
The Lusztig Conjecture

Wolfgang Soergel

Mathematisches Insitut
Universität Freiburg

28. März 2013



The Lusztig Conjecture
on

on irreduzible characters
of algebraic groups



I Dimensions of irreducible representations of a given
connected affine algebraic group?

I Dimensions of its weight spaces for a maximal torus?

I Characteristic Zero: Weyl character formula
I Characteristic positive: Steinberg tensor product

formula and Lusztig conjecture
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chark = 0:

Arbitrary characteristic:

{
irreducible representations

of SL(2; k)

}
∼↔ N

L 7→ (dim L)− 1

soc

k [X ,Y ](n) ←[ n

In case char k = p > 0 the k [X ,Y ](n) are rarely
irreducible, for example kX p + kY p ( k [X ,Y ](p) is a
subrepresentation.

But what are the dimensions of those socles? And what
happens for more general groups?
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For affine algebraic groups G ⊃ B the restriction admits a
right adjoint, induction

G -Mod
res−→
←−
ind

B -Mod

indG
B V = {f : G→ V | f algebraic B-equivariant}

= { algebraic sections in G ×B V � G/B}



From now on:

I k = k̄ algebraically closed field

I G ⊃ B connected affine algebraic group over k with a
Borel, for example G = GL(r ; k) ⊃ B upper triangular
matrices

I X = X(B) := {λ : B → k× | λ homomorphism}
the weight lattice

I ∇(λ) := indG
B kλ induced representation of λ ∈ X

I X+ := {λ ∈ X | ∇(λ) 6= 0} dominant weights
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q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

X+ ∼→ {irreducible representations of G}
λ 7→ L(λ) := soc∇(λ)

simple module with highest weight λ

∇(λ) described by the Weyl character formula
For char k = 0 we have L(λ) = ∇(λ)
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q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

X+ ∼→ {irreducible representations of G}
λ 7→ L(λ) := soc∇(λ)

simple module with highest weight λ

∇(λ) described by the Weyl character formula
For char k = 0 we have L(λ) = ∇(λ)
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q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

X+ dominant weights

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

X+ ∼→ {irreducible representations of G}
λ 7→ L(λ) := soc∇(λ)

simple module with highest weight λ

∇(λ) described by the Weyl character formula

For char k = 0 we have L(λ) = ∇(λ)



Example G = Sp(4; k)
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X weight lattice

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
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X+ ∼→ {irreducible representations of G}
λ 7→ L(λ) := soc∇(λ)

simple module with highest weight λ

∇(λ) described by the Weyl character formula
For char k = 0 we have L(λ) = ∇(λ)



For G = SL(2; k):
I B =

{(∗ 0
∗ ∗

)}
ist Borel

I X = Zε with ε : B → k× given by
(t 0
∗ ∗

)
7→ t

I ∇(nε) = k [X ,Y ](n)

In case char k = p > 0:
I L(nε) = ∇(nε) if n < p
I L(pε) ( ∇(pε) alias kX p + kY p ( k [X ,Y ](p)

I L(pε) = L(ε)[1] Frobenius-Twist of L(ε)

I description of all irreduzible characters by Steinberg
tensor product theorem
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Steinberg tensor product theorem:

G ⊃ B and X ⊃ X+ general again.
For λ ∈ X+ consider the p-adic expansion

λ = pdλd + . . . + p2λ2 + pλ1 + λ0

with digits λi in the fundamental box, given by
Box:= {µ ∈ X+ | 〈µ, α∨〉 < p for all simple roots α}

Then we have

L(λ) ∼= L(λd )[d ] ⊗ . . .⊗ L(λ2)[2] ⊗ L(λ1)[1] ⊗ L(λ0)

Here L[i] is the twist of L by the i-th power of the Frobenius
automorphism of GL(L).
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The 9 elements of box in case p = 3 and G = Sp(4; k)
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L(λ) ∼= L(λd )[d ] ⊗ . . .⊗ L(λ2)[2] ⊗ L(λ1)[1] ⊗ L(λ0)

But what are the characters, even the dimensions
of the L(λ) for λ ∈ Box? Lusztig conjecture from p = 5 on.
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Consider affine Weyl groupW = W n 〈R〉

u

ρ half the sum of positive roots
NewW-action x ·p λ := pxp−1(λ + ρ)− ρ
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The weights x ·p 0 from the box
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Consider affine Weyl groupW = W n 〈R〉

u

ρ half the sum of positive roots

NewW-action x ·p λ := pxp−1(λ + ρ)− ρ
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Consider affine Weyl groupW = W n 〈R〉

u

ρ half the sum of positive roots
NewW-action x ·p λ := pxp−1(λ + ρ)− ρ
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Consider affine Weyl groupW = W n 〈R〉

u

ρ half the sum of positive roots
NewW-action x ·p λ := pxp−1(λ + ρ)− ρ
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Consider affine Weyl groupW = W n 〈R〉

u

ρ half the sum of positive roots
NewW-action x ·p λ := pxp−1(λ + ρ)− ρ
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The weights x ·p 0 from the box
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Lusztig conjecture

