On Loewy lengths of blocks (joint work with S. Koshitani and B. Külshammer)

Benjamin Sambale, FSU Jena

March 26, 2013

Notation

- G - finite group

Notation

- G - finite group
- p - prime number

Notation

- G - finite group
- p - prime number
- F - algebraically closed field of characteristic p

Notation

- G - finite group
- p - prime number
- F-algebraically closed field of characteristic p
- B - block of $F G$

Notation

- G - finite group
- p - prime number
- F - algebraically closed field of characteristic p
- B - block of $F G$
- $J(B)$ - Jacobson radical of B (as an algebra)

Notation

- G - finite group
- p - prime number
- F - algebraically closed field of characteristic p
- B - block of $F G$
- $J(B)$ - Jacobson radical of B (as an algebra)
- Let $L L(B):=\min \left\{n \geq 0: J(B)^{n}=0\right\}$ be the Loewy length of B

Notation

- G - finite group
- p - prime number
- F - algebraically closed field of characteristic p
- B - block of $F G$
- $J(B)$ - Jacobson radical of B (as an algebra)
- Let $L L(B):=\min \left\{n \geq 0: J(B)^{n}=0\right\}$ be the Loewy length of B
- Let D be a defect group of B. This is p-subgroup of G, unique up to conjugation.

Question
What can be said about the structure of D if $\operatorname{LL}(B)$ is given?

Question
What can be said about the structure of D if $L L(B)$ is given?
Theorem (Okuyama)
Let δ be the defect of B. Then

Question
What can be said about the structure of D if $L L(B)$ is given?
Theorem (Okuyama)
Let δ be the defect of B. Then
(1) $L L(B)=1$ iff $\delta=0$.

Question

What can be said about the structure of D if $L L(B)$ is given?
Theorem (Okuyama)
Let δ be the defect of B. Then
(1) $L L(B)=1$ iff $\delta=0$.
(2) $L L(B)=2$ iff $\delta=1$ and $p=2$.

Question

What can be said about the structure of D if $L L(B)$ is given?

Theorem (Okuyama)

Let δ be the defect of B. Then
(1) $L L(B)=1$ iff $\delta=0$.
(2) $L L(B)=2$ iff $\delta=1$ and $p=2$.
(3) $L L(B)=3$ iff one of the following holds:

Question

What can be said about the structure of D if $L L(B)$ is given?

Theorem (Okuyama)

Let δ be the defect of B. Then
(1) $L L(B)=1$ iff $\delta=0$.
(2) $L L(B)=2$ iff $\delta=1$ and $p=2$.
(3) $L L(B)=3$ iff one of the following holds:
(a) $p=\delta=2$ and B is Morita equivalent to $F\left[C_{2} \times C_{2}\right]$ or to $F A_{4}$.

Question

What can be said about the structure of D if $L L(B)$ is given?

Theorem (Okuyama)

Let δ be the defect of B. Then
(1) $L L(B)=1$ iff $\delta=0$.
(2) $L L(B)=2$ iff $\delta=1$ and $p=2$.
(3) $L L(B)=3$ iff one of the following holds:
(a) $p=\delta=2$ and B is Morita equivalent to $F\left[C_{2} \times C_{2}\right]$ or to $F A_{4}$.
(b) $p>2, \delta=1$, the inertial index of B is $e(B) \in\{p-$ $1,(p-1) / 2\}$, and the Brauer tree of B is a straight line with exceptional vertex at the end (if it exists).

Theorem (Koshitani-Külshammer-S.)
If B has defect δ and $L L(B)>1$, then

$$
\delta \leq\binom{ L L(B)}{2}\left(2\left\lfloor\log _{p}(L L(B)-1)\right\rfloor+1\right)
$$

Theorem (Koshitani-Külshammer-S.)
If B has defect δ and $L L(B)>1$, then

$$
\delta \leq\binom{ L L(B)}{2}\left(2\left\lfloor\log _{p}(L L(B)-1)\right\rfloor+1\right)
$$

Sketch of the proof.

Theorem (Koshitani-Külshammer-S.)

If B has defect δ and $L L(B)>1$, then

$$
\delta \leq\binom{ L L(B)}{2}\left(2\left\lfloor\log _{p}(L L(B)-1)\right\rfloor+1\right) .
$$

Sketch of the proof.

- Let D be a defect group of B and set $p^{\epsilon}=\exp D$.

Theorem (Koshitani-Külshammer-S.)

If B has defect δ and $L L(B)>1$, then

$$
\delta \leq\binom{ L L(B)}{2}\left(2\left\lfloor\log _{p}(L L(B)-1)\right\rfloor+1\right)
$$

Sketch of the proof.

