Ideals in $U(\mathfrak{g})$ for locally simple Lie algebras \mathfrak{g}

Ivan Penkov

Jacobs University Bremen

Joint work with A.Petukhov

Complete paper: On Ideals in the enveloping algebra of a locally simple Lie algebra, preprint 2012, arXiv:1210.0466.

March 26, 2013

Base field \mathbb{C} . Locally simple Lie algebras:

$$\mathfrak{g}_1 \subset \mathfrak{g}_2 \subset ... \subset \mathfrak{g}_n \subset \mathfrak{g}_{n+1}...$$

 \mathfrak{g}_n simple, $\lim_{n\to\infty} (\dim \mathfrak{g}_n) = \infty$, $\mathfrak{g} = \varinjlim_{n\in\mathbb{Z}_{\geq 1}} \mathfrak{g}_n$. Three classes:

1. \mathfrak{g} — finitary (classical): $\mathfrak{sl}(\infty) = \varinjlim_{n \in \mathbb{Z}_{\geq 2}} \mathfrak{sl}(n),$ $\mathfrak{o}(\infty) = \varinjlim_{n \in \mathbb{Z}_{\geq 3}} \mathfrak{o}(n),$ $\mathfrak{sp}(\infty) = \varinjlim_{n \in \mathbb{Z}_{\geq 2}} \mathfrak{sp}(2n).$

Ivan Penkov Ideals in $U(\mathfrak{g})$ for locally simple Lie algebras \mathfrak{g}

同 ト イ ヨ ト イ ヨ ト

II.
$$\mathfrak{g}$$
 — diagonal: example $\mathfrak{sl}(2^{\infty}) = \varinjlim_{n \in \mathbb{Z}_{\geq 1}} \mathfrak{sl}(2^n)$
$$A \mapsto \begin{pmatrix} A & 0\\ 0 & A \end{pmatrix}$$

Classification by A.Baranov and A.Zhilinskii (A. A. Baranov, A. G. Zhilinskii, Diagonal direct limits of semisimple Lie algebras, Comm. Algebra **27** (1999), 2749-2766)

III. \mathfrak{g} — general non-diagonal: example $\operatorname{adj}_n(\infty)$

$$\mathfrak{sl}(n) \subset \mathfrak{sl}(n^2-1) \subset ...$$

No classification

 $\mathfrak g$ admits no non-trivial finite-dimensional representations and $Z_{U(\mathfrak g)}=\mathbb C.$

 $I \subset U(\mathfrak{g})$, degree filtration yields $\operatorname{gr} I \subset S^{\cdot}(\mathfrak{g})$, $\operatorname{gr} I$ is *G*-stable (Poisson)

 $U(\mathfrak{g})$ admits a non-zero ideal of locally infinite codimension

∜

 $S^{.}(\mathfrak{g})$ admits a non-zero Poisson ideal of locally infinite codimension

associated variety $\operatorname{Var}(I) = \operatorname{zeroes} \operatorname{of} \operatorname{gr} I$ $\operatorname{Var}(I) \subset \mathfrak{g}^* = \varprojlim_{n \in \mathbb{Z}_{\geq 1}} \mathfrak{g}_n^*$ I has locally finite codimension $\Leftrightarrow \operatorname{Var}(I) = 0$

Theorem (first main result)

If $S^{\cdot}(\mathfrak{g})$ admits a non-zero Poisson ideal of locally infinite codimension, then $\mathfrak{g} \simeq \mathfrak{sl}(\infty), \mathfrak{o}(\infty), \mathfrak{sp}(\infty)$.

Theorem (A. G. Zhilinskii, Coherent finite-type systems of inductive families of non-diagonal inclusions, (Russian) Dokl. Acad. Nauk Belarusi **36:1** (1992), 9-13, 92)

If $U(\mathfrak{g})$ admits a non-zero ideal of locally infinite codimension, then \mathfrak{g} is diagonal.

Idea of proof of Theorem 1. Let $I_n = I \cap U(\mathfrak{g}_n)$. We have

$$\begin{array}{rcl} \operatorname{Var}(I_{n+m}) & \subset & \mathfrak{g}_{n+m}^* \\ \downarrow & & \downarrow \mathcal{P}_{n,m} \\ \operatorname{Var}(I_n) & \subset & \mathfrak{g}_n^* \end{array}$$

Key Proposition: $O \subset \mathfrak{g}_{n+m}^*, O - G_{n+m} - orbit, p_{n,m}(O)$ is not dense in $\mathfrak{g}_n^* \Rightarrow$

$$\dim(\mathfrak{g}_n V_{n+m}) < 2(\dim G_n - rkG_n)(rkG_n + 1)$$

or

$$2 \dim G_n + 2 \geq \dim V_{m+n}$$

伺 ト イヨト イヨト

Identify: $\mathfrak{g}_n^* = \mathfrak{g}_n$. Set

$$\mathfrak{g}_n^{\leq r} = \{X \in \mathfrak{g}_n | \exists \lambda \in \mathbb{C} : rk(X - \lambda \mathrm{Id}_{V_n}) \leq r\}.$$

We have a well-defined projective system

$$\ldots \to \mathfrak{g}_n^{\leq r} \to \mathfrak{g}_{n-1}^{\leq r} \to \ldots$$

for $\mathfrak{g} = \mathfrak{sl}(\infty), \mathfrak{o}(\infty), \mathfrak{sp}(\infty)$. In fact, the above maps are surjective. We obtain Poisson ideals $J^{\leq r}$ of $S \cdot (\mathfrak{g})$ whose zero-sets are respectively $\lim_{n \in \mathbb{Z}_{\geq 1}} \mathfrak{g}_n^{\leq r} \subset \mathfrak{g}^*$.

