $\hat{S}$ .

### Definition

The block B is **AM-good**, if the defect group of B is central. The block B is **AM-good**, if for the non-central defect group D of B

**1** there exists a group M with

M is stable under Aut $(\widehat{S})_{B,D}$  and  $N_{\widehat{S}}(D) \leq M \leq \widehat{S}$ 

Solution
If the exists a Aut( $\widehat{S}$ )<sub>B,D</sub>-equivariant bijection

$$\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$$

**③** for every faithful  $\chi \in Irr_0(B)$  there exists a group A such that

- $\vdash \widehat{S} \lhd A \text{ and } A / \mathsf{C}_{\mathsf{A}}(\widehat{S}) \cong \mathsf{Aut}(\widehat{S})_{\chi}$
- $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
- ►  $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
- Res $_{C_A(\widehat{S})}^A(\widetilde{\chi})$  and Res $_{C_A(\widehat{S})}^{M N_A(D)}(\widetilde{\chi}')$  are multiples of the same irreducible character
- Res<sup>A</sup><sub>J</sub>(*x̃*) and Res<sup>M N<sub>A</sub>(D)</sup><sub>J(D)</sub>(*x̃*') lie in blocks with the same Brauer correspondent for every group J with *S̃* ≤ J ≤ A

Let p be a prime,  $\hat{S}$  a quasisimple group and B a block of  $\hat{S}$ .

### Definition

The block B is **AM-good**, if the defect group of B is central. The block B is **AM-good**, if for the non-central defect group D of B

• there exists a group M with

M is stable under Aut $(\widehat{S})_{B,D}$  and  $N_{\widehat{S}}(D) \leq M \leq \widehat{S}$ 

Solution
If the exists a Aut( $\widehat{S}$ )<sub>B,D</sub>-equivariant bijection

$$\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b).$$

**③** for every faithful  $\chi \in Irr_0(B)$  there exists a group A such that

- $\mathrel{\scriptstyle{\vdash}} \widehat{S} \lhd A \text{ and } A/\operatorname{\mathsf{C}}_{\mathsf{A}}(\widehat{S}) \cong \operatorname{\mathsf{Aut}}(\widehat{S})_{\chi}$
- $\chi$  has an extension  $\widetilde{\chi} \in Irr(A)$ ,
- $\Omega(\chi)$  has an extension  $\widetilde{\chi}' \in Irr(M N_A(D))$ ,
- Res<sub> $C_A(\widehat{S})$ </sub>( $\widetilde{\chi}$ ) and Res<sub> $C_A(\widehat{S})$ </sub> $(\widetilde{\chi}')$  are multiples of the same irreducible character
- $\operatorname{Res}_{J}^{A}(\widetilde{\chi})$  and  $\operatorname{Res}_{M \operatorname{N}_{J}(D)}^{M \operatorname{N}_{A}(D)}(\widetilde{\chi}')$  lie in blocks with the same Brauer correspondent for every group J with  $\widehat{S} \leq J \leq A$

## Definition

A quasisimple group  $\widehat{S}$  is AM-good, if all blocks B of  $\widehat{S}$  are AM-good, i.e. the above strengthened equivariant version of the Alperin-McKay conjecture holds for B.

### Definition

## Definition

A quasisimple group  $\widehat{S}$  is AM-good, if all blocks B of  $\widehat{S}$  are AM-good, i.e. the above strengthened equivariant version of the Alperin-McKay conjecture holds for B.

### Definition

### Definition

A quasisimple group  $\widehat{S}$  is AM-good, if all blocks B of  $\widehat{S}$  are AM-good, i.e. the above strengthened equivariant version of the Alperin-McKay conjecture holds for B.

### Definition

## Definition

A quasisimple group  $\widehat{S}$  is AM-good, if all blocks B of  $\widehat{S}$  are AM-good, i.e. the above strengthened equivariant version of the Alperin-McKay conjecture holds for B.

### Definition

## Definition

A quasisimple group  $\widehat{S}$  is AM-good, if all blocks B of  $\widehat{S}$  are AM-good, i.e. the above strengthened equivariant version of the Alperin-McKay conjecture holds for B.

### Definition

$$\mathsf{Aut}(\mathsf{SL}_4(\mathbb{F}_2)) = \mathsf{SL}_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$$

Here  $\Gamma$  is given by  $x \mapsto J(x^{\perp})^{-1}J$ , where J corresponds to the longest element of  $S_n$ .

#### Take

- I)  $B_1$  the 2-block with maximal defect,
- (a)  $b_1$  be the Brauer correspondent of  $B_1$ , the principal block of P.

$$\mathsf{Aut}(\mathsf{SL}_4(\mathbb{F}_2)) = \mathsf{SL}_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$$

Here  $\Gamma$  is given by  $x \mapsto J(x^{\perp})^{-1}J$ , where J corresponds to the longest element of  $S_n$ .

#### Take

- **(**)  $B_1$  the 2-block with maximal defect,
- **2**  $b_1$  be the Brauer correspondent of  $B_1$ , the principal block of P.

# $\mathsf{SL}_4(\mathbb{F}_2)$ is AM-good for p=2

### Steps to check:

- $|\operatorname{Irr}_0(B_1)| = |\operatorname{Irr}_0(b_1)|$
- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in Irr<sub>0</sub>( $B_1$ ) four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega$  :  $Irr_0(B_1) \longrightarrow Irr_0(b_1)$ . Let  $\chi \in Irr_0(B_1)$  and  $\Omega(\chi) \in Irr_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

 $B_1$  is AM-good for 2.

### Steps to check:

## • $|\operatorname{Irr}_0(B_1)| = |\operatorname{Irr}_0(b_1)|$

- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in Irr<sub>0</sub>( $B_1$ ) four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega$  :  $Irr_0(B_1) \longrightarrow Irr_0(b_1)$ . Let  $\chi \in Irr_0(B_1)$  and  $\Omega(\chi) \in Irr_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

 $B_1$  is AM-good for 2.

