Maximal Cohen-Macaulay Modules over some non-reduced Curve Singularities

Wassilij Gnedin, joint work with Igor Burban

Mathematical Institute, University of Cologne, Germany

Annual conference of the DFG priority programme in representation theory, SPP 1388, Bad Boll 26th March 2013

Outline of the talk

(1) The Classification Problem and Theorem 1
(2) Proof of Theorem 1: Reduction to a Matrix Problem
(3) Examples and Classification Results

Main Goal

$$
\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)
$$

Main Goal

$$
\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)
$$

Basic properties of \mathbf{P} :

- curve singularity: $\mathrm{kr} . \operatorname{dim} \mathbf{P}=1$.

Main Goal

$$
\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)
$$

Basic properties of \mathbf{P} :

- curve singularity: $\mathrm{kr} . \operatorname{dim} \mathbf{P}=1$.
- complete intersection \Rightarrow Gorenstein, i.e. inj. $\operatorname{dim} \mathbf{P}<\infty$.

Main Goal

$$
\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)
$$

Basic properties of \mathbf{P} :

- curve singularity: $\mathrm{kr} . \operatorname{dim} \mathbf{P}=1$.
- complete intersection \Rightarrow Gorenstein, i.e. inj. $\operatorname{dim} \mathbf{P}<\infty$.
- non-isolated, i.e. non-reduced: $z^{2}=0$.

Main Goal

$$
\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)
$$

Basic properties of \mathbf{P} :

- curve singularity: $\mathrm{kr} . \operatorname{dim} \mathbf{P}=1$.
- complete intersection \Rightarrow Gorenstein, i.e. inj. $\operatorname{dim} \mathbf{P}<\infty$.
- non-isolated, i.e. non-reduced: $z^{2}=0$.

Definition

Let $M \in \bmod (\mathbf{P}) . M$ is a maximal Cohen-Macaulay (CM) module $\Longleftrightarrow \operatorname{Hom}_{\mathbf{P}}(\mathbf{k}, M)=0$

Main Goal

$$
\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)
$$

Basic properties of \mathbf{P} :

- curve singularity: $\mathrm{kr} . \operatorname{dim} \mathbf{P}=1$.
- complete intersection \Rightarrow Gorenstein, i.e. inj. $\operatorname{dim} \mathbf{P}<\infty$.
- non-isolated, i.e. non-reduced: $z^{2}=0$.

Definition

Let $M \in \bmod (\mathbf{P}) . M$ is a maximal Cohen-Macaulay (CM) module $\Longleftrightarrow \operatorname{Hom}_{\mathbf{P}}(\mathbf{k}, M)=0 \Longleftrightarrow M$ is torsion-free.

Main Goal

$$
\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)
$$

Basic properties of \mathbf{P} :

- curve singularity: $\mathrm{kr} . \operatorname{dim} \mathbf{P}=1$.
- complete intersection \Rightarrow Gorenstein, i.e. inj. $\operatorname{dim} \mathbf{P}<\infty$.
- non-isolated, i.e. non-reduced: $z^{2}=0$.

Definition

Let $M \in \bmod (\mathbf{P}) . M$ is a maximal Cohen-Macaulay (CM) module $\Longleftrightarrow \operatorname{Hom}_{\mathbf{P}}(\mathbf{k}, M)=0 \Longleftrightarrow M$ is torsion-free.

Problem

Classify the indecomposable CM modules over \mathbf{P}.

Main Goal

$$
\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)
$$

Basic properties of \mathbf{P} :

- curve singularity: $\mathrm{kr} . \operatorname{dim} \mathbf{P}=1$.
- complete intersection \Rightarrow Gorenstein, i.e. inj. $\operatorname{dim} \mathbf{P}<\infty$.
- non-isolated, i.e. non-reduced: $z^{2}=0$.

Definition

Let $M \in \bmod (\mathbf{P}) . M$ is a maximal Cohen-Macaulay (CM) module $\Longleftrightarrow \operatorname{Hom}_{\mathbf{P}}(\mathbf{k}, M)=0 \Longleftrightarrow M$ is torsion-free.

Problem

Classify the indecomposable CM modules over \mathbf{P}.

Classify the indecomposable submodules of $\mathbf{P}^{\oplus n}$ for any $n \in \mathbb{N}$.

Main Goal

$$
\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)
$$

Basic properties of \mathbf{P} :

- curve singularity: $\mathrm{kr} . \operatorname{dim} \mathbf{P}=1$.
- complete intersection \Rightarrow Gorenstein, i.e. inj. $\operatorname{dim} \mathbf{P}<\infty$.
- non-isolated, i.e. non-reduced: $z^{2}=0$.

Definition

Let $M \in \bmod (\mathbf{P}) . M$ is a maximal Cohen-Macaulay (CM) module $\Longleftrightarrow \operatorname{Hom}_{\mathbf{P}}(\mathbf{k}, M)=0 \Longleftrightarrow M$ is torsion-free.

Problem

Classify the indecomposable CM modules over \mathbf{P}.

Classify the indecomposable submodules of $\mathbf{P}^{\oplus n}$ for any $n \in \mathbb{N}$.

Motivation

Interpretations of CM modules over a (Curve) Singularity A:
(1) (special case of) Lattices over an order,

Motivation

Interpretations of CM modules over a (Curve) Singularity A:
(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",

Motivation

Interpretations of CM modules over a (Curve) Singularity A:

(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",
- includes representation theory of finite groups over p-adic integers.

Motivation

Interpretations of CM modules over a (Curve) Singularity A:

(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",
- includes representation theory of finite groups over p-adic integers.
(2) Singularity category $\underline{\mathrm{CM}}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),

Motivation

Interpretations of CM modules over a (Curve) Singularity A:

(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",
- includes representation theory of finite groups over p-adic integers.
(2) Singularity category $\underline{\mathrm{CM}}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
- may have a cluster-tilting object T

Motivation

Interpretations of CM modules over a (Curve) Singularity A:

(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",
- includes representation theory of finite groups over p-adic integers.
(2) Singularity category $\underline{\mathrm{CM}}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
- may have a cluster-tilting object T
\Rightarrow relates $\underline{\underline{C M}}(\mathbf{A})$ to modules over the self-injective algebra $\underline{\operatorname{End}}_{A}(T)$.

Motivation

Interpretations of CM modules over a (Curve) Singularity A:

(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",
- includes representation theory of finite groups over p-adic integers.
(2) Singularity category $\underline{\mathrm{CM}}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
- may have a cluster-tilting object T
\Rightarrow relates $\underline{\underline{C M}}(\mathbf{A})$ to modules over the self-injective algebra $\underline{\operatorname{End}}_{A}(T)$.
(3) Matrix factorizations $\underline{\mathrm{MF}}(f) \quad$ (if $\mathbf{A}=\mathbf{k} \llbracket x, y \rrbracket /(f)$),

Motivation

Interpretations of CM modules over a (Curve) Singularity A:

(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",
- includes representation theory of finite groups over p-adic integers.
(2) Singularity category $\underline{\mathrm{CM}}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
- may have a cluster-tilting object T
\Rightarrow relates $\underline{\underline{C M}}(\mathbf{A})$ to modules over the self-injective algebra $\underline{\operatorname{End}}_{A}(T)$.
(3) Matrix factorizations $\underline{\mathrm{MF}}(f) \quad$ (if $\mathbf{A}=\mathbf{k} \llbracket x, y \rrbracket /(f)$),
- applications in knot theory and theoretical physics,

Motivation

Interpretations of CM modules over a (Curve) Singularity A:

(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",
- includes representation theory of finite groups over p-adic integers.
(2) Singularity category $\underline{\mathrm{CM}}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
- may have a cluster-tilting object T
\Rightarrow relates $\underline{\underline{C M}}(\mathbf{A})$ to modules over the self-injective algebra $\underline{\operatorname{End}}_{A}(T)$.
(3) Matrix factorizations $\underline{\mathrm{MF}}(f) \quad$ (if $\mathbf{A}=\mathbf{k} \llbracket x, y \rrbracket /(f)$),
- applications in knot theory and theoretical physics,
- Knörrer's periodicity Theorem:

$$
\underline{\operatorname{MF}}(f) \xrightarrow{\sim} \underline{\operatorname{MF}}(f+u v)
$$

Motivation

Interpretations of CM modules over a (Curve) Singularity A:

(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",
- includes representation theory of finite groups over p-adic integers.
(2) Singularity category $\underline{\mathrm{CM}}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
- may have a cluster-tilting object T
\Rightarrow relates $\underline{\underline{C M}}(\mathbf{A})$ to modules over the self-injective algebra $\underline{\operatorname{End}}_{A}(T)$.
(3) Matrix factorizations $\underline{\mathrm{MF}}(f) \quad$ (if $\mathbf{A}=\mathbf{k} \llbracket x, y \rrbracket /(f)$),
- applications in knot theory and theoretical physics,
- Knörrer's periodicity Theorem:

$$
\underline{\operatorname{MF}}(f) \xrightarrow{\sim} \underline{\operatorname{MF}}(f+u v)
$$

\Rightarrow CM modules over 3-dimensional singularity $\mathbf{k} \llbracket x, y, u, v \rrbracket /(f+u v)$.

Motivation

Interpretations of CM modules over a (Curve) Singularity A:

(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",
- includes representation theory of finite groups over p-adic integers.
(2) Singularity category $\underline{\mathrm{CM}}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
- may have a cluster-tilting object T
\Rightarrow relates $\underline{\mathrm{CM}}(\mathbf{A})$ to modules over the self-injective algebra $\underline{\operatorname{End}}_{\mathrm{A}}(T)$.
(3) Matrix factorizations $\underline{\mathrm{MF}}(f) \quad$ (if $\mathbf{A}=\mathbf{k} \llbracket x, y \rrbracket /(f)$),
- applications in knot theory and theoretical physics,
- Knörrer's periodicity Theorem:

$$
\underline{\operatorname{MF}}(f) \xrightarrow{\sim} \underline{\operatorname{MF}}(f+u v)
$$

$\Rightarrow \mathrm{CM}$ modules over 3-dimensional singularity $\mathbf{k} \llbracket x, y, u, v \rrbracket /(f+u v)$.
Motivation to study $\operatorname{CM}(\mathbf{P})$:

- Explicit descriptions of $[$ ind $\mathrm{CM}(\mathbf{A})]$ are known mostly for CM-finite and CM-discrete singularities \mathbf{A}.

Motivation

Interpretations of CM modules over a (Curve) Singularity A:

(1) (special case of) Lattices over an order,

- general framework for "CM modules over non-commutative CM rings",
- includes representation theory of finite groups over p-adic integers.
(2) Singularity category $\underline{\mathrm{CM}}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
- may have a cluster-tilting object T
\Rightarrow relates $\underline{\mathrm{CM}}(\mathbf{A})$ to modules over the self-injective algebra $\underline{\operatorname{End}}_{\mathrm{A}}(T)$.
(3) Matrix factorizations $\underline{\mathrm{MF}}(f) \quad$ (if $\mathbf{A}=\mathbf{k} \llbracket x, y \rrbracket /(f)$),
- applications in knot theory and theoretical physics,
- Knörrer's periodicity Theorem:

$$
\underline{\operatorname{MF}}(f) \xrightarrow{\sim} \underline{\operatorname{MF}}(f+u v)
$$

$\Rightarrow \mathrm{CM}$ modules over 3-dimensional singularity $\mathbf{k} \llbracket x, y, u, v \rrbracket /(f+u v)$.
Motivation to study $\operatorname{CM}(\mathbf{P})$:

- Explicit descriptions of $[$ ind $\mathrm{CM}(\mathbf{A})]$ are known mostly for CM-finite and CM-discrete singularities \mathbf{A}.

Curve Singularities of type $\mathbf{P}_{p q}$

Theorem (Drozd and Greuel, 1993)

The reduced curve singularities of type $\mathbf{P}_{p q}$ are CM-tame, where

$$
\mathbf{P}_{p q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, x^{p}+y^{q}-z^{2}\right), \quad p, q \in \mathbb{N}^{\geqslant 2}, \quad \operatorname{char} \mathbf{k} \neq 2 .
$$

Curve Singularities of type $\mathbf{P}_{p q}$

Theorem (Drozd and Greuel, 1993)

The reduced curve singularities of type $\mathbf{P}_{p q}$ are CM-tame, where

$$
\mathbf{P}_{p q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, x^{p}+y^{q}-z^{2}\right), \quad p, q \in \mathbb{N}^{\geqslant 2}, \quad \operatorname{char} \mathbf{k} \neq 2
$$

Idea of proof: Reduction of the classification problem to a matrix problem.

Curve Singularities of type $\mathbf{P}_{p q}$

Theorem (Drozd and Greuel, 1993)

The reduced curve singularities of type $\mathbf{P}_{p q}$ are CM-tame, where

$$
\mathbf{P}_{p q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, x^{p}+y^{q}-z^{2}\right), \quad p, q \in \mathbb{N}^{\geqslant 2}, \quad \operatorname{char} \mathbf{k} \neq 2 .
$$

Idea of proof: Reduction of the classification problem to a matrix problem.

Theorem 1 (Burban and Gnedin, 2013)

The non-reduced curve singularities of type $\mathbf{P}_{\infty 0 q}$ are CM-tame, where

$$
\mathbf{P}_{\propto q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, y^{q}-z^{2}\right) . \quad q \in \mathbb{N}^{\geqslant 2} \cup\{\infty\} .
$$

Curve Singularities of type $\mathbf{P}_{p q}$

Theorem (Drozd and Greuel, 1993)

The reduced curve singularities of type $\mathbf{P}_{p q}$ are CM-tame, where

$$
\mathbf{P}_{p q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, x^{p}+y^{q}-z^{2}\right), \quad p, q \in \mathbb{N}^{\geqslant 2}, \quad \operatorname{char} \mathbf{k} \neq 2 .
$$

Idea of proof: Reduction of the classification problem to a matrix problem.

Theorem 1 (Burban and Gnedin, 2013)

The non-reduced curve singularities of type $\mathbf{P}_{\infty \sim q}$ are CM-tame, where

$$
\mathbf{P}_{\infty q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, y^{q}-z^{2}\right) . \quad q \in \mathbb{N}^{\geqslant 2} \cup\{\infty\} .
$$

Idea of proof: Generalization of Drozd and Greuel's proof using the category of triples by Burban and Drozd.

Curve Singularities of type $\mathbf{P}_{p q}$

Theorem (Drozd and Greuel, 1993)

The reduced curve singularities of type $\mathbf{P}_{p q}$ are CM-tame, where

$$
\mathbf{P}_{p q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, x^{p}+y^{q}-z^{2}\right), \quad p, q \in \mathbb{N}^{\geqslant 2}, \quad \operatorname{char} \mathbf{k} \neq 2 .
$$

Idea of proof: Reduction of the classification problem to a matrix problem.

Theorem 1 (Burban and Gnedin, 2013)

The non-reduced curve singularities of type $\mathbf{P}_{\infty \sim q}$ are CM-tame, where

$$
\mathbf{P}_{\infty q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, y^{q}-z^{2}\right) . \quad q \in \mathbb{N}^{\geqslant 2} \cup\{\infty\} .
$$

Idea of proof: Generalization of Drozd and Greuel's proof using the category of triples by Burban and Drozd.

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$.