Theorem (second main result)

Let $\mathfrak{g} = \mathfrak{sl}(\infty), \mathfrak{o}(\infty), \mathfrak{sp}(\infty)$ and let $J \subset S^{\cdot}(\mathfrak{g})$ be a non-zero radical Poisson ideal. Then $J = J^{\leq r}$ for some r.

In the remainder $\mathfrak{g} = \mathfrak{sl}(\infty), \mathfrak{o}(\infty), \mathfrak{sp}(\infty)$.

Definition

 $I \subset U(\mathfrak{g})$ is *integrable* if for any n, $I_n = I \cap U(\mathfrak{g}_n)$ is the intersection of ideals of finite codimension in $U(\mathfrak{g}_n)$.

Definition (Zhilinskii)

A coherent local system (cls) of simple finite-dimensional $\mathfrak{g}_{\mathfrak{n}}$ -modules is a set $\{M_n^k\}$ such that

$$\forall n, k \ M_{n \downarrow \mathfrak{g}_{n-1}}^k = \bigoplus_{k'} m^{k'} M_{n-1}^{k'}.$$

A cls is of *finite type* if for any fixed *n* it contains finitely many \mathfrak{g}_n -modules M_n^k . A cls is *irreducible* if it is not the union of two cls. The following are *basic* cls:

for
$$\mathfrak{g} = \mathfrak{sl}(\infty) : \mathcal{E} \leftarrow \Lambda \cdot V, \ \mathcal{L}_p \leftarrow \Lambda^p V, \ \mathcal{L}_p^{\infty} \leftarrow S \cdot (V \otimes \mathbb{C}^p), \ \mathcal{R}_q \leftarrow \Lambda^q(V_*), \ \mathcal{R}_q^{\infty} \leftarrow S \cdot ((V_*) \otimes \mathbb{C}^q), \ \mathcal{E}^{\infty} \text{ (all modules);}$$

for $\mathfrak{g} = \mathfrak{o}(\infty) : \mathcal{E} \leftarrow \Lambda^{\cdot} V$, $\mathcal{L}_{p} \leftarrow \Lambda^{p} V$, $\mathcal{L}_{p}^{\infty} \leftarrow S^{\cdot} (V \otimes \mathbb{C}^{p})$, \mathcal{R} (spinor modules), \mathcal{E}^{∞} (all modules);

for $\mathfrak{g} = \mathfrak{sp}(\infty) : \mathcal{E} \leftarrow \Lambda V, \ \mathcal{L}_p \leftarrow \Lambda^p V, \ \mathcal{L}_p^{\infty} \leftarrow S(V \otimes \mathbb{C}^p), \ \mathcal{E}^{\infty}$ (all modules);

where $p, q \in \mathbb{Z}_{\geq 1}$

Product and tensor product of cls are well-defined. Moreover, any cls has the form

$$\begin{split} (\mathcal{L}_1^\infty)^{\otimes \upsilon} \otimes (\mathcal{R}_1^\infty)^{\otimes w} \otimes ((\mathcal{L}_1^{x_{\upsilon+1}} \mathcal{L}_2^{x_{\upsilon+2}} ... \mathcal{L}_{i-\upsilon}^{x_i}) \mathcal{E}^m (\mathcal{R}_1^{z_{w+1}} \mathcal{R}_2^{z_{w+2}} ... \mathcal{R}_{j-w}^{z_j})) \\ \text{for } \mathfrak{g} = \mathfrak{sl}(\infty), \text{ and} \end{split}$$

$$(\mathcal{L}_1^\infty)^{\otimes \upsilon} \otimes ((\mathcal{L}_1^{x_{\upsilon+1}}\mathcal{L}_2^{x_{\upsilon+2}}...\mathcal{L}_{i-\upsilon}^{x_i})\mathcal{E}^m\mathcal{R})$$
 for $\mathfrak{g} = \mathfrak{o}(\infty)$,

$$(\mathcal{L}_1^{\infty})^{\otimes \upsilon} \otimes ((\mathcal{L}_1^{x_{\upsilon+1}}\mathcal{L}_2^{x_{\upsilon+2}}...\mathcal{L}_{i-\upsilon}^{x_i})\mathcal{E}^m)$$

for $\mathfrak{g} = \mathfrak{sp}(\infty)$. For $\mathfrak{g} = \mathfrak{sl}(\infty) \operatorname{Ann} \mathcal{L}_1^{\infty} = \operatorname{Ann} \mathcal{R}_1^{\infty}$, so the notation $I(v, Q_f)$ makes sense.

Theorem

The correspondence

$$Q \rightarrow I(v, Q_f)$$

is a bijection between the set of irreducible left cls and the set of prime integrable ideals in $U(\mathfrak{sl}(\infty))$. The same correspondence is a bijection between the set of all irreducible cls and all prime ideals in $U(\mathfrak{g})$ for $\mathfrak{g} = \mathfrak{o}(\infty), \mathfrak{sp}(\infty)$.

<u>Fact</u>: An integrable ideal of $U(\mathfrak{g})$ is prime if and only if it is primitive.

Open questions:

Conjecture: The augmentation ideal is the unique maximal ideal in $U(\mathfrak{sl}(\infty))$; $U(\mathfrak{o}(\infty))$ has two maximal ideals: the augmentation ideal and $I(\mathcal{R})$; $U(\mathfrak{sp}(\infty))$ has two maximal ideals: the augmentation ideal and the kernel of the homomorphism $U(\mathfrak{sp}(\infty)) \to W_{\infty}$.

Question: Are there non-integrable ideals in $U(\mathfrak{sl}(\infty)), U(\mathfrak{o}(\infty))$?

Question: What is a good analogue of Duflo's theorem?

4 E 6 4 E 6