Steps to check:

- $|\operatorname{Irr}_0(B_1)| = |\operatorname{Irr}_0(b_1)|$
- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in Irr<sub>0</sub>( $B_1$ ) four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega$  :  $Irr_0(B_1) \longrightarrow Irr_0(b_1)$ . Let  $\chi \in Irr_0(B_1)$  and  $\Omega(\chi) \in Irr_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

 $B_1$  is AM-good for 2.

Steps to check:

- $|\operatorname{Irr}_0(B_1)| = |\operatorname{Irr}_0(b_1)|$
- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in Irr<sub>0</sub>( $B_1$ ) four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega$  :  $Irr_0(B_1) \longrightarrow Irr_0(b_1)$ . Let  $\chi \in Irr_0(B_1)$  and  $\Omega(\chi) \in Irr_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

 $B_1$  is AM-good for 2.

Steps to check:

- $| | Irr_0(B_1) | = | | Irr_0(b_1) |$
- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in  $Irr_0(B_1)$  four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega$  :  $Irr_0(B_1) \longrightarrow Irr_0(b_1)$ .

Let  $\chi \in Irr_0(B_1)$  and  $\Omega(\chi) \in Irr_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

 $B_1$  is AM-good for 2.

Steps to check:

- $| | Irr_0(B_1) | = | | Irr_0(b_1) |$
- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in  $Irr_0(B_1)$  four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega : \operatorname{Irr}_0(B_1) \longrightarrow \operatorname{Irr}_0(b_1)$ . Let  $\chi \in \operatorname{Irr}_0(B_1)$  and  $\Omega(\chi) \in \operatorname{Irr}_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

 $B_1$  is AM-good for 2.

Steps to check:

- $| | Irr_0(B_1) | = | | Irr_0(b_1) |$
- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in  $Irr_0(B_1)$  four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega$  :  $Irr_0(B_1) \longrightarrow Irr_0(b_1)$ . Let  $\chi \in Irr_0(B_1)$  and  $\Omega(\chi) \in Irr_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

 $B_1$  is AM-good for 2.

Steps to check:

- $| | Irr_0(B_1) | = | | Irr_0(b_1) |$
- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in Irr<sub>0</sub>( $B_1$ ) four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega$  :  $Irr_0(B_1) \longrightarrow Irr_0(b_1)$ .

Let  $\chi \in Irr_0(B_1)$  and  $\Omega(\chi) \in Irr_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

 $B_1$  is AM-good for 2.

Steps to check:

- $| | Irr_0(B_1) | = | | Irr_0(b_1) |$
- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in Irr<sub>0</sub>( $B_1$ ) four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega$  :  $Irr_0(B_1) \longrightarrow Irr_0(b_1)$ . Let  $\chi \in Irr_0(B_1)$  and  $\Omega(\chi) \in Irr_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

### $B_1$ is AM-good for 2.

Steps to check:

- $| | Irr_0(B_1) | = | | Irr_0(b_1) |$
- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in Irr<sub>0</sub>( $B_1$ ) four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega$  :  $Irr_0(B_1) \longrightarrow Irr_0(b_1)$ . Let  $\chi \in Irr_0(B_1)$  and  $\Omega(\chi) \in Irr_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

 $B_1$  is AM-good for 2.

Steps to check:

- $| | Irr_0(B_1) | = | | Irr_0(b_1) |$
- $\Gamma$  fixes in Irr<sub>0</sub>( $b_1$ ) four characters
- $\Gamma$  fixes in Irr<sub>0</sub>( $B_1$ ) four characters

Hence there exists a  $\Gamma$ -equivariant bijection  $\Omega$  :  $Irr_0(B_1) \longrightarrow Irr_0(b_1)$ . Let  $\chi \in Irr_0(B_1)$  and  $\Omega(\chi) \in Irr_0(b_1)$ .

The last condition is trivial if  $\chi$  is not  $\Gamma$ -invariant.

Otherwise let  $A := SL_4(\mathbb{F}_2) \rtimes \langle \Gamma \rangle$ . Hence  $A/SL_4(\mathbb{F}_2)$  is cyclic

Note that  $\chi$  extends to A and  $\Omega(\chi)$  extends to  $P \rtimes \langle \Gamma \rangle$ . Hence the last condition is satisfied here as well.

 $B_1$  is AM-good for 2.

#### Projective representation

We call  $\mathcal{P} : G \to GL_n(\mathbb{C})$  a projective representations, if the induced map  $G \to PGL_n(\mathbb{C})$  is a group morphism.



For a projective representation  $\mathcal{P}$  there exists a map  $\alpha : G \times G \to \mathbb{C}^*$  with  $\mathcal{P}(g)\mathcal{P}(g') = \alpha(g,g')\mathcal{P}(gg')$  for every  $g,g' \in G$ . This map  $\alpha : G \times G \to \mathbb{C}^*$  is the **factor set of**  $\mathcal{P}$ .

#### Projective representation

We call  $\mathcal{P} : G \to GL_n(\mathbb{C})$  a projective representations, if the induced map  $G \to PGL_n(\mathbb{C})$  is a group morphism.



For a projective representation  $\mathcal{P}$  there exists a map  $\alpha : G \times G \to \mathbb{C}^*$  with  $\mathcal{P}(g)\mathcal{P}(g') = \alpha(g,g')\mathcal{P}(gg')$  for every  $g,g' \in G$ . This map  $\alpha : G \times G \to \mathbb{C}^*$  is the **factor set of**  $\mathcal{P}$ .

#### Projective representation

We call  $\mathcal{P} : G \to GL_n(\mathbb{C})$  a projective representations, if the induced map  $G \to PGL_n(\mathbb{C})$  is a group morphism.