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$. We set

$$
\check{\mathbf{P}}:=\operatorname{End}_{\mathbf{P}}(\mathfrak{m})
$$

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$. We set

$$
\check{\mathbf{P}}:=\operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong\{q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m}\} \subset Q(\mathbf{P})
$$

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$. We set

$$
\check{\mathbf{P}}:=\operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong\{q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m}\} \subset Q(\mathbf{P})
$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

- $\mathbf{P} \subset \check{\mathbf{P}}$

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$. We set

$$
\check{\mathbf{P}}:=\operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong\{q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m}\} \subset Q(\mathbf{P})
$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

- $\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$
$z \longmapsto v+w$

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$. We set

$$
\check{\mathbf{P}}:=\operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong\{q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m}\} \subset Q(\mathbf{P})
$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

- $\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$
$z \longmapsto v+w$
- $\operatorname{CM}(\mathbf{P}) \stackrel{\text { res }}{ }_{\left.\mathrm{CM}^{(\check{\mathbf{P}}}\right) \text {, }}$

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$. We set

$$
\check{\mathbf{P}}:=\operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong\{q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m}\} \subset Q(\mathbf{P})
$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

- $\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$
$z \longmapsto v+w$
- $\mathrm{CM}(\mathbf{P}) \stackrel{\text { res }}{\longleftarrow} \mathrm{CM}(\check{\mathbf{P}})$, i.e. the restriction functor is fully faithful.

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$. We set

$$
\check{\mathbf{P}}:=\operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong\{q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m}\} \subset Q(\mathbf{P})
$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

- $\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$

$$
z \longmapsto v+w
$$

- $\operatorname{CM}(\mathbf{P}) \stackrel{\text { res }}{\longleftarrow} \mathrm{CM}(\check{\mathbf{P}})$, i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: "Rejection Lemma")

Since \mathbf{P} is a Gorenstein curve singularity,

- $[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})] \dot{\cup}[\mathbf{P}] \stackrel{1: 1}{\longleftrightarrow}[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$. We set

$$
\check{\mathbf{P}}:=\operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong\{q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m}\} \subset Q(\mathbf{P})
$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

- $\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ $z \longmapsto v+w$
- $\operatorname{CM}(\mathbf{P}) \stackrel{\text { res }}{\longleftarrow} \mathrm{CM}(\check{\mathbf{P}})$, i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: "Rejection Lemma")

Since \mathbf{P} is a Gorenstein curve singularity,

- $[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})] \dot{\cup}[\mathbf{P}] \stackrel{1: 1}{\longleftrightarrow}[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$
\Rightarrow we may study $\check{\mathbf{P}}$ instead of \mathbf{P}.

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$. We set

$$
\check{\mathbf{P}}:=\operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong\{q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m}\} \subset Q(\mathbf{P})
$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

- $\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ $z \longmapsto v+w$
- $\operatorname{CM}(\mathbf{P}) \stackrel{\text { res }}{\longleftarrow} \mathrm{CM}(\check{\mathbf{P}})$, i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: "Rejection Lemma")

Since \mathbf{P} is a Gorenstein curve singularity,

- $[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})] \dot{\cup}[\mathbf{P}] \stackrel{1: 1}{\longleftrightarrow}[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$
\Rightarrow we may study $\check{\mathbf{P}}$ instead of \mathbf{P}.
- $\check{\mathbf{P}}$ is not Gorenstein but a Cohen-Macaulay curve singularity.

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty \infty}=\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ and $\mathfrak{m}=(x, y, z)$. We set

$$
\check{\mathbf{P}}:=\operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong\{q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m}\} \subset Q(\mathbf{P})
$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

- $\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ $z \longmapsto v+w$
- $\operatorname{CM}(\mathbf{P}) \stackrel{\text { res }}{\longleftarrow} \mathrm{CM}(\check{\mathbf{P}})$, i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: "Rejection Lemma")

Since \mathbf{P} is a Gorenstein curve singularity,

- $[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})] \dot{\cup}[\mathbf{P}] \stackrel{1: 1}{\longleftrightarrow}[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$
\Rightarrow we may study $\check{\mathbf{P}}$ instead of \mathbf{P}.
- $\check{\mathbf{P}}$ is not Gorenstein but a Cohen-Macaulay curve singularity.

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal.

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$.

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S}
$$

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k} \llbracket x, v \rrbracket /\left(v^{2}\right) \times \mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right)}_{\text {product of curve singularities of type } \mathbf{A}_{\infty}}
$$

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\begin{aligned}
& \mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k} \llbracket x, v \rrbracket /\left(v^{2}\right) \times \mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right.}_{\text {product of curve singularities of type } \mathbf{A}_{\infty}} \\
& \mathfrak{m} \subset \check{\mathfrak{m}}=\operatorname{rad} \mathbf{S}
\end{aligned}
$$

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\begin{aligned}
& \mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k} \llbracket x, v \rrbracket /\left(v^{2}\right) \times \mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right)}_{\text {product of curve singularities of type } \mathbf{A}_{\infty}} \\
& \mathfrak{m} \subset \check{\mathfrak{m}}=\operatorname{rad} \mathbf{S}=: I
\end{aligned}
$$

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\begin{array}{r}
\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k} \llbracket x, v \rrbracket /\left(v^{2}\right) \times \mathbf{k}\left[y, w \rrbracket /\left(w^{2}\right)\right.}_{\text {product of curve singularities of type } \mathbf{A}_{\infty}} \\
\mathfrak{m} \subset \check{\mathfrak{m}}=\operatorname{rad} \mathbf{S}=: I \text { is the conductor ideal, i.e. } \\
I=\operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S} / \check{\mathbf{P}}), \quad \check{\mathbf{P}} I=\mathbf{S} I=I
\end{array}
$$

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\begin{array}{r}
\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k} \llbracket x, v \rrbracket /\left(v^{2}\right) \times \mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right)}_{\text {product of curve singularities of type } \mathbf{A}_{\infty}} \\
\mathfrak{m} \subset \check{\mathfrak{m}}=\operatorname{rad} \mathbf{S}=: I \text { is the conductor ideal, i.e. } \\
I=\operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S} / \check{\mathbf{P}}), \quad \check{\mathbf{P}} I=\mathbf{S} I=I
\end{array}
$$

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\begin{array}{r}
\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k} \llbracket x, v \rrbracket /\left(v^{2}\right) \times \mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right)}_{\text {product of curve singularities of type } \mathbf{A}_{\infty}} \\
\mathfrak{m} \subset \check{\mathfrak{m}}=\operatorname{rad} \mathbf{S}=: I \text { is the conductor ideal, i.e. } \\
I=\operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S} / \check{\mathbf{P}}), \quad \check{\mathbf{P}} I=\mathbf{S} I=I
\end{array}
$$

The conductor square

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\begin{array}{r}
\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k} \llbracket x, v \rrbracket /\left(v^{2}\right) \times \mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right)}_{\text {product of curve singularities of type } \mathbf{A}_{\infty}} \\
\mathfrak{m} \subset \check{\mathfrak{m}}=\operatorname{rad} \mathbf{S}=: I \text { is the conductor ideal, i.e. } \\
I=\operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S} / \check{\mathbf{P}}), \quad \check{\mathbf{P}} I=\mathbf{S} I=I
\end{array}
$$

The conductor square induces a diagram of categories and functors:

$$
\begin{aligned}
& \mathrm{CM}(\mathbf{S}) \\
& \Rightarrow \quad \downarrow^{\text {top }=-/ \mathrm{rad}}- \\
& \bmod (\mathbf{k}) \xrightarrow{-x_{-}} \bmod (\mathbf{k} \times \mathbf{k})
\end{aligned}
$$

