On Loewy lengths of blocks (joint work with S. Koshitani and B. Külshammer)

Benjamin Sambale, FSU Jena

March 26, 2013

Benjamin Sambale On Loewy lengths of blocks

• *G* – finite group

◆□ → ◆□ → ◆ = → ◆ = → のへで

- *G* finite group
- *p* prime number

- G finite group
- *p* prime number
- F algebraically closed field of characteristic p

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- G finite group
- *p* prime number
- F algebraically closed field of characteristic p

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• B – block of FG

- G finite group
- *p* prime number
- F algebraically closed field of characteristic p
- B block of FG
- J(B) Jacobson radical of B (as an algebra)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- G finite group
- p prime number
- F algebraically closed field of characteristic p
- B block of FG
- J(B) Jacobson radical of B (as an algebra)
- Let $LL(B) := \min\{n \ge 0 : J(B)^n = 0\}$ be the Loewy length of B

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○へ⊙

- G finite group
- p prime number
- F algebraically closed field of characteristic p
- B block of FG
- J(B) Jacobson radical of B (as an algebra)
- Let $LL(B) := \min\{n \ge 0 : J(B)^n = 0\}$ be the Loewy length of B
- Let *D* be a defect group of *B*. This is *p*-subgroup of *G*, unique up to conjugation.

What can be said about the structure of D if LL(B) is given?

What can be said about the structure of D if LL(B) is given?

Theorem (Okuyama)

Let δ be the defect of B. Then

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

What can be said about the structure of D if LL(B) is given?

Theorem (Okuyama)

•
$$LL(B) = 1$$
 iff $\delta = 0$.

What can be said about the structure of D if LL(B) is given?

Theorem (Okuyama)

1
$$LL(B) = 1$$
 iff $\delta = 0$.

2
$$LL(B) = 2$$
 iff $\delta = 1$ and $p = 2$.

What can be said about the structure of D if LL(B) is given?

Theorem (Okuyama)

•
$$LL(B) = 1 \text{ iff } \delta = 0.$$

2
$$LL(B) = 2$$
 iff $\delta = 1$ and $p = 2$.

What can be said about the structure of D if LL(B) is given?

Theorem (Okuyama)

•
$$LL(B) = 1 \text{ iff } \delta = 0.$$

2)
$$LL(B) = 2$$
 iff $\delta = 1$ and $p = 2$.

(a)
$$p = \delta = 2$$
 and B is Morita equivalent to $F[C_2 \times C_2]$ or to FA_4 .

What can be said about the structure of D if LL(B) is given?

Theorem (Okuyama)

Let δ be the defect of B. Then

$$LL(B) = 1 iff \delta = 0.$$

2
$$LL(B) = 2$$
 iff $\delta = 1$ and $p = 2$.

3 LL(B) = 3 iff one of the following holds:

(a) $p = \delta = 2$ and B is Morita equivalent to $F[C_2 \times C_2]$ or to FA_4 .

(b) p > 2, $\delta = 1$, the inertial index of B is $e(B) \in \{p - 1, (p-1)/2\}$, and the Brauer tree of B is a straight line with exceptional vertex at the end (if it exists).

If B has defect δ and LL(B) > 1, then

$$\delta \leq \binom{LL(B)}{2} (2\lfloor \log_p(LL(B) - 1) \rfloor + 1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

If B has defect δ and LL(B) > 1, then

$$\delta \leq \binom{LL(B)}{2} (2\lfloor \log_p(LL(B) - 1) \rfloor + 1).$$

If B has defect δ and LL(B) > 1, then

$$\delta \leq \binom{LL(B)}{2} (2\lfloor \log_p(LL(B) - 1) \rfloor + 1).$$

Sketch of the proof.

• Let D be a defect group of B and set $p^{\epsilon} = \exp D$.

If B has defect δ and LL(B) > 1, then

$$\delta \leq \binom{LL(B)}{2} (2\lfloor \log_p(LL(B) - 1) \rfloor + 1).$$

- Let D be a defect group of B and set $p^{\epsilon} = \exp D$.
- Moreover, let ρ be the rank of D.

If B has defect δ and LL(B) > 1, then

$$\delta \leq \binom{LL(B)}{2} (2\lfloor \log_p(LL(B) - 1) \rfloor + 1).$$

- Let D be a defect group of B and set $p^{\epsilon} = \exp D$.
- Moreover, let ρ be the rank of D.
- A result of Oppermann shows $\rho \leq LL(B) 1$.

If B has defect δ and LL(B) > 1, then

$$\delta \leq \binom{LL(B)}{2} (2\lfloor \log_p(LL(B) - 1) \rfloor + 1).$$

- Let D be a defect group of B and set $p^{\epsilon} = \exp D$.
- Moreover, let ρ be the rank of D.
- A result of Oppermann shows $\rho \leq LL(B) 1$.
- A result of Külshammer implies $\epsilon \leq 1 + \lfloor \log_p(LL(B) 1) \rfloor$.