For a projective representation  $\mathcal{P}$  there exists a map  $\alpha: \mathcal{G} \times \mathcal{G} \to \mathbb{C}^*$  with

$$\mathcal{P}(g)\mathcal{P}(g') = lpha(g,g')\mathcal{P}(gg')$$
 for every  $g,g' \in G$ .

This map  $lpha: {\mathcal G} imes {\mathcal G} o {\mathbb C}^*$  is the **factor set of**  ${\mathcal P}.$ 

#### Projective representation

We call  $\mathcal{P} : G \to GL_n(\mathbb{C})$  a projective representations, if the induced map  $G \to PGL_n(\mathbb{C})$  is a group morphism.



For a projective representation  $\mathcal{P}$  there exists a map  $\alpha: \mathcal{G} \times \mathcal{G} \to \mathbb{C}^*$  with

$$\mathcal{P}(g)\mathcal{P}(g') = \alpha(g,g')\mathcal{P}(gg')$$
 for every  $g,g' \in G$ .

This map  $\alpha : G \times G \to \mathbb{C}^*$  is the factor set of  $\mathcal{P}$ .

Suppose  $N \lhd G$  and  $\theta \in Irr(N)$ .

**Extending to projective representation of**  $G_{\theta}$ : We find a projective representation  $\mathcal{P}$  of some  $G_{\theta}$ , such that  $\mathcal{P}|_N$  is a representation affording  $\theta$  and the factor set of  $\mathcal{P}$  is constant on  $N \times N$ -cosets.

**Tensoring with projective representation of**  $G_{\theta}/N$ : We can tensor  $\mathcal{P}$  with a (irreducible) projective representation of  $G_{\theta}/N$  whose factor set is inverse to the one of  $\mathcal{P}$ . Then  $\mathcal{P} \otimes \mathcal{Q}$  is a representation of  $G_{\theta}$ .

**Induction of character to** *G*:

Let  $\psi$  be a character afforded by  $\mathcal{P} \otimes \mathcal{Q}$  then  $\operatorname{Ind}_{G_{\theta}}^{\mathsf{G}}(\psi)$  is irreducible.

## Suppose $N \lhd G$ and $\theta \in Irr(N)$ .

**Extending to projective representation of**  $G_{\theta}$ : We find a projective representation  $\mathcal{P}$  of some  $G_{\theta}$ , such that  $\mathcal{P}|_{N}$  is a representation affording  $\theta$  and the factor set of  $\mathcal{P}$  is constant on  $N \times N$ -cosets.

**Tensoring with projective representation of**  $G_{\theta}/N$ : We can tensor  $\mathcal{P}$  with a (irreducible) projective representation of  $G_{\theta}/N$  whose factor set is inverse to the one of  $\mathcal{P}$ . Then  $\mathcal{P} \otimes \mathcal{Q}$  is a representation of  $G_{\theta}$ .

**Induction of character to** *G*:

Let  $\psi$  be a character afforded by  $\mathcal{P} \otimes \mathcal{Q}$  then  $\operatorname{Ind}_{G_{\theta}}^{\mathsf{G}}(\psi)$  is irreducible.

Suppose  $N \lhd G$  and  $\theta \in Irr(N)$ .

### Extending to projective representation of $G_{\theta}$ :

We find a projective representation  $\mathcal{P}$  of some  $G_{\theta}$ , such that  $\mathcal{P}|_{N}$  is a representation affording  $\theta$  and the factor set of  $\mathcal{P}$  is constant on  $N \times N$ -cosets.

Tensoring with projective representation of  $G_{\theta}/N$ : We can tensor  $\mathcal{P}$  with a (irreducible) projective representation of  $G_{\theta}/N$  whose factor set is inverse to the one of  $\mathcal{P}$ . Then  $\mathcal{P} \otimes \mathcal{Q}$  is a representation of  $G_{\theta}$ .

**Induction of character to** *G*:

Let  $\psi$  be a character afforded by  $\mathcal{P} \otimes \mathcal{Q}$  then  $\operatorname{Ind}_{G_{\theta}}^{\mathsf{G}}(\psi)$  is irreducible.

Suppose  $N \lhd G$  and  $\theta \in Irr(N)$ .

### Extending to projective representation of $G_{\theta}$ :

We find a projective representation  $\mathcal{P}$  of some  $G_{\theta}$ , such that  $\mathcal{P}|_{N}$  is a representation affording  $\theta$  and the factor set of  $\mathcal{P}$  is constant on  $N \times N$ -cosets.

### Tensoring with projective representation of $G_{\theta}/N$ :

We can tensor  $\mathcal{P}$  with a (irreducible) projective representation of  $G_{\theta}/N$  whose factor set is inverse to the one of  $\mathcal{P}$ . Then  $\mathcal{P} \otimes \mathcal{Q}$  is a representation of  $G_{\theta}$ .

Induction of character to G:

Let  $\psi$  be a character afforded by  $\mathcal{P} \otimes \mathcal{Q}$  then  $\operatorname{Ind}_{G_{\theta}}^{\mathsf{G}}(\psi)$  is irreducible.

Suppose  $N \lhd G$  and  $\theta \in Irr(N)$ .

### Extending to projective representation of $G_{\theta}$ :

We find a projective representation  $\mathcal{P}$  of some  $G_{\theta}$ , such that  $\mathcal{P}|_{N}$  is a representation affording  $\theta$  and the factor set of  $\mathcal{P}$  is constant on  $N \times N$ -cosets.

## Tensoring with projective representation of $G_{\theta}/N$ :

We can tensor  $\mathcal{P}$  with a (irreducible) projective representation of  $G_{\theta}/N$  whose factor set is inverse to the one of  $\mathcal{P}$ . Then  $\mathcal{P} \otimes \mathcal{Q}$  is a representation of  $G_{\theta}$ .