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\begin{array}{r}
\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k} \llbracket x, v \rrbracket /\left(v^{2}\right) \times \mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right)}_{\text {product of curve singularities of type } \mathbf{A}_{\infty}} \\
\mathfrak{m} \subset \check{\mathfrak{m}}=\operatorname{rad} \mathbf{S}=: I \text { is the conductor ideal, i.e. } \\
I=\operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S} / \check{\mathbf{P}}), \quad \check{\mathbf{P}} I=\mathbf{S} I=I
\end{array}
$$

The conductor square induces a diagram of categories and functors:

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\begin{array}{r}
\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k} \llbracket x, v \rrbracket /\left(v^{2}\right) \times \mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right)}_{\text {product of curve singularities of type } \mathbf{A}_{\infty}} \\
\mathfrak{m} \subset \check{\mathfrak{m}}=\operatorname{rad} \mathbf{S}=: I \text { is the conductor ideal, i.e. } \\
I=\operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S} / \check{\mathbf{P}}), \quad \check{\mathbf{P}} I=\mathbf{S} I=I
\end{array}
$$

The conductor square induces a diagram of categories and functors:

Idea of $\operatorname{Tri}(\check{\mathbf{P}})$: Construct a "pullback category" of top and ${ }_{-} \times{ }_{\ldots}$.

Step 2: Construct a category $\operatorname{Tri}(\check{\mathbf{P}})$ equivalent to $\mathrm{CM}(\check{\mathbf{P}})$

Let $\check{\mathbf{P}}=\mathbf{k} \llbracket x, y, v, w \rrbracket /\left(x y, y v, v w, w x, v^{2}, w^{2}\right)$ and $\check{\mathfrak{m}}$ its maximal ideal. Set $\mathbf{S}=\operatorname{End}_{\check{\mathbf{P}}}(\check{\mathfrak{m}})$. Then the following holds:

$$
\begin{array}{r}
\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k} \llbracket x, v \rrbracket /\left(v^{2}\right) \times \mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right)}_{\text {product of curve singularities of type } \mathbf{A}_{\infty}} \\
\mathfrak{m} \subset \check{\mathfrak{m}}=\operatorname{rad} \mathbf{S}=: I \text { is the conductor ideal, i.e. } \\
I=\operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S} / \check{\mathbf{P}}), \quad \check{\mathbf{P}} I=\mathbf{S} I=I
\end{array}
$$

The conductor square induces a diagram of categories and functors:

Idea of $\operatorname{Tri}(\check{\mathbf{P}})$: Construct a "pullback category" of top and ${ }_{-} \times{ }_{\ldots}$.

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

$\mathrm{CM}(\check{\mathbf{P}}) \longrightarrow \mathrm{CM}(\mathbf{S})$

$$
\bmod (\mathbf{k}) \xrightarrow[-\times]{ } \bmod (\mathbf{k} \times \mathbf{k})
$$

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\{($

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\{(V$,

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\{(V, L$,

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\{(V, L$,

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

$$
V \times V \quad \operatorname{top}(L)
$$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\{(V, L$,

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

$$
V \times V \xrightarrow{\vartheta} \operatorname{top}(L)
$$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\{(V, L, \vartheta) \mid \vartheta$ surjective,

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathrm{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\{(V, L, \vartheta) \mid \vartheta$ surjective,

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\left\{(V, L, \vartheta) \mid \vartheta\right.$ surjective, $\left.\vartheta\right|_{V}$ injective $\}$.

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathrm{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\left\{(V, L, \vartheta) \mid \vartheta\right.$ surjective, $\left.\vartheta\right|_{V}$ injective $\}$.
Theorem (Burban and Drozd, 2012)
$\operatorname{Tri}(\check{\mathbf{P}}) \xrightarrow{\sim} \mathrm{CM}(\check{\mathbf{P}})$

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\left\{(V, L, \vartheta) \mid \vartheta\right.$ surjective, $\left.\vartheta\right|_{V}$ injective $\}$.

Theorem (Burban and Drozd, 2012)

$\operatorname{Tri}(\check{\mathbf{P}}) \xrightarrow{\sim} \mathrm{CM}(\check{\mathbf{P}})$
(V, L, θ)

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\left\{(V, L, \vartheta) \mid \vartheta\right.$ surjective, $\left.\vartheta\right|_{V}$ injective $\}$.

Theorem (Burban and Drozd, 2012)

$\operatorname{Tri}(\check{\mathbf{P}}) \xrightarrow{\sim} \mathrm{CM}(\check{\mathbf{P}})$
(V, L, θ)

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\left\{(V, L, \vartheta) \mid \vartheta\right.$ surjective, $\left.\vartheta\right|_{V}$ injective $\}$.

Theorem (Burban and Drozd, 2012)

$\operatorname{Tri}(\check{\mathbf{P}}) \xrightarrow{\sim} \mathrm{CM}(\check{\mathbf{P}})$
$(V, L, \theta) \longmapsto M:=$ pullback of $\left.\vartheta\right|_{V}$ and π_{L} in $\bmod (\check{\mathbf{P}})$.

Step 2: Reconstruction of $\mathrm{CM}(\check{\mathbf{P}})$ from $\operatorname{Tri}(\check{\mathbf{P}})$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}):=\left\{(V, L, \vartheta) \mid \vartheta\right.$ surjective, $\left.\vartheta\right|_{V}$ injective $\}$.

Theorem (Burban and Drozd, 2012)

$\operatorname{Tri}(\check{\mathbf{P}}) \xrightarrow{\sim} \mathrm{CM}(\check{\mathbf{P}})$
$(V, L, \theta) \longmapsto M:=$ pullback of $\left.\vartheta\right|_{V}$ and π_{L} in $\bmod (\check{\mathbf{P}})$.

Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

$$
[\operatorname{ind~} \mathrm{CM}(\check{\mathbf{P}})] \stackrel{1: 1}{\longleftrightarrow}[\operatorname{ind} \operatorname{Tri}(\check{\mathbf{P}})]
$$

Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

$$
\begin{aligned}
{[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})] } & \stackrel{1: 1}{\rightleftarrows}\left[\begin{array}{l}
\text { ind } \operatorname{Tri}(\check{\mathbf{P}})] \\
M
\end{array} \stackrel{V=\mathrm{k}^{n},}{\longleftrightarrow}\right.
\end{aligned}
$$

Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

$$
\begin{aligned}
{[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})] \stackrel{1: 1}{\longleftrightarrow} } & {[\text { ind } \operatorname{Tri}(\check{\mathbf{P}})] } \\
M \stackrel{ }{\longleftrightarrow} & V=\mathbf{k}^{n}, \\
& L=L_{1} \times L_{2} \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right),
\end{aligned}
$$

Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

$$
\begin{array}{rll}
{[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})] \stackrel{1: 1}{\longleftrightarrow}} & {[\text { ind } \operatorname{Tri}(\check{\mathbf{P}})]} \\
M \stackrel{ }{\longleftrightarrow} & V=\mathbf{k}^{n} \\
& L=L_{1} \times L_{2} \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right)
\end{array}
$$

Proposition (Buchweitz, Greuel and Schreyer, 1987)

Let $\mathbf{A}_{\infty}=\mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right) .\left[\operatorname{ind} \operatorname{CM}\left(\mathbf{A}_{\infty}\right)\right]=\left\{(1),\left(y^{m}, w\right),(w) \mid m \in \mathbb{N}\right\}$.

Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

$$
\begin{aligned}
{[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})] \stackrel{1: 1}{\longleftrightarrow} } & {[\text { ind } \operatorname{Tri}(\check{\mathbf{P}})] } \\
M \longleftrightarrow & V=\mathbf{k}^{n}, \\
& L=L_{1} \times L_{2} \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \\
& \vartheta=\vartheta_{1} \times \vartheta_{2} \in \operatorname{Mat}_{m_{1} \times n}(\mathbf{k}) \times \operatorname{Mat}_{m_{2} \times n}(\mathbf{k}) \text { s.t. } \\
& \vartheta \text { surjective and }\binom{\vartheta_{1}}{\vartheta_{2}} \text { is injective. }
\end{aligned}
$$

Proposition (Buchweitz, Greuel and Schreyer, 1987)

Let $\mathbf{A}_{\infty}=\mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right) .\left[\operatorname{ind} \operatorname{CM}\left(\mathbf{A}_{\infty}\right)\right]=\left\{(1),\left(y^{m}, w\right),(w) \mid m \in \mathbb{N}\right\}$.

Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

$$
\begin{aligned}
{[\text { ind } \operatorname{CM}(\check{\mathbf{P}})] \stackrel{1: 1}{\longleftrightarrow} } & {[\text { ind } \operatorname{Tri}(\check{\mathbf{P}})] } \\
M \longleftrightarrow & V=\mathbf{k}^{n}, \\
& L=L_{1} \times L_{2} \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \\
& \vartheta=\vartheta_{1} \times \vartheta_{2} \in \operatorname{Mat}_{m_{1} \times n}(\mathbf{k}) \times \operatorname{Mat}_{m_{2} \times n}(\mathbf{k}) \text { s.t. } \\
& \vartheta \text { surjective and }\binom{\vartheta_{1}}{\vartheta_{2}} \text { is injective. }
\end{aligned}
$$

Proposition (Buchweitz, Greuel and Schreyer, 1987)

Let $\mathbf{A}_{\infty}=\mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right) .\left[\operatorname{ind} \operatorname{CM}\left(\mathbf{A}_{\infty}\right)\right]=\left\{(1),\left(y^{m}, w\right),(w) \mid m \in \mathbb{N}\right\}$.
Goal: Formulation of the classification problem in $\operatorname{Tri}(\check{\mathbf{P}})$ as a matrix problem.

Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

$$
\begin{aligned}
{[\text { ind } \operatorname{CM}(\check{\mathbf{P}})] \stackrel{1: 1}{\longleftrightarrow} } & {[\text { ind } \operatorname{Tri}(\check{\mathbf{P}})] } \\
M \longleftrightarrow & V=\mathbf{k}^{n}, \\
& L=L_{1} \times L_{2} \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \\
& \vartheta=\vartheta_{1} \times \vartheta_{2} \in \operatorname{Mat}_{m_{1} \times n}(\mathbf{k}) \times \operatorname{Mat}_{m_{2} \times n}(\mathbf{k}) \text { s.t. } \\
& \vartheta \text { surjective and }\binom{\vartheta_{1}}{\vartheta_{2}} \text { is injective. }
\end{aligned}
$$

Proposition (Buchweitz, Greuel and Schreyer, 1987)

Let $\mathbf{A}_{\infty}=\mathbf{k} \llbracket y, w \rrbracket /\left(w^{2}\right) .\left[\operatorname{ind} \operatorname{CM}\left(\mathbf{A}_{\infty}\right)\right]=\left\{(1),\left(y^{m}, w\right),(w) \mid m \in \mathbb{N}\right\}$.
Goal: Formulation of the classification problem in $\operatorname{Tri}(\check{\mathbf{P}})$ as a matrix problem.

Step 3: Reduction to Matrix Problem

Let $\quad V \in \bmod (\mathbf{k}), \quad L \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \quad \vartheta: V \times V \longrightarrow$ top L.

Step 3: Reduction to Matrix Problem

Let $\quad V \in \bmod (\mathbf{k}), \quad L \in \mathrm{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \quad \vartheta: V \times V \longrightarrow$ top L.

Abstract

Definition $(V, L, \vartheta) \cong\left(V^{\prime}, L^{\prime}, \vartheta^{\prime}\right) \Longleftrightarrow$

Step 3: Reduction to Matrix Problem

Let $\quad V \in \bmod (\mathbf{k}), \quad L \in \mathrm{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \quad \vartheta: V \times V \longrightarrow$ top L.

Abstract

Definition $(V, L, \vartheta) \cong\left(V, L, \vartheta^{\prime}\right) \Longleftrightarrow$

Step 3: Reduction to Matrix Problem

Let $\quad V \in \bmod (\mathbf{k}), \quad L \in \mathrm{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \quad \vartheta: V \times V \longrightarrow$ top L.

Definition

$(V, L, \vartheta) \cong\left(V, L, \vartheta^{\prime}\right) \Longleftrightarrow$ there exist $\phi \in \operatorname{Aut}_{\mathbf{k}}(V)$ and $\xi \in \operatorname{Aut}_{\mathbf{S}}(L)$ such that the following diagram commutes:

$$
\begin{array}{cc}
V \times V \xrightarrow{v} & \rightarrow \operatorname{top} L \\
\phi \times \phi \mid ? & \\
V \times V \longrightarrow \vartheta^{\downarrow} & \operatorname{top} \xi \mid \downarrow \\
V \times \operatorname{top} L
\end{array}
$$

Step 3: Reduction to Matrix Problem

Let $\quad V \in \bmod (\mathbf{k}), \quad L \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \quad \vartheta: V \times V \longrightarrow$ top L.

Definition

$(V, L, \vartheta) \cong\left(V, L, \vartheta^{\prime}\right) \Longleftrightarrow$ there exist $\phi \in \operatorname{Aut}_{\mathbf{k}}(V)$ and $\xi \in \operatorname{Aut}_{\mathbf{S}}(L)$ such that the following diagram commutes:

$$
\begin{aligned}
& V \times V=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta=\vartheta_{1} \times \vartheta_{2}} \text { top } L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}} \\
& V \times V=\begin{array}{l}
\phi \times \phi \\
=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta^{\prime}=\vartheta_{1}^{\prime} \times \vartheta_{2}^{\prime}} \operatorname{top} \xi=\bar{\xi}_{1} \times \bar{\xi}_{2} \downarrow_{2} \\
\text { top } L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}
\end{array}
\end{aligned}
$$

Step 3: Reduction to Matrix Problem

Let $\quad V \in \bmod (\mathbf{k}), \quad L \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \quad \vartheta: V \times V \longrightarrow$ top L.

Definition

$(V, L, \vartheta) \cong\left(V, L, \vartheta^{\prime}\right) \Longleftrightarrow$ there exist $\phi \in \operatorname{Aut}_{\mathbf{k}}(V)$ and $\xi \in \operatorname{Aut}_{\mathbf{S}}(L)$ such that the following diagram commutes:

$$
\begin{gathered}
V \times V=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta=\vartheta_{1} \times \vartheta_{2}} \operatorname{top} L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}} \\
\begin{array}{l}
\phi \times\left.\phi\right|_{2} \\
V \times V=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta^{\prime}=\vartheta_{1}^{\prime} \times \vartheta_{2}^{\prime}} \\
\operatorname{top} \xi=\bar{\xi}_{1} \times \bar{\xi}_{2} \mid \\
\text { top } L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}
\end{array}
\end{gathered}
$$

\Rightarrow an isomorphism of triples acts by conjugation on matrices ϑ_{1} and ϑ_{2} :

$$
\left(\vartheta_{1}, \vartheta_{2}\right) \longmapsto\left(\bar{\xi}_{1} \cdot \vartheta_{1} \cdot \phi^{-1}, \bar{\xi}_{2} \cdot \vartheta_{2} \cdot \phi^{-1}\right)
$$

Step 3: Reduction to Matrix Problem

Let $\quad V \in \bmod (\mathbf{k}), \quad L \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \quad \vartheta: V \times V \longrightarrow$ top L.