- Let D be a defect group of B and set $p^{\epsilon}=\exp D$.
- Moreover, let ρ be the rank of D.

Theorem (Koshitani-Külshammer-S.)

If B has defect δ and $L L(B)>1$, then

$$
\delta \leq\binom{ L L(B)}{2}\left(2\left\lfloor\log _{p}(L L(B)-1)\right\rfloor+1\right)
$$

Sketch of the proof.

- Let D be a defect group of B and set $p^{\epsilon}=\exp D$.
- Moreover, let ρ be the rank of D.
- A result of Oppermann shows $\rho \leq L L(B)-1$.

Theorem (Koshitani-Külshammer-S.)

If B has defect δ and $L L(B)>1$, then

$$
\delta \leq\binom{ L L(B)}{2}\left(2\left\lfloor\log _{p}(L L(B)-1)\right\rfloor+1\right)
$$

Sketch of the proof.

- Let D be a defect group of B and set $p^{\epsilon}=\exp D$.
- Moreover, let ρ be the rank of D.
- A result of Oppermann shows $\rho \leq L L(B)-1$.
- A result of Külshammer implies $\epsilon \leq 1+\left\lfloor\log _{p}(L L(B)-1)\right\rfloor$.

Theorem (Koshitani-Külshammer-S.)

If B has defect δ and $L L(B)>1$, then

$$
\delta \leq\binom{ L L(B)}{2}\left(2\left\lfloor\log _{p}(L L(B)-1)\right\rfloor+1\right)
$$

Sketch of the proof.

- Let D be a defect group of B and set $p^{\epsilon}=\exp D$.
- Moreover, let ρ be the rank of D.
- A result of Oppermann shows $\rho \leq L L(B)-1$.
- A result of Külshammer implies $\epsilon \leq 1+\left\lfloor\log _{p}(L L(B)-1)\right\rfloor$.
- By elementary group theory we have $\delta \leq\binom{\rho+1}{2}(2 \epsilon-1)$.

Theorem (Koshitani-Külshammer-S.)

If B has defect δ and $L L(B)>1$, then

$$
\delta \leq\binom{ L L(B)}{2}\left(2\left\lfloor\log _{p}(L L(B)-1)\right\rfloor+1\right)
$$

Sketch of the proof.

- Let D be a defect group of B and set $p^{\epsilon}=\exp D$.
- Moreover, let ρ be the rank of D.
- A result of Oppermann shows $\rho \leq L L(B)-1$.
- A result of Külshammer implies $\epsilon \leq 1+\left\lfloor\log _{p}(L L(B)-1)\right\rfloor$.
- By elementary group theory we have $\delta \leq\binom{\rho+1}{2}(2 \epsilon-1)$.
- Combine these equations.

Remarks

Brauer's Problem 21

Does there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\lim _{n \rightarrow \infty} f(n)=\infty$ and $f(\delta) \leq \operatorname{dim}_{F} Z(B)$.

Remarks

Brauer's Problem 21

Does there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\lim _{n \rightarrow \infty} f(n)=\infty$ and $f(\delta) \leq \operatorname{dim}_{F} Z(B)$.

Proposition

Let B be a block with cyclic defect group D and inertial index e($B)$. Then

$$
L L(B) \geq \frac{|D|-1}{e(B)}+1
$$

Blocks with $L L(B)=4$

Proposition

Let B be a p-block with defect δ, defect group D and $L L(B)=4$. Then

$$
\delta \leq \begin{cases}18 & \text { if } p \leq 3 \\ 5 & \text { if } p=5 \\ 6 & \text { if } p \geq 7\end{cases}
$$

Blocks with $L L(B)=4$

Proposition

Let B be a p-block with defect δ, defect group D and $L L(B)=4$. Then

$$
\delta \leq \begin{cases}18 & \text { if } p \leq 3 \\ 5 & \text { if } p=5 \\ 6 & \text { if } p \geq 7\end{cases}
$$

In case $p=5$ (resp. $p=7$) there are at most 10 (resp. 12) isomorphism types for D. These can be given by generators and relations. All these groups have exponent p and rank at most 3.