### Induction of character to G:

Let  $\psi$  be a character afforded by  $\mathcal{P} \otimes \mathcal{Q}$  then  $\operatorname{Ind}_{G_{\theta}}^{\mathsf{G}}(\psi)$  is irreducible.

Suppose  $N \lhd G$  and  $\theta \in Irr(N)$ .

### Extending to projective representation of $G_{\theta}$ :

We find a projective representation  $\mathcal{P}$  of some  $G_{\theta}$ , such that  $\mathcal{P}|_{N}$  is a representation affording  $\theta$  and the factor set of  $\mathcal{P}$  is constant on  $N \times N$ -cosets.

### Tensoring with projective representation of $G_{\theta}/N$ :

We can tensor  $\mathcal{P}$  with a (irreducible) projective representation of  $G_{\theta}/N$  whose factor set is inverse to the one of  $\mathcal{P}$ . Then  $\mathcal{P} \otimes \mathcal{Q}$  is a representation of  $G_{\theta}$ .

### Induction of character to G:

Let  $\psi$  be a character afforded by  $\mathcal{P} \otimes \mathcal{Q}$  then  $\operatorname{Ind}_{G_{\theta}}^{\mathsf{G}}(\psi)$  is irreducible.

## Theorem (Navarro-S.)

Let  $B \in Bl(G)$  with defect group D and  $b \in Bl(N_G(D))$  the Brauer correspondent of b. Suppose that G is a normal subgroup of A. Assume that all non-abelian simple groups involved in G and their extensions are AM-good.

There exists an  $N_A(D)$ -equivariant bijection

 $\Omega: \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b),$ 

such that for every  $heta \in \mathsf{Irr}_0(B)$  and  $heta' := \Omega( heta)$  there is a bijection

## Theorem (Navarro-S.)

Let  $B \in BI(G)$  with defect group D and  $b \in BI(N_G(D))$  the Brauer correspondent of b. Suppose that G is a normal subgroup of A. Assume that all non-abelian simple groups involved in G and their extensions are AM-good. There exists an  $N_A(D)$ -equivariant bijection  $\Omega : Irr_0(B) \longrightarrow Irr_0(b),$ 

{ constituents of  $\operatorname{Ind}_{G}^{A}(\theta)$ }  $\longrightarrow$  { constituents of  $\operatorname{Ind}_{M}^{MN_{A}(D)}(\theta')$ }

## Theorem (Navarro-S.)

Let  $B \in Bl(G)$  with defect group D and  $b \in Bl(N_G(D))$  the Brauer correspondent of b. Suppose that G is a normal subgroup of A. Assume that all non-abelian simple groups involved in G and their extensions are AM-good. There exists an  $N_A(D)$ -equivariant bijection  $\Omega : Irr_0(B) \longrightarrow Irr_0(b)$ , such that for every  $\theta \in Irr_0(B)$  and  $\theta' := \Omega(\theta)$  there is a bijection

## Theorem (Navarro-S.)

Let  $B \in Bl(G)$  with defect group D and  $b \in Bl(N_G(D))$  the Brauer correspondent of b. Suppose that G is a normal subgroup of A. Assume that all non-abelian simple groups involved in G and their extensions are AM-good.

There exists an  $N_A(D)$ -equivariant bijection  $\Omega : Irr_0(B) \longrightarrow Irr_0(b),$ such that for every  $\theta \in Irr_0(B)$  and  $\theta' := \Omega(\theta)$  there is a bijection

## Theorem (Navarro-S.)

Let  $B \in Bl(G)$  with defect group D and  $b \in Bl(N_G(D))$  the Brauer correspondent of b. Suppose that G is a normal subgroup of A. Assume that all non-abelian simple groups involved in G and their extensions are AM-good.

There exists an  $N_A(D)$ -equivariant bijection  $\Omega : \operatorname{Irr}_0(B) \longrightarrow \operatorname{Irr}_0(b),$ 

such that for every  $\theta \in Irr_0(B)$  and  $\theta' := \Omega(\theta)$  there is a bijection

There exists an  $N_A(D)$ -equivariant bijection

## Theorem (Navarro-S.)

Let  $B \in Bl(G)$  with defect group D and  $b \in Bl(N_G(D))$  the Brauer correspondent of b. Suppose that G is a normal subgroup of A. Assume that all non-abelian simple groups involved in G and their extensions are AM-good.

 $\Omega: Irr_0(B) \longrightarrow Irr_0(b),$ such that for every  $\theta \in Irr_0(B)$  and  $\theta' := \Omega(\theta)$  there is a bijection

{ constituents of  $\operatorname{Ind}_{G}^{A}(\theta)$ }  $\longrightarrow$  { constituents of  $\operatorname{Ind}_{M}^{M_{N_{A}}(D)}(\theta')$ }.
#### Theorem (Navarro-Tiep, 2012)

Let  $\theta \in Irr(Z(G))$ . If all irreducible constituents of  $Ind_{Z(G)}^{G}(\theta)$  have p'-degree, then G/Z(G) has an abelian Sylow p-subgroup.

Together with Murai's statement:

#### Theorem (Navarro-S.)

Let G be a finite group. Assume that

- BHZ holds for all quasisimple groups,
- all simple groups involved in G and their central extensions are AM-good.

Then BHZ, especially "BHZ  $\Rightarrow$ " holds for G.

#### Theorem (Navarro-Tiep, 2012)

Let  $\theta \in Irr(Z(G))$ . If all irreducible constituents of  $Ind_{Z(G)}^{G}(\theta)$  have p'-degree, then G/Z(G) has an abelian Sylow p-subgroup.

Together with Murai's statement:

#### Theorem (Navarro-S.)

Let G be a finite group. Assume that

- BHZ holds for all quasisimple groups,
- all simple groups involved in G and their central extensions are AM-good.