Definition

$(V, L, \vartheta) \cong\left(V, L, \vartheta^{\prime}\right) \Longleftrightarrow$ there exist $\phi \in \operatorname{Aut}_{\mathbf{k}}(V)$ and $\xi \in \operatorname{Aut}_{\mathbf{S}}(L)$ such that the following diagram commutes:

$$
\begin{gathered}
V \times V=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta=\vartheta_{1} \times \vartheta_{2}} \operatorname{top} L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}} \\
\begin{array}{l}
\phi \times\left.\phi\right|_{2} \\
V \times V=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta^{\prime}=\vartheta_{1}^{\prime} \times \vartheta_{2}^{\prime}} \\
\operatorname{top} \xi=\bar{\xi}_{1} \times \bar{\xi}_{2} \mid \\
\text { top } L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}
\end{array}
\end{gathered}
$$

\Rightarrow an isomorphism of triples acts by conjugation on matrices ϑ_{1} and ϑ_{2} :

$$
\left(\vartheta_{1}, \vartheta_{2}\right) \longmapsto\left(\bar{\xi}_{1} \cdot \vartheta_{1} \cdot \phi^{-1}, \bar{\xi}_{2} \cdot \vartheta_{2} \cdot \phi^{-1}\right)
$$

(1) ϕ induces simultaneous column transformations of ϑ_{1} and ϑ_{2}.

Step 3: Reduction to Matrix Problem

Let $\quad V \in \bmod (\mathbf{k}), \quad L \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \quad \vartheta: V \times V \longrightarrow$ top L.

Definition

$(V, L, \vartheta) \cong\left(V, L, \vartheta^{\prime}\right) \Longleftrightarrow$ there exist $\phi \in \operatorname{Aut}_{\mathbf{k}}(V)$ and $\xi \in \operatorname{Aut}_{\mathbf{S}}(L)$ such that the following diagram commutes:

$$
\begin{aligned}
& V \times V=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta=\vartheta_{1} \times \vartheta_{2}} \text { top } L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}} \\
& V \times V=\begin{array}{l}
\phi \times \phi \\
=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta^{\prime}=\vartheta_{1}^{\prime} \times \vartheta_{2}^{\prime}} \operatorname{top} \xi=\bar{\xi}_{1} \times \bar{\xi}_{2} \downarrow_{2} \\
\text { top } L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}
\end{array}
\end{aligned}
$$

\Rightarrow an isomorphism of triples acts by conjugation on matrices ϑ_{1} and ϑ_{2} :

$$
\left(\vartheta_{1}, \vartheta_{2}\right) \longmapsto\left(\bar{\xi}_{1} \cdot \vartheta_{1} \cdot \phi^{-1}, \bar{\xi}_{2} \cdot \vartheta_{2} \cdot \phi^{-1}\right)
$$

(1) ϕ induces simultaneous column transformations of ϑ_{1} and ϑ_{2}.
(2) automorphisms of $L_{i} \in \operatorname{CM}\left(\mathbf{A}_{\infty}\right)$ induce certain row transformations of ϑ_{i}.

Step 3: Reduction to Matrix Problem

Let $\quad V \in \bmod (\mathbf{k}), \quad L \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \quad \vartheta: V \times V \longrightarrow$ top L.

Definition

$(V, L, \vartheta) \cong\left(V, L, \vartheta^{\prime}\right) \Longleftrightarrow$ there exist $\phi \in \operatorname{Aut}_{\mathbf{k}}(V)$ and $\xi \in \operatorname{Aut}_{\mathbf{s}}(L)$ such that the following diagram commutes:

$$
\begin{gathered}
V \times V=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta=\vartheta_{1} \times \vartheta_{2}} \operatorname{top} L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}} \\
\begin{array}{l}
\phi \times\left.\phi\right|_{2} \\
V \times V=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta^{\prime}=\vartheta_{1}^{\prime} \times \vartheta_{2}^{\prime}} \\
\operatorname{top} \xi=\bar{\xi}_{1} \times \bar{\xi}_{2} \mid \\
\text { top } L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}
\end{array}
\end{gathered}
$$

\Rightarrow an isomorphism of triples acts by conjugation on matrices ϑ_{1} and ϑ_{2} :

$$
\left(\vartheta_{1}, \vartheta_{2}\right) \longmapsto\left(\bar{\xi}_{1} \cdot \vartheta_{1} \cdot \phi^{-1}, \bar{\xi}_{2} \cdot \vartheta_{2} \cdot \phi^{-1}\right)
$$

(1) ϕ induces simultaneous column transformations of ϑ_{1} and ϑ_{2}.
(2) automorphisms of $L_{i} \in \operatorname{CM}\left(\mathbf{A}_{\infty}\right)$ induce certain row transformations of ϑ_{i}.
\Rightarrow The problem to classify $\left(\vartheta_{1}, \vartheta_{2}\right)$ is a matrix problem.

Step 3: Reduction to Matrix Problem

Let $\quad V \in \bmod (\mathbf{k}), \quad L \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right), \quad \vartheta: V \times V \longrightarrow$ top L.

Definition

$(V, L, \vartheta) \cong\left(V, L, \vartheta^{\prime}\right) \Longleftrightarrow$ there exist $\phi \in \operatorname{Aut}_{\mathbf{k}}(V)$ and $\xi \in \operatorname{Aut}_{\mathbf{s}}(L)$ such that the following diagram commutes:

$$
\begin{gathered}
V \times V=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta=\vartheta_{1} \times \vartheta_{2}} \operatorname{top} L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}} \\
\begin{array}{l}
\phi \times\left.\phi\right|_{2} \\
V \times V=\mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta^{\prime}=\vartheta_{1}^{\prime} \times \vartheta_{2}^{\prime}} \\
\operatorname{top} \xi=\bar{\xi}_{1} \times \bar{\xi}_{2} \mid \\
\text { top } L=\mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}
\end{array}
\end{gathered}
$$

\Rightarrow an isomorphism of triples acts by conjugation on matrices ϑ_{1} and ϑ_{2} :

$$
\left(\vartheta_{1}, \vartheta_{2}\right) \longmapsto\left(\bar{\xi}_{1} \cdot \vartheta_{1} \cdot \phi^{-1}, \bar{\xi}_{2} \cdot \vartheta_{2} \cdot \phi^{-1}\right)
$$

(1) ϕ induces simultaneous column transformations of ϑ_{1} and ϑ_{2}.
(2) automorphisms of $L_{i} \in \operatorname{CM}\left(\mathbf{A}_{\infty}\right)$ induce certain row transformations of ϑ_{i}.
\Rightarrow The problem to classify $\left(\vartheta_{1}, \vartheta_{2}\right)$ is a matrix problem.

Step 3: A typical part of the Matrix Problem

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of $v($ resp. $w)$,

Step 3: A typical part of the Matrix Problem

ϑ_{2}			
$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$
y_{n}	y^{n}		
y^{n}			
$*$	$*$	$*$	$*$
w			
w	$*$	$*$	w

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of $v($ resp. $w)$,

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of $v($ resp. $w)$,

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of $v($ resp. $w)$,

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of $v($ resp. $w)$,

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of $v($ resp. $w)$,
(2) simultaneous elementary row transformations in the horizontal blocks x^{m} and $v\left(\right.$ resp. y^{n} and $\left.w\right)$,

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of v (resp. w),
(2) simultaneous elementary row transformations in the horizontal blocks x^{m} and $v\left(\right.$ resp. y^{n} and $\left.w\right)$,

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of v (resp. w),
(2) simultaneous elementary row transformations in the horizontal blocks x^{m} and $v\left(\right.$ resp. y^{n} and $\left.w\right)$,

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of $v($ resp. $w)$,
(2) simultaneous elementary row transformations in the horizontal blocks x^{m} and $v\left(\right.$ resp. y^{n} and $\left.w\right)$,

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of $v($ resp. $w)$,
(2) simultaneous elementary row transformations in the horizontal blocks x^{m} and $v\left(\right.$ resp. y^{n} and $\left.w\right)$,

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of v (resp. w),
(2) simultaneous elementary row transformations in the horizontal blocks x^{m} and $v\left(\right.$ resp. y^{n} and $\left.w\right)$,
(3) simultaneous elementary column transformations of ϑ_{1} and ϑ_{2}.