Blocks with $L L(B)=4$

Proposition

If G is p-solvable and $\operatorname{LL}(B)=4$, then $p=2$ and one of the following holds

Blocks with $L L(B)=4$

Proposition

If G is p-solvable and $\operatorname{LL}(B)=4$, then $p=2$ and one of the following holds

- $D \cong C_{4}$,

Blocks with $L L(B)=4$

Proposition

If G is p-solvable and $\operatorname{LL}(B)=4$, then $p=2$ and one of the following holds

- $D \cong C_{4}$,
- $D \cong C_{2} \times C_{2} \times C_{2}$,

Blocks with $L L(B)=4$

Proposition

If G is p-solvable and $\operatorname{LL}(B)=4$, then $p=2$ and one of the following holds

- $D \cong C_{4}$,
- $D \cong C_{2} \times C_{2} \times C_{2}$,
- $D \cong D_{8}$.

Blocks with $L L(B)=4$

Proposition

If G is p-solvable and $\operatorname{LL}(B)=4$, then $p=2$ and one of the following holds

- $D \cong C_{4}$,
- $D \cong C_{2} \times C_{2} \times C_{2}$,
- $D \cong D_{8}$.

Theorem

Let $G=S_{n}$ and $L L(B)=4$. Then $n=4$ and B is the principal 2-block.

Principal blocks

We denote the principal block of G by $B_{0}(G)$.

Principal blocks

We denote the principal block of G by $B_{0}(G)$.

Theorem

Suppose $p \geq 5$ and $L L\left(B_{0}(G)\right)=4$. Then $H:=\mathrm{O}^{p^{\prime}}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$ is simple and $L L\left(B_{0}(H)\right)=4$.

Principal blocks

We denote the principal block of G by $B_{0}(G)$.

Theorem

Suppose $p \geq 5$ and $L L\left(B_{0}(G)\right)=4$. Then $H:=\mathrm{O}^{p^{\prime}}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$ is simple and $L L\left(B_{0}(H)\right)=4$.

Theorem (Koshitani)

If $p=2$ and $L L\left(B_{0}(G)\right)=4$, then $\mathrm{O}^{2^{\prime}}\left(G / \mathrm{O}_{2^{\prime}}(G)\right)$ is one of the following groups:

Principal blocks

We denote the principal block of G by $B_{0}(G)$.

Theorem

Suppose $p \geq 5$ and $L L\left(B_{0}(G)\right)=4$. Then $H:=\mathrm{O}^{p^{\prime}}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$ is simple and $L L\left(B_{0}(H)\right)=4$.

Theorem (Koshitani)

If $p=2$ and $L L\left(B_{0}(G)\right)=4$, then $\mathrm{O}^{2^{\prime}}\left(G / \mathrm{O}_{2^{\prime}}(G)\right)$ is one of the following groups:

- C_{4},

Principal blocks

We denote the principal block of G by $B_{0}(G)$.

Theorem

Suppose $p \geq 5$ and $L L\left(B_{0}(G)\right)=4$. Then $H:=\mathrm{O}^{p^{\prime}}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$ is simple and $L L\left(B_{0}(H)\right)=4$.

Theorem (Koshitani)

If $p=2$ and $L L\left(B_{0}(G)\right)=4$, then $\mathrm{O}^{2^{\prime}}\left(G / \mathrm{O}_{2^{\prime}}(G)\right)$ is one of the following groups:

- C_{4},
- $C_{2} \times C_{2} \times C_{2}$,

Principal blocks

We denote the principal block of G by $B_{0}(G)$.

Theorem

Suppose $p \geq 5$ and $L L\left(B_{0}(G)\right)=4$. Then $H:=\mathrm{O}^{p^{\prime}}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$ is simple and $L L\left(B_{0}(H)\right)=4$.

Theorem (Koshitani)

If $p=2$ and $L L\left(B_{0}(G)\right)=4$, then $\mathrm{O}^{2^{\prime}}\left(G / \mathrm{O}_{2^{\prime}}(G)\right)$ is one of the following groups:

- C_{4},
- $C_{2} \times C_{2} \times C_{2}$,
- $C_{2} \times \operatorname{PSL}(2, q)$ for $q \equiv 3(\bmod 8)$,

Principal blocks

We denote the principal block of G by $B_{0}(G)$.

Theorem

Suppose $p \geq 5$ and $L L\left(B_{0}(G)\right)=4$. Then $H:=\mathrm{O}^{p^{\prime}}\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$ is simple and $L L\left(B_{0}(H)\right)=4$.

Theorem (Koshitani)

If $p=2$ and $L L\left(B_{0}(G)\right)=4$, then $\mathrm{O}^{2^{\prime}}\left(G / \mathrm{O}_{2^{\prime}}(G)\right)$ is one of the following groups:

- C_{4},
- $C_{2} \times C_{2} \times C_{2}$,
- $C_{2} \times \operatorname{PSL}(2, q)$ for $q \equiv 3(\bmod 8)$,
- PGL $(2, q)$ for $q \equiv 3(\bmod 8)$.