Then BHZ, especially "BHZ  $\Rightarrow$ " holds for G.

#### Theorem (Navarro-Tiep, 2012)

Let  $\theta \in Irr(Z(G))$ . If all irreducible constituents of  $Ind_{Z(G)}^{G}(\theta)$  have p'-degree, then G/Z(G) has an abelian Sylow p-subgroup.

#### Together with Murai's statement:

#### Theorem (Navarro-S.)

Let G be a finite group. Assume that

- BHZ holds for all quasisimple groups,
- all simple groups involved in G and their central extensions are AM-good.

Then BHZ, especially "BHZ  $\Rightarrow$ " holds for G.

#### Theorem (Navarro-Tiep, 2012)

Let  $\theta \in Irr(Z(G))$ . If all irreducible constituents of  $Ind_{Z(G)}^{G}(\theta)$  have p'-degree, then G/Z(G) has an abelian Sylow p-subgroup.

Together with Murai's statement:

#### Theorem (Navarro-S.)

Let G be a finite group. Assume that

- BHZ holds for all quasisimple groups,
- all simple groups involved in G and their central extensions are AM-good.

Then BHZ, especially "BHZ  $\Rightarrow$ " holds for G.

#### Theorem (Navarro-Tiep, 2012)

Let  $\theta \in Irr(Z(G))$ . If all irreducible constituents of  $Ind_{Z(G)}^{G}(\theta)$  have p'-degree, then G/Z(G) has an abelian Sylow p-subgroup.

Together with Murai's statement:

#### Theorem (Navarro-S.)

Let G be a finite group. Assume that

- BHZ holds for all quasisimple groups,
- all simple groups involved in G and their central extensions are AM-good.

Then BHZ, especially "BHZ  $\Rightarrow$ " holds for G.

#### Theorem (Navarro-Tiep, 2012)

Let  $\theta \in Irr(Z(G))$ . If all irreducible constituents of  $Ind_{Z(G)}^{G}(\theta)$  have p'-degree, then G/Z(G) has an abelian Sylow p-subgroup.

Together with Murai's statement:

#### Theorem (Navarro-S.)

Let G be a finite group. Assume that

- BHZ holds for all quasisimple groups,
- all simple groups involved in G and their central extensions are AM-good.

Then BHZ, especially "BHZ  $\Rightarrow$ " holds for G.

#### Theorem (Navarro-Tiep, 2012)

Let  $\theta \in Irr(Z(G))$ . If all irreducible constituents of  $Ind_{Z(G)}^{G}(\theta)$  have p'-degree, then G/Z(G) has an abelian Sylow p-subgroup.

Together with Murai's statement:

#### Theorem (Navarro-S.)

Let G be a finite group. Assume that

- BHZ holds for all quasisimple groups,
- all simple groups involved in G and their central extensions are AM-good.

Then BHZ, especially "BHZ  $\Rightarrow$ " holds for G.

#### Theorem

- sporadic groups (An-Dietrich, Breuer, Malle) (few exceptions)
- alternating groups (Alperin-Fong, Malle, Olsson, S.)
- simple groups of Lie type over 𝔽<sub>q</sub> with p | q (Maslowski, Navarro-Tiep, S.)
- Sp<sub>6</sub>(2<sup>*i*</sup>) (Schaeffer Fry)

#### Theorem

- sporadic groups (An-Dietrich, Breuer, Malle) (few exceptions)
- alternating groups (Alperin-Fong, Malle, Olsson, S.)
- simple groups of Lie type over 𝔽<sub>q</sub> with p | q (Maslowski, Navarro-Tiep, S.)
- Sp<sub>6</sub>(2<sup>*i*</sup>) (Schaeffer Fry)

#### Theorem

- sporadic groups (An-Dietrich, Breuer, Malle) (few exceptions)
- alternating groups (Alperin-Fong, Malle, Olsson, S.)
- simple groups of Lie type over 𝔽<sub>q</sub> with p | q (Maslowski, Navarro-Tiep, S.)
- Sp<sub>6</sub>(2<sup>*i*</sup>) (Schaeffer Fry)

#### Theorem

- sporadic groups (An-Dietrich, Breuer, Malle) (few exceptions)
- alternating groups (Alperin-Fong, Malle, Olsson, S.)
- simple groups of Lie type over 𝔽<sub>q</sub> with p | q (Maslowski, Navarro-Tiep, S.)
- Sp<sub>6</sub>(2<sup>*i*</sup>) (Schaeffer Fry)

#### Theorem

- sporadic groups (An-Dietrich, Breuer, Malle) (few exceptions)
- alternating groups (Alperin-Fong, Malle, Olsson, S.)
- simple groups of Lie type over 𝔽<sub>q</sub> with p | q (Maslowski, Navarro-Tiep, S.)
- Sp<sub>6</sub>(2<sup>*i*</sup>) (Schaeffer Fry)

## Open: groups of Lie type over $\mathbb{F}_q$ with $p \nmid q$

#### Theorem (Malle, S., 2007)

Let  $\widehat{S}$  be a quasisimple group such that  $\widehat{S}/Z(\widehat{S})$  is a simple group of Lie type. Let p be a prime different from the characteristic of the field underlying  $\widehat{S}$  and P a Sylow p-subgroup of  $\widehat{S}$ . Then there exists a group  $N \ge N_{\widehat{S}}(P)$  and a bijection

$$\Omega: \mathrm{Irr}_{p'}(\widehat{S}) \longrightarrow \mathrm{Irr}_{p'}(N)$$

**Problem**:  $\Omega$  is given by parametrizing the sets with the same labels (but labelling depends on choices!)

Open: groups of Lie type over  $\mathbb{F}_q$  with  $p \nmid q$ 

#### Theorem (Malle, S., 2007)

Let  $\widehat{S}$  be a quasisimple group such that  $\widehat{S}/Z(\widehat{S})$  is a simple group of Lie type. Let p be a prime different from the characteristic of the field underlying  $\widehat{S}$  and P a Sylow p-subgroup of  $\widehat{S}$ . Then there exists a group  $N \ge N_{\widehat{S}}(P)$  and a bijection