If B has defect δ and LL(B) > 1, then

$$\delta \leq \binom{LL(B)}{2} (2\lfloor \log_p(LL(B) - 1) \rfloor + 1).$$

- Let D be a defect group of B and set $p^{\epsilon} = \exp D$.
- Moreover, let ρ be the rank of D.
- A result of Oppermann shows $\rho \leq LL(B) 1$.
- A result of Külshammer implies $\epsilon \leq 1 + \lfloor \log_p(LL(B) 1) \rfloor$.
- By elementary group theory we have $\delta \leq {\binom{\rho+1}{2}}(2\epsilon-1)$.

If B has defect δ and LL(B) > 1, then

$$\delta \leq \binom{LL(B)}{2} (2\lfloor \log_p(LL(B) - 1) \rfloor + 1).$$

- Let D be a defect group of B and set $p^{\epsilon} = \exp D$.
- Moreover, let ρ be the rank of D.
- A result of Oppermann shows $\rho \leq LL(B) 1$.
- A result of Külshammer implies $\epsilon \leq 1 + \lfloor \log_p(LL(B) 1) \rfloor$.
- By elementary group theory we have $\delta \leq {\rho+1 \choose 2}(2\epsilon-1).$
- Combine these equations.

Remarks

Brauer's Problem 21

Does there exist a function $f : \mathbb{N} \to \mathbb{N}$ such that $\lim_{n \to \infty} f(n) = \infty$ and $f(\delta) \leq \dim_F Z(B)$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Brauer's Problem 21

Does there exist a function $f : \mathbb{N} \to \mathbb{N}$ such that $\lim_{n \to \infty} f(n) = \infty$ and $f(\delta) \leq \dim_F Z(B)$.

Proposition

Let B be a block with cyclic defect group D and inertial index e(B). Then

$$LL(B) \geq \frac{|D|-1}{e(B)}+1.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Proposition

Let B be a p-block with defect δ , defect group D and LL(B) = 4. Then

$$\delta \leq \begin{cases} 18 & \text{if } p \leq 3, \\ 5 & \text{if } p = 5, \\ 6 & \text{if } p \geq 7. \end{cases}$$

Proposition

Let B be a p-block with defect δ , defect group D and LL(B) = 4. Then

$$5 \le \begin{cases} 18 & \text{if } p \le 3, \\ 5 & \text{if } p = 5, \\ 6 & \text{if } p \ge 7. \end{cases}$$

In case p = 5 (resp. p = 7) there are at most 10 (resp. 12) isomorphism types for D. These can be given by generators and relations. All these groups have exponent p and rank at most 3.

Proposition

If G is p-solvable and LL(B) = 4, then p = 2 and one of the following holds

Proposition

If G is p-solvable and LL(B) = 4, then p = 2 and one of the following holds

• $D \cong C_4$,

Proposition

If G is p-solvable and LL(B) = 4, then p = 2 and one of the following holds

- $D \cong C_4$,
- $D \cong C_2 \times C_2 \times C_2$,

Proposition

If G is p-solvable and LL(B) = 4, then p = 2 and one of the following holds

- $D \cong C_4$,
- $D \cong C_2 \times C_2 \times C_2$,
- $D \cong D_8$.

Proposition

If G is p-solvable and LL(B) = 4, then p = 2 and one of the following holds

- $D \cong C_4$,
- $D \cong C_2 \times C_2 \times C_2$,
- $D \cong D_8$.

Theorem

Let $G = S_n$ and LL(B) = 4. Then n = 4 and B is the principal 2-block.

We denote the principal block of G by $B_0(G)$.

We denote the principal block of G by $B_0(G)$.

Theorem

Suppose $p \ge 5$ and $LL(B_0(G)) = 4$. Then $H := O^{p'}(G/O_{p'}(G))$ is simple and $LL(B_0(H)) = 4$.

· ロ > · (四 > · (日 > · (日 > ·) 日

We denote the principal block of G by $B_0(G)$.

Theorem

Suppose $p \ge 5$ and $LL(B_0(G)) = 4$. Then $H := O^{p'}(G/O_{p'}(G))$ is simple and $LL(B_0(H)) = 4$.

Theorem (Koshitani)

If p = 2 and $LL(B_0(G)) = 4$, then $O^{2'}(G/O_{2'}(G))$ is one of the following groups:

We denote the principal block of G by $B_0(G)$.

Theorem

Suppose $p \ge 5$ and $LL(B_0(G)) = 4$. Then $H := O^{p'}(G/O_{p'}(G))$ is simple and $LL(B_0(H)) = 4$.

Theorem (Koshitani)

If p = 2 and $LL(B_0(G)) = 4$, then $O^{2'}(G/O_{2'}(G))$ is one of the following groups:

Principal blocks

We denote the principal block of G by $B_0(G)$.

Theorem

Suppose $p \ge 5$ and $LL(B_0(G)) = 4$. Then $H := O^{p'}(G/O_{p'}(G))$ is simple and $LL(B_0(H)) = 4$.

Theorem (Koshitani)

If p = 2 and $LL(B_0(G)) = 4$, then $O^{2'}(G/O_{2'}(G))$ is one of the following groups:

- C₄,
- $C_2 \times C_2 \times C_2$,

Principal blocks

We denote the principal block of G by $B_0(G)$.