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of v (resp. w),
(2) simultaneous elementary row transformations in the horizontal blocks x^{m} and $v\left(\right.$ resp. y^{n} and $\left.w\right)$,
(3) simultaneous elementary column transformations of ϑ_{1} and ϑ_{2}.

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of $v($ resp. $w)$,
(2) simultaneous elementary row transformations in the horizontal blocks x^{m} and $v\left(\right.$ resp. y^{n} and $\left.w\right)$,
(3) simultaneous elementary column transformations of ϑ_{1} and ϑ_{2}.

Matrix problem : find canonical forms of ϑ_{1} and ϑ_{2} using only admissible transformations.

Step 3: A typical part of the Matrix Problem

Admissible transformations:

(1) add a multiple of any row of x^{m} (resp. y^{n}) to any row of $v($ resp. $w)$,
(2) simultaneous elementary row transformations in the horizontal blocks x^{m} and $v\left(\right.$ resp. y^{n} and $\left.w\right)$,
(3) simultaneous elementary column transformations of ϑ_{1} and ϑ_{2}.

Matrix problem : find canonical forms of ϑ_{1} and ϑ_{2} using only admissible transformations.

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame.

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B}

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$
[\text { ind } \operatorname{rep}(\mathfrak{B})]=\underbrace{[\text { strings }]}_{\text {discrete series }} \dot{\cup} \underbrace{[\text { bands }]}_{\text {continuous series }}
$$

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$
[\operatorname{ind} \operatorname{rep}(\mathfrak{B})]=\underbrace{[\text { strings }]}_{\text {discrete series }} \dot{\cup} \underbrace{[\text { bands }]}_{\text {continuous series }}
$$

Summary: Path of Reductions

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$
[\text { ind } \operatorname{rep}(\mathfrak{B})]=\underbrace{[\text { strings }]}_{\text {discrete series }} \dot{\cup} \underbrace{[\text { bands }]}_{\text {continuous series }}
$$

Summary: Path of Reductions

$\operatorname{CM}(\mathbf{P})$

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$
[\text { ind } \operatorname{rep}(\mathfrak{B})]=\underbrace{[\text { strings }]}_{\text {discrete series }} \dot{\cup} \underbrace{[\text { bands }]}_{\text {continuous series }}
$$

Summary: Path of Reductions

$$
\mathrm{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \mathrm{CM}(\check{\mathbf{P}})
$$

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$
[\operatorname{ind} \operatorname{rep}(\mathfrak{B})]=\underbrace{[\text { strings }]}_{\text {discrete series }} \dot{\cup} \underbrace{[\text { bands }]}_{\text {continuous series }}
$$

Summary: Path of Reductions

$$
\mathrm{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \mathrm{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}})
$$

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$
[\text { ind } \operatorname{rep}(\mathfrak{B})]=\underbrace{[\text { strings }]}_{\text {discrete series }} \dot{\cup} \underbrace{[\text { bands }]}_{\text {continuous series }}
$$

Summary: Path of Reductions

$$
\mathrm{CM}(\mathbf{P}) \stackrel{\approx 1: 1}{\longrightarrow} \mathrm{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B})
$$

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$
[\text { ind } \operatorname{rep}(\mathfrak{B})]=\underbrace{[\text { strings }]}_{\text {discrete series }} \dot{\cup} \underbrace{[\text { bands }]}_{\text {continuous series }}
$$

Summary: Path of Reductions

$$
\mathrm{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \mathrm{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B})
$$

$\Rightarrow \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ is CM-tame. Theorem 1 is proven.

Step 4: Solution of the Matrix Problem

The classification problem of $\operatorname{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$
[\text { ind } \operatorname{rep}(\mathfrak{B})]=\underbrace{[\text { strings }]}_{\text {discrete series }} \dot{\cup} \underbrace{[\text { bands }]}_{\text {continuous series }}
$$

Summary: Path of Reductions

$$
\mathrm{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \mathrm{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B})
$$

$\Rightarrow \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ is CM-tame. Theorem 1 is proven.

Example: From a Band to a CM module

Path of Reductions:

Example: From a Band to a CM module

Path of Reductions:

$$
\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \operatorname{CM}(\check{\mathbf{P}}) \longrightarrow \sim \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B})
$$

Example: From a Band to a CM module

Returning the Path of Reductions:

$$
\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \operatorname{CM}(\check{\mathbf{P}}) \longrightarrow \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B})
$$

	ϑ_{1}	ϑ_{2}
x^{m}	1000	0010
x^{m}	0100	0001
v	0010	$\lambda 100$
v	0001	$0 \lambda 00$

$$
\lambda \in \mathbf{k} \backslash\{0\}
$$

Example: From a Band to a CM module

Returning the Path of Reductions:

$$
\begin{aligned}
& \mathrm{CM}(\mathbf{P}) \stackrel{\approx 1: 1}{\longrightarrow} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow[\sim]{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
&(V, L, \vartheta) \longleftrightarrow \vartheta
\end{aligned}
$$

	ϑ_{1}	ϑ_{2}
x^{m}	1000	0010
x^{m}	0100	0001
v	0010	$\lambda 100$
v	0001	$0 \lambda 00$

$$
(V, L, \vartheta)=\left(\mathbf{k}^{4}, \quad \lambda \in \mathbf{k} \backslash\{0\}\right.
$$

Example: From a Band to a CM module

Returning the Path of Reductions:

$$
\begin{aligned}
& \mathrm{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \mathrm{CM}(\check{\mathbf{P}}) \xrightarrow[\sim]{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
&(V, L, \vartheta) \longleftrightarrow \vartheta
\end{aligned}
$$

	ϑ_{1}	ϑ_{2}
x^{m}	1000	0010
x^{m}	0100	0001
v	0010	$\lambda 100$
v	0001	$0 \lambda 00$

$$
(V, L, \vartheta)=\left(\mathbf{k}^{4},\left(\left(x^{m}, v\right)^{\oplus 2},\left(y^{n}, w\right)^{\oplus 2}\right), \quad \lambda \in \mathbf{k} \backslash\{0\}\right.
$$

Example: From a Band to a CM module

Returning the Path of Reductions:

$$
\begin{aligned}
& \mathrm{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow[\sim]{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
&(V, L, \vartheta) \longleftrightarrow \vartheta
\end{aligned}
$$

	ϑ_{1}	ϑ_{2}
x^{m}	1000	0010
x^{m}	0100	0001
v	0010	$\lambda 100$
v	0001	$0 \lambda 00$

$$
(V, L, \vartheta)=\left(\mathbf{k}^{4},\left(\left(x^{m}, v\right)^{\oplus 2},\left(y^{n}, w\right)^{\oplus 2}\right),\left(\vartheta_{1}, \vartheta_{2}\right)\right), \quad \lambda \in \mathbf{k} \backslash\{0\}
$$

Example: From a Band to a CM module

Returning the Path of Reductions:

$$
\begin{aligned}
& \operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \operatorname{CM}(\check{\mathbf{P}}) \underset{\longleftrightarrow}{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& M \longleftarrow(V, L, \vartheta) \longleftarrow \vartheta
\end{aligned}
$$

$$
\begin{aligned}
(V, L, \vartheta) & =\left(\mathbf{k}^{4},\left(\left(x^{m}, v\right)^{\oplus 2},\left(y^{n}, w\right)^{\oplus 2}\right),\left(\vartheta_{1}, \vartheta_{2}\right)\right), \quad \lambda \in \mathbf{k} \backslash\{0\} \\
M & =\left\langle\binom{ x^{m}+\lambda w}{0},\binom{w}{x^{m}+\lambda w},\binom{v+y^{n}}{0},\binom{0}{v+y^{n}}\right\rangle \subset \check{\mathbf{P}}^{\oplus 2}
\end{aligned}
$$