$$\Omega: \mathrm{Irr}_{p'}(\widehat{S}) \longrightarrow \mathrm{Irr}_{p'}(N)$$

**Problem**:  $\Omega$  is given by parametrizing the sets with the same labels (but labelling depends on choices!)

Open: groups of Lie type over  $\mathbb{F}_q$  with  $p \nmid q$ 

#### Theorem (Malle, S., 2007)

Let  $\widehat{S}$  be a quasisimple group such that  $\widehat{S}/Z(\widehat{S})$  is a simple group of Lie type. Let p be a prime different from the characteristic of the field underlying  $\widehat{S}$  and P a Sylow p-subgroup of  $\widehat{S}$ . Then there exists a group  $N \ge N_{\widehat{S}}(P)$  and a bijection

$$\Omega: \mathrm{Irr}_{p'}(\widehat{S}) \longrightarrow \mathrm{Irr}_{p'}(N)$$

**Problem:**  $\Omega$  is given by parametrizing the sets with the same labels (but labelling depends on choices!)

- Quasisimple groups of type <sup>3</sup>D<sub>4</sub>, E<sub>8</sub>, F<sub>4</sub>, <sup>2</sup>F<sub>4</sub> and G<sub>2</sub> are McKay-good.
- ② Let S be a quasisimple group of type <sup>3</sup>D<sub>4</sub> E<sub>8</sub>, F<sub>4</sub> or G<sub>2</sub>. For ℓ ≥ 5 the blocks of Ŝ whose defect groups are Sylow p-subgroups are BAW-good.
- Solution Content in the second se

#### Theorem (Cabanes-S., 2013)

- Quasisimple groups of type <sup>3</sup>D<sub>4</sub>, E<sub>8</sub>, F<sub>4</sub>, <sup>2</sup>F<sub>4</sub> and G<sub>2</sub> are McKay-good.
- ② Let Ŝ be a quasisimple group of type <sup>3</sup>D<sub>4</sub> E<sub>8</sub>, F<sub>4</sub> or G<sub>2</sub>. For ℓ ≥ 5 the blocks of Ŝ whose defect groups are Sylow p-subgroups are BAW-good.
- Solution 2 Let S be a quasisimple group of type of <sup>3</sup>D<sub>4</sub> E<sub>8</sub>, F<sub>4</sub> or G<sub>2</sub>. For ℓ ≥ 7 the blocks of S whose defect groups are Sylow p-subgroups are AM-good.

#### Theorem (Cabanes-S., 2013)

- Quasisimple groups of type <sup>3</sup>D<sub>4</sub>, E<sub>8</sub>, F<sub>4</sub>, <sup>2</sup>F<sub>4</sub> and G<sub>2</sub> are McKay-good.
- ② Let Ŝ be a quasisimple group of type <sup>3</sup>D<sub>4</sub> E<sub>8</sub>, F<sub>4</sub> or G<sub>2</sub>. For ℓ ≥ 5 the blocks of Ŝ whose defect groups are Sylow p-subgroups are BAW-good.
- Solution Content in the second se

#### Theorem (Cabanes-S., 2013)

- Quasisimple groups of type <sup>3</sup>D<sub>4</sub>, E<sub>8</sub>, F<sub>4</sub>, <sup>2</sup>F<sub>4</sub> and G<sub>2</sub> are McKay-good.
- ② Let Ŝ be a quasisimple group of type <sup>3</sup>D<sub>4</sub> E<sub>8</sub>, F<sub>4</sub> or G<sub>2</sub>. For ℓ ≥ 5 the blocks of Ŝ whose defect groups are Sylow p-subgroups are BAW-good.
- Solution Content in the second se

#### Theorem (Cabanes-S., 2013)

#### Automorphisms of $SL_n(\mathbb{F}_q)$ :

- $GL_n(\mathbb{F}_q)$  acts on  $SL_n(\mathbb{F}_q)$  by conjugation
- ullet graph automorphism  $\Gamma$  with  $g\mapsto (g^{\perp})^-$
- Galois automorphisms of  $\mathbb{F}_q$  induce automorphisms on  $\mathrm{SL}_n(\mathbb{F}_q)$

There is a torus **T** of  $SL_n(\mathbb{F}_q)$  such that  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$  plays the role of  $N_{\widehat{S}}(P)$  for a Sylow *p*-subgroup *P*.

- Special shape of stabilizers of characters (not every subgroup of Aut(SL<sub>n</sub>(F<sub>q</sub>)) occurs as the stabilizer of a character of SL<sub>n</sub>(F<sub>q</sub>) (proven by use of Kawanaka's generalized Gelfand-Graev characters)
- similar result on characters of  $N_{SL_n(\mathbb{F}_q)}(\mathsf{T})$
- bijection between some characters of GL<sub>n</sub>(F<sub>q</sub>) and N<sub>GL<sub>n</sub>(F<sub>q</sub>)(T) (using Jordan decomposition of characters and *d*-Harish-Chandra theory)
  </sub>

### Automorphisms of $SL_n(\mathbb{F}_q)$ :

- $\operatorname{GL}_n(\mathbb{F}_q)$  acts on  $\operatorname{SL}_n(\mathbb{F}_q)$  by conjugation
- graph automorphism  $\Gamma$  with  $g\mapsto (g^{\perp})^{-1}$
- Galois automorphisms of  $\mathbb{F}_q$  induce automorphisms on  $\mathrm{SL}_n(\mathbb{F}_q)$

There is a torus **T** of  $SL_n(\mathbb{F}_q)$  such that  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$  plays the role of  $N_{\widehat{S}}(P)$  for a Sylow *p*-subgroup *P*.

