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Topic

Central objects and notations:
G a finite group

lrr(G) = {irreducible complex characters of G}

& {isomorphism classes of simple CG-modules}
P a prime
F algebraically closed field of characteristic p
IBr(G) = {irreducible Brauer characters of G}

Y {isomorphism classes of simple FG-modules}

Study Irr(G) and IBr(G) via subgroups of G!
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Philosophy

It is known:
@ Using the classification of finite simple groups, strong statements on
groups and their representations can be proven.
@ The representations theory of p-solvable groups seems
well-understood.
@ Quasisimple groups have a rich geometric/combinatorial structure or
are accessible via computer calculations.
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Conjecture - McKay

We set Irry (G) := {x € Irr(G) | p 1 x(1)}.

McKay conjecture (1972)

Let P € Syl,(G) a Sylow p-subgroup.
Then

[y (G)| = [Irrp (NG (P))]-

known for:
certain various families of groups, in general unproven
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(K,0,F) p-modular system

@) complete discrete evaluation ring, such that
K = Frak(O©) field of characteristic 0

F:=0/JO) a field with char(F) = p

(@)
VAN
K F
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e FG \not semisimple, whenever p | |G|
\\)]FG - B & o B
@ indecomposable F[G x G]—modug/

called p-blocks of G
e BI(G) ={By,...,Bs}
Via

oG

7N

KG FG

lrr(G) = Irr(KCG) is partitioned into subsets associated to p-blocks , i.e.

lrr(G) = U lrr(B).

BeBI(G)
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Defect group and Brauer correspondent of a block
Let B be a p-block of G.

Local data of B:
o defect group D of B, p-subgroup of G

o the p-block b of Ng(D) with defect group D, such that b® = B.
This block is called Brauer correspondent of B.

Definition :

Let x € Irr(B). The height of y, denoted by ht(x) is defined by

(o) — X(1)p| D]
Glp

e Note ht(x) > 0.
e Always: lrrg(B) :={x € Irr(B) | ht(x) =0} # 0

10




Blocks with p’-characters

11



Blocks with p’-characters

Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with
defect group P. Then

(G = | Irro(B).

BEBI(G|P)

11




Blocks with p’-characters

Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with
defect group P. Then

(G = | Irro(B).

BEBI(G|P)

Proof.
Let x € Irrpy(G)

11




Blocks with p’-characters

Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with
defect group P. Then

lrry (G) = U Irro(B).

BEBI(G|P)

Proof.
Let x € Irry(G) and B € BI(G) be the block with x € Irr(B).

11




Blocks with p’-characters

Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with
defect group P. Then

lrry (G) = U Irro(B).

BEBI(G|P)

Proof.

Let x € Irry(G) and B € BI(G) be the block with x € Irr(B).
Then P is the defect group of B.

11




Blocks with p’-characters

Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with
defect group P. Then

lrry (G) = U Irro(B).

BEBI(G|P)

Proof.

Let x € Irry(G) and B € BI(G) be the block with x € Irr(B).
Then P is the defect group of B.
Hence x € lrro(B).

11



Blocks with p’-characters

Lemma

Let P be a Sylow p-subgroup of G and BI(G | P) the set of p-blocks with
defect group P. Then

Irry (G) = U Irro(B).

BEBI(G|P)

Proof.

Let x € Irry(G) and B € BI(G) be the block with x € Irr(B).

Then P is the defect group of B.

Hence x € Irro(B).

On the other hand Irrg(B) C lrrpy (G). O

11
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Character Degrees in Irr(G) (with multiplicities):

1,7,14,20,21,21,21,28,35,45,45,56, 64,70
SL4(F7) has seven 5-blocks:

@ there are two 5-blocks Bj and B, that have a Sylow 5-subgroup of
SL4(F2) as defect group

@ every other block contains exactly one character and has 1 as defect
group

All characters have height 0.

Note: Irrg/(G) = Irrg(B1) U lrro(B2). J
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SL4(FF2) has two 2-blocks:
@ Bj has a Sylow 2-subgroup of SL4(IF2) as defect group

1 7 14 20 21 21 21 28 35 45
0 0 1 1 0 0 0 2 0 0

degree
height

@ B, has the trivial group as defect group and

64
0

degree
height

Note: Irry/(G) = lrro(By).
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Note Irrs/(G) = Irro(B1) U lrrg(Bz) and Irrs/(Ng(P)) = lrrg(b1) U lrrg(b2).
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Alperin weight conjecture

A p-weight of G is a pair (Q, ), where
e @ < G is a p-group, and
e ¢ € lrr(Ng(Q)/Q) with (1), = [Ng(Q)/Q|,-
Then (Q, ) is called a p-weight of a block b®, if ¢ as character of

Ng(Q) belongs to b € BI(Ng(P)). (b® is a p-block of G given by
induction of b.)
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Recall: SL4(FF2) has two 2-blocks, B; and B;

@ B has defect 1 and only one Brauer character.
Then (1, x) is the unique 2-weight of By, where x € Irr(Ba).