For x ∈ W with x ·p 0 ∈ Box and p so big,
that z ·p 0 = 0⇒ z = 1 we should have:

[L(x ·p 0)] =
∑

y (−1)l(x)+l(y)Pw◦y ,w◦x (1) [∇(y ·p 0)]

Translation principle: These [L(x ·p 0)] give all [L(λ)] for λ ∈ Box

But what are the Kazhdan-Lusztig polynomials Pw◦y ,w◦x?
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Lusztig conjecture

For x ∈ W with x ·p 0 ∈ Box and p so big,
that z ·p 0 = 0⇒ z = 1 we should have:

[L(x ·p 0)] =
∑

y (−1)l(x)+l(y)Pw◦y ,w◦x (1) [∇(y ·p 0)]

Translation principle: These [L(x ·p 0)] give all [L(λ)] for λ ∈ Box
But what are the Kazhdan-Lusztig polynomials Pw◦y ,w◦x?
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Lusztig conjecture

For x ∈ W with x ·p 0 ∈ Box and p so big,
that z ·p 0 = 0⇒ z = 1 we should have:

[L(x ·p 0)] =
∑

y (−1)l(x)+l(y)Pw◦y ,w◦x (1) [∇(y ·p 0)]

Translation principle: These [L(x ·p 0)] give all [L(λ)] for λ ∈ Box
But what are the Kazhdan-Lusztig polynomials Pw◦y ,w◦x?
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For A,B the alcoves of x ·p 0, y ·p 0 put
LA := L(x ·p 0), ∇B := ∇(y ·p 0) and mB,A := Pw◦y ,w◦x

Lusztig conjecture: For A in the fundamental box should have

[LA] =
∑

B(−1)d(A,B)mB,A(1) [∇B]

d(A,B) number of reflecting hyperplanes separating A from B
But what are the Kazhdan-Lusztig polynomials mB,A ∈ Z[v , v−1]?



�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

@
@

@
@

@

@
@
@

@
@
@

@
@
@

@

@
@

@
@
@

@
@
@

@
@

@
@

@
@

@
@

@
@
@

@
@

@
@
@

�
�
�
�
�

�
�
�
�
�

e e e es s s s

For A,B the alcoves of x ·p 0, y ·p 0 put
LA := L(x ·p 0), ∇B := ∇(y ·p 0) and mB,A := Pw◦y ,w◦x

Lusztig conjecture: For A in the fundamental box should have

[LA] =
∑

B(−1)d(A,B)mB,A(1) [∇B]

d(A,B) number of reflecting hyperplanes separating A from B

But what are the Kazhdan-Lusztig polynomials mB,A ∈ Z[v , v−1]?
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For A,B the alcoves of x ·p 0, y ·p 0 put
LA := L(x ·p 0), ∇B := ∇(y ·p 0) and mB,A := Pw◦y ,w◦x

Lusztig conjecture: For A in the fundamental box should have

[LA] =
∑

B(−1)d(A,B)mB,A(1) [∇B]

d(A,B) number of reflecting hyperplanes separating A from B
But what are the Kazhdan-Lusztig polynomials mB,A ∈ Z[v , v−1]?
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For A,B the alcoves of x ·p 0, y ·p 0 put
LA := L(x ·p 0), ∇B := ∇(y ·p 0) and mB,A := Pw◦y ,w◦x

Lusztig conjecture: For A in the fundamental box should have

[LA] =
∑

B(−1)d(A,B)mB,A(1) [∇B]

d(A,B) number of reflecting hyperplanes separating A from B
But what are the Kazhdan-Lusztig polynomials mB,A ∈ Z[v , v−1]?
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• Consider the free moduleM := Z[v , v−1]A+ over the set
A+ of all alcoves in the dominant chamber

• Notation: Write coefficients in their alcoves

v + v4

v−2

v3

• Elements of Z[v , v−1]A+ called “Patterns”
• Define distinguished patterns

MA =
∑

B mB,AB ∈ A + vZ[v ]A+
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• Consider the free moduleM := Z[v , v−1]A+ over the set
A+ of all alcoves in the dominant chamber
• Notation: Write coefficients in their alcoves

v + v4

v−2

v3

• Elements of Z[v , v−1]A+ called “Patterns”
• Define distinguished patterns

MA =
∑

B mB,AB ∈ A + vZ[v ]A+
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• Consider the free moduleM := Z[v , v−1]A+ over the set
A+ of all alcoves in the dominant chamber
• Notation: Write coefficients in their alcoves

v + v4

v−2

v3

• Elements of Z[v , v−1]A+ called “Patterns”