- Special shape of stabilizers of characters (not every subgroup of Aut(SL<sub>n</sub>(F<sub>q</sub>)) occurs as the stabilizer of a character of SL<sub>n</sub>(F<sub>q</sub>) (proven by use of Kawanaka's generalized Gelfand-Graev characters)
- $\bullet$  similar result on characters of  $N_{\mathsf{SL}_n(\mathbb{F}_q)}(\mathsf{T})$
- bijection between some characters of GL<sub>n</sub>(F<sub>q</sub>) and N<sub>GL<sub>n</sub>(F<sub>q</sub>)(T) (using Jordan decomposition of characters and *d*-Harish-Chandra theory)
  </sub>

### Automorphisms of $SL_n(\mathbb{F}_q)$ :

- $\operatorname{GL}_n(\mathbb{F}_q)$  acts on  $\operatorname{SL}_n(\mathbb{F}_q)$  by conjugation
- graph automorphism  ${\sf \Gamma}$  with  $g\mapsto (g^{\perp})^{-1}$
- Galois automorphisms of  $\mathbb{F}_q$  induce automorphisms on  $\mathrm{SL}_n(\mathbb{F}_q)$

There is a torus **T** of  $SL_n(\mathbb{F}_q)$  such that  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$  plays the role of  $N_{\widehat{S}}(P)$  for a Sylow *p*-subgroup *P*.

- Special shape of stabilizers of characters (not every subgroup of Aut(SL<sub>n</sub>(F<sub>q</sub>)) occurs as the stabilizer of a character of SL<sub>n</sub>(F<sub>q</sub>) (proven by use of Kawanaka's generalized Gelfand-Graev characters)
- similar result on characters of  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$
- bijection between some characters of GL<sub>n</sub>(F<sub>q</sub>) and N<sub>GL<sub>n</sub>(F<sub>q</sub>)(T) (using Jordan decomposition of characters and *d*-Harish-Chandra theory)
  </sub>

#### Automorphisms of $SL_n(\mathbb{F}_q)$ :

- $GL_n(\mathbb{F}_q)$  acts on  $SL_n(\mathbb{F}_q)$  by conjugation
- graph automorphism  $\Gamma$  with  $g\mapsto (g^{\perp})^{-1}$
- Galois automorphisms of  $\mathbb{F}_q$  induce automorphisms on  $\mathrm{SL}_n(\mathbb{F}_q)$

There is a torus **T** of  $SL_n(\mathbb{F}_q)$  such that  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$  plays the role of  $N_{\widehat{S}}(P)$  for a Sylow *p*-subgroup *P*.

- Special shape of stabilizers of characters (not every subgroup of Aut(SL<sub>n</sub>(F<sub>q</sub>)) occurs as the stabilizer of a character of SL<sub>n</sub>(F<sub>q</sub>) (proven by use of Kawanaka's generalized Gelfand-Graev characters)
- similar result on characters of  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$
- bijection between some characters of GL<sub>n</sub>(F<sub>q</sub>) and N<sub>GL<sub>n</sub>(F<sub>q</sub>)(T) (using Jordan decomposition of characters and *d*-Harish-Chandra theory)
  </sub>

#### Automorphisms of $SL_n(\mathbb{F}_q)$ :

- $GL_n(\mathbb{F}_q)$  acts on  $SL_n(\mathbb{F}_q)$  by conjugation
- graph automorphism  $\Gamma$  with  $g\mapsto (g^{\perp})^{-1}$
- Galois automorphisms of  $\mathbb{F}_q$  induce automorphisms on  $\mathrm{SL}_n(\mathbb{F}_q)$

There is a torus **T** of  $SL_n(\overline{\mathbb{F}}_q)$  such that  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$  plays the role of  $N_{\widehat{S}}(P)$  for a Sylow *p*-subgroup *P*.

- Special shape of stabilizers of characters (not every subgroup of Aut(SL<sub>n</sub>(F<sub>q</sub>)) occurs as the stabilizer of a character of SL<sub>n</sub>(F<sub>q</sub>) (proven by use of Kawanaka's generalized Gelfand-Graev characters)
- similar result on characters of  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$
- bijection between some characters of GL<sub>n</sub>(F<sub>q</sub>) and N<sub>GL<sub>n</sub>(F<sub>q</sub>)(T) (using Jordan decomposition of characters and *d*-Harish-Chandra theory)
  </sub>

#### Automorphisms of $SL_n(\mathbb{F}_q)$ :

- $GL_n(\mathbb{F}_q)$  acts on  $SL_n(\mathbb{F}_q)$  by conjugation
- graph automorphism  $\Gamma$  with  $g\mapsto (g^{\perp})^{-1}$
- Galois automorphisms of  $\mathbb{F}_q$  induce automorphisms on  $\mathrm{SL}_n(\mathbb{F}_q)$

There is a torus **T** of  $SL_n(\mathbb{F}_q)$  such that  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$  plays the role of  $N_{\widehat{S}}(P)$  for a Sylow *p*-subgroup *P*. Indirect proof of the McKay-goodness uses:

- Special shape of stabilizers of characters (not every subgroup of Aut(SL<sub>n</sub>(F<sub>q</sub>)) occurs as the stabilizer of a character of SL<sub>n</sub>(F<sub>q</sub>) (proven by use of Kawanaka's generalized Gelfand-Graev characters)
- similar result on characters of  $N_{SL_n(\mathbb{F}_q)}(\mathsf{T})$
- bijection between some characters of GL<sub>n</sub>(F<sub>q</sub>) and N<sub>GL<sub>n</sub>(F<sub>q</sub>)(T) (using Jordan decomposition of characters and *d*-Harish-Chandra theory)
  </sub>