@ Bj has 7 Brauer characters
2-weights of By: (Op(M),Sty),
where M is some parabolic subgroup of SL4(F2), L an associated Levi
subgroup and St; the Steinberg character of L. There are 7 such
2-weights of Bj.
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Example: G is a p-group

Then there is only one p-block B of G.

G is the defect group of B.
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Example: Brauer's height zero conjecture for SL4 ()
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P = {upper unitriangular matrices}.
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Reductions and Results

Theorem

All mentioned conjectures are true for p-solvable groups

A group is p-solvable if all its simple composition factors are cyclic or a
p’-group.

Furthermore results are known for specific blocks and families of groups.

Knowledge on nonabelian quasisimple groups seems missing.
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Theorem (HZC1) (Berger-Knorr, Kessar-Malle)
Let G be a finite group, B € BI(G) and D a defect group. Then

D is abelian = Irrg(B) = Irr(B).

History of the proof:
Berger-Knorr (1988): "HZC1" is true, if it holds for all quasisimple groups.

Kessar-Malle (2011): "HSC1" holds for all quasisimple groups (based on
work of Olsson, Cabanes-Enguehard, Enguehard, Bonnafé-Rouquier)
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Again proven by induction on |G| and relative version of those conjectures.
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When is a quasisimple group good?

Philosophy:

@ There is a correspondence between the considered sets of characters
that is equivariant with respect to automorphisms of the group
stabilizing those sets.

@ Characters y and )’ associated to each other via this correspondence
have the same " Clifford-theory”, i.e. after inducing x and ' to some
groups they decompose in the same way.
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Let p be a prime,

Definition
The block B is AM-good, if the defect group of B is central.
The block B is AM-good, if for the non-central defect group D of B

@ there exists a group M with

M is stable under Aut(S)g p and Ng(D) <M < S
@ for b € BI(M) with bS = B, there exists a Aut(g)gﬂg—equivariant
bijection
Q :lrrg(B) — lrro(b).
© for every faithful x € lrrg(B) there exists a group A such that

S<Aand A/ Ca(S) = Aut(S),
X has an extension Y € Irr(A),

Q(x) has an extension X' € Irrf(M Na(D)),

A MNA(D) (~ . . .
ResCA(S)(X) and Res CulE) (X’) are multiples of the same irreducible

character
Res’/(X) and Resh! NA((ED)))(SZ’) lie in blocks with the same Brauer

correspondent for every group J with S <J<A
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(X") are multiples of the same irreducible

correspondent for every group J with S <J<LA
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A quasisimple group S is AM-good, if all blocks B of S are AM-good, i.e.

the above strengthened equivariant version of the Alperin-McKay
conjecture holds for B.

Definition

A quasisimple group Sis BAW-good, if all blocks B of S are BAW-good,

i.e. an certain strengthened equivariant version of the blockwise Alperin
weight conjecture holds for B.

28




SL4(F3) is AM-good for p =2

Aut(SLa(IF2)) = SLa(F) x (I)

Here I is given by x — J(x1)~1J, where J corresponds to the longest
element of S,,.
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SL4(F3) is AM-good for p =2

Aut(SLa(IF2)) = SLa(F) x (I)

Here I is given by x — J(x1)~1J, where J corresponds to the longest
element of S,,.

Take
@ B; the 2-block with maximal defect,
@ by be the Brauer correspondent of By, the principal block of P.
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o [ fixes in Irrg(by) four characters

o [ fixes in Irrg(B1) four characters

Hence there exists a I-equivariant bijection Q : Irro(B1) — lrro(b1).
Let x € Irro(B1) and Q(x) € lrro(b1).

The last condition is trivial if x is not -invariant.

Otherwise let A := SL4(F2) x (I'). Hence A/SL4(F2) is cyclic

Note that x extends to A and Q(x) extends to P x (I'). Hence the last
condition is satisfied here as well.

By is AM-good for 2.
Blocks with trivial defect group are always AM-good.
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Idea for the proof and behind the inductive conditions - |

Projective representation

We call P : G — GL,(C) a projective representations, if the induced
map G — PGL,(C) is a group morphism.
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map G — PGL,(C) is a group morphism.

GL,(C)

PGL,(C)
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Idea for the proof and behind the inductive conditions - |

Projective representation

We call P: G — GL,(C) a projective representations, if the induced
map G — PGL,(C) is a group morphism.

GL,(C)

PGL,(C)

For a projective representation P there exists a map a: G x G — C* with

P(g)P(g') = (g, 8')P(gg’) for every g,g' € G.

This map a: G x G — C* is the factor set of P.
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Idea for the proof and behind the inductive conditions - Il

Suppose N <1 G and 6 € Irr(N).

Extending to projective representation of Gy:

We find a projective representation P of some Gy, such that P|,, is a
representation affording 6 and the factor set of P is constant on

N x N-cosets.