• Define distinguished patterns

MA =
∑

B mB,AB ∈ A + vZ[v ]A+
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• Consider the free moduleM := Z[v , v−1]A+ over the set
A+ of all alcoves in the dominant chamber
• Notation: Write coefficients in their alcoves

v + v4

v−2

v3

• Elements of Z[v , v−1]A+ called “Patterns”
• Define distinguished patterns

MA =
∑

B mB,AB ∈ A + vZ[v ]A+



�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

@
@

@
@

@

@
@
@

@
@
@

@
@
@

@

@
@

@
@
@

@
@
@

@
@

@
@

@
@

@
@

@
@
@

@
@

@
@
@

�
�
�
�
�

�
�
�
�
�

• Consider the free moduleM := Z[v , v−1]A+ over the set
A+ of all alcoves in the dominant chamber
• Notation: Write coefficients in their alcoves

v + v4

v−2

v3

• Elements of Z[v , v−1]A+ called “Patterns”
• Define distinguished patterns

MA =
∑

B mB,AB ∈ A + vZ[v ]A+



�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

@
@

@
@

@

@
@
@

@
@
@

@
@
@

@

@
@

@
@
@

@
@
@

@
@

@
@

@
@

@
@

@
@
@

@
@

@
@
@

�
�
�
�
�

�
�
�
�
�

• Given s a wall of A+ define [s] :M→M by

A+

�
�
�
�
�

[s] : A 7→ As + vA in case As > A and As ∈ A+;

v2
6
-

�	
v3

v2

[s] : A 7→ As + v−1A in case As < A and As ∈ A+;

v
6@R

�v
1

[s] : A 7→ (v + v−1)A in case As 6∈ A+;

v+v−1

1�

?

• LetMsd ⊂M be the smallest subgroup containing A+

and is stable under all the [s]

• MA ∈ (A + vZ[v ]A+) ∩Msd uniquely determined for A ∈ A+
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• LetMsd ⊂M be the smallest subgroup containing A+

and is stable under all the [s]

• MA ∈ (A + vZ[v ]A+) ∩Msd uniquely determined for A ∈ A+
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• LetMsd ⊂M be the smallest subgroup containing A+

and is stable under all the [s]
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[s] : A 7→ (v + v−1)A in case As 6∈ A+;

v+v−1

1�

?

• LetMsd ⊂M be the smallest subgroup containing A+

and is stable under all the [s]

• MA ∈ (A + vZ[v ]A+) ∩Msd uniquely determined for A ∈ A+
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• LetMsd ⊂M be the smallest subgroup containing A+

and is stable under all the [s]

• MA ∈ (A + vZ[v ]A+) ∩Msd uniquely determined for A ∈ A+

MA+ = A+ alias MA = A

[LA] = [∇A] the trivial representation
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• LetMsd ⊂M be the smallest subgroup containing A+

and is stable under all the [s]

• MA ∈ (A + vZ[v ]A+) ∩Msd uniquely determined for A ∈ A+

MA+ = A+ alias MA = A

[LA] = [∇A] the trivial representation
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• LetMsd ⊂M be the smallest subgroup containing A+

and is stable under all the [s]

• MA ∈ (A + vZ[v ]A+) ∩Msd uniquely determined for A ∈ A+

MA+ = A+ alias MA = A

[LA] = [∇A] the trivial representation
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• LetMsd ⊂M be the smallest subgroup containing A+

and is stable under all the [s]

• MA ∈ (A + vZ[v ]A+) ∩Msd uniquely determined for A ∈ A+

MB = B + vA

[LB] = [∇B]− [∇A]

v
1



�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

@
@

@
@

@

@
@
@

@
@
@

@
@
@

@

@
@

@
@
@

@
@
@

@
@

@
@

@
@

@
@

@
@
@

@
@

@
@
@

�
�
�
�
�

�
�
�
�
�

• LetMsd ⊂M be the smallest subgroup containing A+

and is stable under all the [s]

• MA ∈ (A + vZ[v ]A+) ∩Msd uniquely determined for A ∈ A+
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and is stable under all the [s]
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and is stable under all the [s]
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MD = D + vC + v2B + v3A

[LD] = [∇D]− [∇C] + [∇B]− [∇A]

THANK YOU!
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