#### Automorphisms of $SL_n(\mathbb{F}_q)$ :

- $GL_n(\mathbb{F}_q)$  acts on  $SL_n(\mathbb{F}_q)$  by conjugation
- graph automorphism  $\Gamma$  with  $g\mapsto (g^{\perp})^{-1}$
- Galois automorphisms of  $\mathbb{F}_q$  induce automorphisms on  $\mathrm{SL}_n(\mathbb{F}_q)$

There is a torus **T** of  $SL_n(\overline{\mathbb{F}}_q)$  such that  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$  plays the role of  $N_{\widehat{S}}(P)$  for a Sylow *p*-subgroup *P*. Indirect proof of the McKay-goodness uses:

- Special shape of stabilizers of characters (not every subgroup of Aut(SL<sub>n</sub>(F<sub>q</sub>)) occurs as the stabilizer of a character of SL<sub>n</sub>(F<sub>q</sub>) (proven by use of Kawanaka's generalized Gelfand-Graev characters)
- similar result on characters of  $N_{SL_n(\mathbb{F}_q)}(\mathsf{T})$
- bijection between some characters of GL<sub>n</sub>(F<sub>q</sub>) and N<sub>GL<sub>n</sub>(F<sub>q</sub>)(T) (using Jordan decomposition of characters and *d*-Harish-Chandra theory)
  </sub>

#### Automorphisms of $SL_n(\mathbb{F}_q)$ :

- $\operatorname{GL}_n(\mathbb{F}_q)$  acts on  $\operatorname{SL}_n(\mathbb{F}_q)$  by conjugation
- graph automorphism  $\Gamma$  with  $g\mapsto (g^{\perp})^{-1}$
- Galois automorphisms of  $\mathbb{F}_q$  induce automorphisms on  $\mathrm{SL}_n(\mathbb{F}_q)$

There is a torus **T** of  $SL_n(\overline{\mathbb{F}}_q)$  such that  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$  plays the role of  $N_{\widehat{S}}(P)$  for a Sylow *p*-subgroup *P*. Indirect proof of the McKay-goodness uses:

- Special shape of stabilizers of characters (not every subgroup of Aut(SL<sub>n</sub>(F<sub>q</sub>)) occurs as the stabilizer of a character of SL<sub>n</sub>(F<sub>q</sub>) (proven by use of Kawanaka's generalized Gelfand-Graev characters)
- similar result on characters of  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$
- bijection between some characters of GL<sub>n</sub>(F<sub>q</sub>) and N<sub>GL<sub>n</sub>(F<sub>q</sub>)(T) (using Jordan decomposition of characters and *d*-Harish-Chandra theory)
  </sub>

#### Automorphisms of $SL_n(\mathbb{F}_q)$ :

- $GL_n(\mathbb{F}_q)$  acts on  $SL_n(\mathbb{F}_q)$  by conjugation
- graph automorphism  $\Gamma$  with  $g\mapsto (g^{\perp})^{-1}$
- Galois automorphisms of  $\mathbb{F}_q$  induce automorphisms on  $\mathrm{SL}_n(\mathbb{F}_q)$

There is a torus **T** of  $SL_n(\overline{\mathbb{F}}_q)$  such that  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$  plays the role of  $N_{\widehat{S}}(P)$  for a Sylow *p*-subgroup *P*.

- Special shape of stabilizers of characters (not every subgroup of Aut(SL<sub>n</sub>(F<sub>q</sub>)) occurs as the stabilizer of a character of SL<sub>n</sub>(F<sub>q</sub>) (proven by use of Kawanaka's generalized Gelfand-Graev characters)
- similar result on characters of  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$
- bijection between some characters of GL<sub>n</sub>(F<sub>q</sub>) and N<sub>GL<sub>n</sub>(F<sub>q</sub>)(T)</sub> (using Jordan decomposition of characters and *d*-Harish-Chandra theory)

#### Automorphisms of $SL_n(\mathbb{F}_q)$ :

- $GL_n(\mathbb{F}_q)$  acts on  $SL_n(\mathbb{F}_q)$  by conjugation
- graph automorphism  $\Gamma$  with  $g\mapsto (g^{\perp})^{-1}$
- Galois automorphisms of  $\mathbb{F}_q$  induce automorphisms on  $\mathrm{SL}_n(\mathbb{F}_q)$

There is a torus **T** of  $SL_n(\overline{\mathbb{F}}_q)$  such that  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$  plays the role of  $N_{\widehat{S}}(P)$  for a Sylow *p*-subgroup *P*.

- Special shape of stabilizers of characters (not every subgroup of Aut(SL<sub>n</sub>(F<sub>q</sub>)) occurs as the stabilizer of a character of SL<sub>n</sub>(F<sub>q</sub>) (proven by use of Kawanaka's generalized Gelfand-Graev characters)
- similar result on characters of  $N_{SL_n(\mathbb{F}_q)}(\mathbf{T})$
- bijection between some characters of GL<sub>n</sub>(F<sub>q</sub>) and N<sub>GL<sub>n</sub>(F<sub>q</sub>)</sub>(T) (using Jordan decomposition of characters and *d*-Harish-Chandra theory)

#### Corollary

Let  $\hat{S}$  be a quasisimple quotient of  $SL_n(q)$  and  $SU_n(q)$ . The blocks of  $\hat{S}$  whose defect groups are Sylow p-subgroups are AM-good.

#### Hope:

A key ingredient on GGGR's is missing in other types, but some of the results can be transferred to other types.

#### Corollary

Let  $\hat{S}$  be a quasisimple quotient of  $SL_n(q)$  and  $SU_n(q)$ . The blocks of  $\hat{S}$  whose defect groups are Sylow p-subgroups are AM-good.

#### Hope:

A key ingredient on GGGR's is missing in other types, but some of the results can be transferred to other types.

# Thank you!