Tensoring with projective representation of Gy/N:

We can tensor P with a (irreducible) projective representation of Gy/N
whose factor set is inverse to the one of P. Then P® Q is a
representation of Gy.

Induction of character to G:
Let 1) be a character afforded by P ® QO then Indgs (1) is irreducible.

All constituents of Ind§(8) are obtained that way.

92
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Implications of AM-Goodness

Theorem (Navarro-S.)

Let B € BI(G) with defect group D and b € BI(Ng(D)) the Brauer

correspondent of b. Suppose that G is a normal subgroup of A. Assume
that all non-abelian simple groups involved in G and their extensions are

AM-good.
There exists an Na(D)-equivariant bijection
Q : lrrg(B) — lrro(b),
such that for every 6 € lrrg(B) and 0’ := Q(60) there is a bijection

{ constituents of Inda(6)} —s { constituents of IndMNA(D (0")}.

3
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Let § € Irr(Z(G)). If all irreducible constituents ofIndg(G)(H) have
p'-degree, then G/ Z(G) has an abelian Sylow p-subgroup.
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What about Brauer's height zero conjecture?

Theorem (Navarro-Tiep, 2012)

Let 0 € Irr(Z(G)). If all irreducible constituents oflndg(c)(ﬁ) have
p'-degree, then G/ Z(G) has an abelian Sylow p-subgroup.

Together with Murai's statement:

Theorem (Navarro-S.)
Let G be a finite group. Assume that
@ BHZ holds for all quasisimple groups,

@ all simple groups involved in G and their central extensions are
AM-good.

Then BHZ, especially "BHZ =" holds for G.

"BHZ =": If all characters of B have height zero, then the defect group

of B is abelian.

4
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Results on quasisimple groups

Theorem

The central extensions of the following simple groups are good (=
AM-good and BAW-good):

e sporadic groups (An-Dietrich, Breuer, Malle) (few exceptions)
e alternating groups (Alperin-Fong, Malle, Olsson, S.)

o simple groups of Lie type over Fq with p | g (Maslowski,
Navarro-Tiep, S.)

® Spg(2') (Schaeffer Fry)
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Open: groups of Lie type over F, with p{ g
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Open: groups of Lie type over F, with p{ g

Theorem (Malle, S., 2007)

Let S be a quasisimple group such that S / Z(g) is a simple group of Lie
type. Let p be a prime different from the characteristic of the field

underlying SandP a Sylow p-subgroup of S. Then there exists a group
N > Nz(P) and a bijection

Q: Irrp/(g) — Irry (N)
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Open: groups of Lie type over F, with p{ g

Theorem (Malle, S., 2007)

Let S be a quasisimple group such that S/ Z(S) is a simple group of Lie
type. Let p be a prime different from the characteristic of the field
underlying SandP a Sylow p-subgroup of S. Then there exists a group
N > Nz(P) and a bijection

Q: Irrp/(g) — Irry (N)

Problem: € is given by parametrizing the sets with the same labels (but
labelling depends on choices!)

26



Theorem (Cabanes-S., 2012)

@ Quasisimple groups of type 3Dy, Eg, Fa, °F4 and G, are
McKay-good.
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McKay-good.

Q Let S bea qugsisimp/e group of type 3Dy Eg, F4 or Gp. For¢>5
the blocks of S whose defect groups are Sylow p-subgroups are
BAW-good.

Q LetS bea quasisimple group of type of 3D4 Eg, F4 or Go. For ¢ >7
the blocks of S whose defect groups are Sylow p-subgroups are
AM-good.

Theorem (Cabanes-S., 2013)
The groups SL,(q) and SU,(q) and their quotients are McKay-good.
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Challenges with S := SL,(F,) (and p 1 q)

Automorphisms of SL,(F,):
o GL,(FFy) acts on SL,(Fq4) by conjugation
@ graph automorphism I' with g — (g+)~!

e Galois automorphisms of g induce automorphisms on SL,(Fg)

There is a torus T of SL,(Fq) such that Ng,)(T) plays the role of
Nz(P) for a Sylow p-subgroup P.
Indirect proof of the McKay-goodness uses:

@ Special shape of stabilizers of characters (not every subgroup of
Aut(SL,(Fg)) occurs as the stabilizer of a character of SL,(FFy)
(proven by use of Kawanaka's generalized Gelfand-Graev characters)

@ similar result on characters of Ngi(x)(T)

@ bijection between some characters of GL,(Fq) and Ngi,(r,)(T)
(using Jordan decomposition of characters and d-Harish-Chandra
theory)
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Corollary

Let S be a quasisimple quotient of SL,(q) and SU,(q). The blocks of
whose defect groups are Sylow p-subgroups are AM-good.
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Corollary

Let S be a quasisimple quotient of SL,(q) and SU,(q). The blocks of
whose defect groups are Sylow p-subgroups are AM-good.

Hope:
A key ingredient on GGGR's is missing in other types, but some of the
results can be transferred to other types.
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Thank you!