Simple groups

Proposition

If G is simple of Lie type in defining characteristic $p>2$, then $L L\left(B_{0}(G)\right) \neq 4$.

Simple groups

Proposition

If G is simple of Lie type in defining characteristic $p>2$, then $L L\left(B_{0}(G)\right) \neq 4$.

Proposition

If G is sporadic, $p>2$ and $L L\left(B_{0}(G)\right)=4$, then $G=M$ and $p=11$.

Simple groups

Proposition

If G is simple of Lie type in defining characteristic $p>2$, then $L L\left(B_{0}(G)\right) \neq 4$.

Proposition

If G is sporadic, $p>2$ and $L L\left(B_{0}(G)\right)=4$, then $G=M$ and $p=11$.

We do not know if $L L\left(B_{0}(M)\right)=4$ for $p=11$ (probably not).

Examples

- Let $p \equiv 1(\bmod 3), n:=(p-1) / 3$ and $G:=\operatorname{PSL}(n, q)$ where q has order n modulo p, but not modulo p^{2} (q always exists). Then $L L\left(B_{0}(G)\right)=4$.

Examples

- Let $p \equiv 1(\bmod 3), n:=(p-1) / 3$ and $G:=\operatorname{PSL}(n, q)$ where q has order n modulo p, but not modulo p^{2} (q always exists). Then $L L\left(B_{0}(G)\right)=4$.
- However, all these blocks have defect 1.

Examples

- Let $p \equiv 1(\bmod 3), n:=(p-1) / 3$ and $G:=\operatorname{PSL}(n, q)$ where q has order n modulo p, but not modulo p^{2} (q always exists). Then $L L\left(B_{0}(G)\right)=4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.

Examples

- Let $p \equiv 1(\bmod 3), n:=(p-1) / 3$ and $G:=\operatorname{PSL}(n, q)$ where q has order n modulo p, but not modulo p^{2} (q always exists). Then $L L\left(B_{0}(G)\right)=4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:

Examples

- Let $p \equiv 1(\bmod 3), n:=(p-1) / 3$ and $G:=\operatorname{PSL}(n, q)$ where q has order n modulo p, but not modulo p^{2} (q always exists). Then $L L\left(B_{0}(G)\right)=4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:
- $G=12 . M_{22}$ for $p \in\{5,7,11\}$,

Examples

- Let $p \equiv 1(\bmod 3), n:=(p-1) / 3$ and $G:=\operatorname{PSL}(n, q)$ where q has order n modulo p, but not modulo p^{2} (q always exists). Then $L L\left(B_{0}(G)\right)=4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:
- $G=12 . M_{22}$ for $p \in\{5,7,11\}$,
- $G=6 . A_{7}$ for $p \in\{5,7\}$,

Examples

- Let $p \equiv 1(\bmod 3), n:=(p-1) / 3$ and $G:=\operatorname{PSL}(n, q)$ where q has order n modulo p, but not modulo p^{2} (q always exists). Then $L L\left(B_{0}(G)\right)=4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:
- $G=12 . M_{22}$ for $p \in\{5,7,11\}$,
- $G=6 . A_{7}$ for $p \in\{5,7\}$,
- $G=3 . O^{\prime} N$ for $p=5$,

Examples

- Let $p \equiv 1(\bmod 3), n:=(p-1) / 3$ and $G:=\operatorname{PSL}(n, q)$ where q has order n modulo p, but not modulo p^{2} (q always exists). Then $L L\left(B_{0}(G)\right)=4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:
- $G=12 . M_{22}$ for $p \in\{5,7,11\}$,
- $G=6 . A_{7}$ for $p \in\{5,7\}$,
- $G=3 . O^{\prime} N$ for $p=5$,
- $G=R u$ and $G=2 . R u$ for $p=7$.

Examples

- Let $p \equiv 1(\bmod 3), n:=(p-1) / 3$ and $G:=\operatorname{PSL}(n, q)$ where q has order n modulo p, but not modulo p^{2} (q always exists). Then $L L\left(B_{0}(G)\right)=4$.
- However, all these blocks have defect 1.
- There are similar examples for other groups of Lie type.
- There are (not necessarily principal) blocks of Loewy length 4 of the following groups:
- $G=12 . M_{22}$ for $p \in\{5,7,11\}$,
- $G=6 . A_{7}$ for $p \in\{5,7\}$,
- $G=3 . O^{\prime} N$ for $p=5$,
- $G=R u$ and $G=2 . R u$ for $p=7$.
- We do not have any examples for $p=3$.