Theorem

Suppose $p \ge 5$ and $LL(B_0(G)) = 4$. Then $H := O^{p'}(G/O_{p'}(G))$ is simple and $LL(B_0(H)) = 4$.

Theorem (Koshitani)

If p = 2 and $LL(B_0(G)) = 4$, then $O^{2'}(G/O_{2'}(G))$ is one of the following groups:

- C₄,
- $C_2 \times C_2 \times C_2$,
- $C_2 \times \mathsf{PSL}(2,q)$ for $q \equiv 3 \pmod{8}$,

Principal blocks

We denote the principal block of G by $B_0(G)$.

Theorem

Suppose $p \ge 5$ and $LL(B_0(G)) = 4$. Then $H := O^{p'}(G/O_{p'}(G))$ is simple and $LL(B_0(H)) = 4$.

Theorem (Koshitani)

If p = 2 and $LL(B_0(G)) = 4$, then $O^{2'}(G/O_{2'}(G))$ is one of the following groups:

- C₄,
- $C_2 \times C_2 \times C_2$,
- $C_2 \times \mathsf{PSL}(2,q)$ for $q \equiv 3 \pmod{8}$,
- PGL(2, q) for $q \equiv 3 \pmod{8}$.

Simple groups

Proposition

If G is simple of Lie type in defining characteristic p > 2, then $LL(B_0(G)) \neq 4$.

イロト イロト イヨト イヨト ヨー シタク

Simple groups

Proposition

If G is simple of Lie type in defining characteristic p > 2, then $LL(B_0(G)) \neq 4$.

Proposition

If G is sporadic, p > 2 and $LL(B_0(G)) = 4$, then G = M and p = 11.

Simple groups

Proposition

If G is simple of Lie type in defining characteristic p > 2, then $LL(B_0(G)) \neq 4$.

Proposition

If G is sporadic, p > 2 and $LL(B_0(G)) = 4$, then G = M and p = 11.

We do not know if $LL(B_0(M)) = 4$ for p = 11 (probably not).

• Let $p \equiv 1 \pmod{3}$, n := (p-1)/3 and G := PSL(n,q) where q has order n modulo p, but not modulo p^2 (q always exists). Then $LL(B_0(G)) = 4$.

イロト イロト イヨト イヨト ヨー シタク

• Let $p \equiv 1 \pmod{3}$, n := (p-1)/3 and G := PSL(n,q) where q has order n modulo p, but not modulo p^2 (q always exists). Then $LL(B_0(G)) = 4$.

• However, all these blocks have defect 1.

• Let $p \equiv 1 \pmod{3}$, n := (p-1)/3 and G := PSL(n,q) where q has order n modulo p, but not modulo p^2 (q always exists). Then $LL(B_0(G)) = 4$.

- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.

- Let $p \equiv 1 \pmod{3}$, n := (p-1)/3 and G := PSL(n,q) where q has order n modulo p, but not modulo p^2 (q always exists). Then $LL(B_0(G)) = 4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

- Let $p \equiv 1 \pmod{3}$, n := (p-1)/3 and G := PSL(n,q) where q has order n modulo p, but not modulo p^2 (q always exists). Then $LL(B_0(G)) = 4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:

•
$$G = 12.M_{22}$$
 for $p \in \{5, 7, 11\}$,

- Let $p \equiv 1 \pmod{3}$, n := (p-1)/3 and G := PSL(n,q) where q has order n modulo p, but not modulo p^2 (q always exists). Then $LL(B_0(G)) = 4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

• $G = 12.M_{22}$ for $p \in \{5, 7, 11\}$,

•
$$G = 6.A_7$$
 for $p \in \{5,7\}$,

- Let $p \equiv 1 \pmod{3}$, n := (p-1)/3 and G := PSL(n,q) where q has order n modulo p, but not modulo p^2 (q always exists). Then $LL(B_0(G)) = 4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○へ⊙

• $G = 12.M_{22}$ for $p \in \{5, 7, 11\}$,

•
$$G = 6.A_7$$
 for $p \in \{5,7\}$,

• G = 3.0'N for p = 5,

- Let $p \equiv 1 \pmod{3}$, n := (p-1)/3 and $G := \mathsf{PSL}(n,q)$ where q has order n modulo p, but not modulo p^2 (q always exists). Then $LL(B_0(G)) = 4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:

• $G = 12.M_{22}$ for $p \in \{5, 7, 11\}$,

•
$$G = 6.A_7$$
 for $p \in \{5,7\}$,

- G = 3.0'N for p = 5,
- G = Ru and G = 2.Ru for p = 7.

- Let $p \equiv 1 \pmod{3}$, n := (p-1)/3 and G := PSL(n,q) where q has order n modulo p, but not modulo p^2 (q always exists). Then $LL(B_0(G)) = 4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○へ⊙

- $G = 12.M_{22}$ for $p \in \{5, 7, 11\}$,
- $G = 6.A_7$ for $p \in \{5,7\}$,
- G = 3.0'N for p = 5,
- G = Ru and G = 2.Ru for p = 7.
- We do not have any examples for p = 3.