Example: From a Band to a CM module

Returning the Path of Reductions:

$$
\begin{aligned}
& \operatorname{CM}(\mathbf{P}) \underset{\text { res }}{\stackrel{\approx 1: 1}{\longleftrightarrow}} \operatorname{CM}(\check{\mathbf{P}}) \underset{\sim}{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& \operatorname{res}(M) \longleftarrow \backsim \longleftarrow(V, L, \vartheta) \longleftarrow \vartheta
\end{aligned}
$$

	ϑ_{1}	ϑ_{2}
x^{m}	1000	0010
x^{m}	0100	0001
v	0010	$\lambda 100$
v	0001	$0 \lambda 00$

$$
\begin{aligned}
(V, L, \vartheta) & =\left(\mathbf{k}^{4},\left(\left(x^{m}, v\right)^{\oplus 2},\left(y^{n}, w\right)^{\oplus 2}\right),\left(\vartheta_{1}, \vartheta_{2}\right)\right), \quad \lambda \in \mathbf{k} \backslash\{0\} \\
M & =\left\langle\binom{ x^{m}+\lambda w}{0},\binom{w}{x^{m}+\lambda w},\binom{v+y^{n}}{0},\binom{0}{v+y^{n}}\right\rangle \subset \check{\mathbf{P}}^{\oplus 2} \\
\operatorname{res}(M) & =\left\langle\binom{ x^{m+1}+\lambda y z}{0},\binom{y z}{x^{m+1}+\lambda y z},\binom{x z+y^{n+1}}{0},\binom{0}{x z+y^{n+1}}\right\rangle \subset \mathbf{P}^{\oplus 2} .
\end{aligned}
$$

Example: From a Band to a CM module

Returning the Path of Reductions:

$$
\begin{aligned}
& \operatorname{CM}(\mathbf{P}) \underset{\text { res }}{\approx 1: 1} \operatorname{CM}(\check{\mathbf{P}}) \rightleftarrows \sim \\
& \operatorname{res}(M) \underset{\longleftrightarrow}{\longleftrightarrow} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& (V, L, \vartheta) \longleftrightarrow \Downarrow
\end{aligned}
$$

	ϑ_{1}	ϑ_{2}
x^{m}	1000	0010
x^{m}	0100	0001
v	0010	$\lambda 100$
v	0001	$0 \lambda 00$

$$
\begin{aligned}
(V, L, \vartheta) & =\left(\mathbf{k}^{4},\left(\left(x^{m}, v\right)^{\oplus 2},\left(y^{n}, w\right)^{\oplus 2}\right),\left(\vartheta_{1}, \vartheta_{2}\right)\right), \quad \lambda \in \mathbf{k} \backslash\{0\} \\
M & =\left\langle\binom{ x^{m}+\lambda w}{0},\binom{w}{x^{m}+\lambda w},\binom{v+y^{n}}{0},\binom{0}{v+y^{n}}\right\rangle \subset \check{\mathbf{P}}^{\oplus 2} \\
\operatorname{res}(M) & =\left\langle\binom{ x^{m+1}+\lambda y z}{0},\binom{y z}{x^{m+1}+\lambda y z},\binom{x z+y^{n+1}}{0},\binom{0}{x z+y^{n+1}}\right\rangle \subset \mathbf{P}^{\oplus 2} .
\end{aligned}
$$

An interesting category of CM modules

Definition

Let $M \in \operatorname{CM}(\mathbf{P}) . M$ is locally free on the punctured spectrum (loc. free) $\Longleftrightarrow M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in \operatorname{Spec}(\mathbf{P}) \backslash\{\mathfrak{m}\}$.

An interesting category of CM modules

Definition

Let $M \in \operatorname{CM}(\mathbf{P}) . M$ is locally free on the punctured spectrum (loc. free) $\Longleftrightarrow M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in \operatorname{Spec}(\mathbf{P}) \backslash\{\mathfrak{m}\}$.
${\underline{\mathrm{CM}^{\mathrm{If}}}}^{(\mathbf{P}):=\text { stable category of loc. free } \mathrm{CM} \text { modules } \subset \underline{\mathrm{CM}}(\mathbf{P}) \text {. } ~}$

An interesting category of CM modules

Definition

Let $M \in \operatorname{CM}(\mathbf{P}) . M$ is locally free on the punctured spectrum (loc. free) $\Longleftrightarrow M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in \operatorname{Spec}(\mathbf{P}) \backslash\{\mathfrak{m}\}$.
$\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P}):=$ stable category of loc. free CM modules $\subset \underline{\mathrm{CM}}(\mathbf{P})$.

An interesting category of CM modules

Definition

Let $M \in \operatorname{CM}(\mathbf{P}) . M$ is locally free on the punctured spectrum (loc. free) $\Longleftrightarrow M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in \operatorname{Spec}(\mathbf{P}) \backslash\{\mathfrak{m}\}$.
$\underline{C M}^{\mathrm{lf}}(\mathbf{P}):=$ stable category of loc. free CM modules $\subset \underline{\mathrm{CM}}(\mathbf{P})$.
\left. - ${\underline{\mathrm{CM}^{\mathrm{lf}}}}^{\mathrm{A}}\right)=\underline{\mathrm{CM}}(\mathbf{A})$ if \mathbf{A} is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)

Properties of $\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P})$:
(1) has Auslander-Reiten sequences and the 0-Calabi-Yau-property:

$$
\operatorname{Hom}_{\mathbf{P}}(M, N) \cong \mathbb{D}_{\operatorname{Hom}_{\mathbf{P}}}(N, M) \quad \text { for } M, N \in{\underline{\operatorname{CM}^{1 \mathrm{f}}}}^{\mathrm{lf}}(\mathbf{P})
$$

An interesting category of CM modules

Definition

Let $M \in \operatorname{CM}(\mathbf{P}) . M$ is locally free on the punctured spectrum (loc. free) $\Longleftrightarrow M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in \operatorname{Spec}(\mathbf{P}) \backslash\{\mathfrak{m}\}$.

\left. - ${\underline{\mathrm{CM}^{\mathrm{lf}}}}^{\mathrm{A}}\right)=\underline{\mathrm{CM}}(\mathbf{A})$ if \mathbf{A} is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)

Properties of $\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P})$:

(1) has Auslander-Reiten sequences and the 0-Calabi-Yau-property:

$$
\underline{\operatorname{Hom}}_{\mathbf{P}}(M, N) \cong \underline{D o m}_{\mathbf{P}}(N, M) \quad \text { for } M, N \in{\underline{\operatorname{CM}^{\mathrm{lf}}}}^{\text {(f }}(\mathbf{P})
$$

(2) Hom-finite triangulated subcategory of $\underline{\mathrm{CM}}(\mathbf{P})$.

An interesting category of CM modules

Definition

Let $M \in \operatorname{CM}(\mathbf{P}) . M$ is locally free on the punctured spectrum (loc. free) $\Longleftrightarrow M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in \operatorname{Spec}(\mathbf{P}) \backslash\{\mathfrak{m}\}$.
${\underline{C_{M}}}^{\mathrm{lf}}(\mathbf{P}):=$ stable category of loc. free CM modules $\subset \underline{\mathrm{CM}}(\mathbf{P})$.
\left. - ${\underline{\mathrm{CM}^{\mathrm{lf}}}}^{\mathrm{A}}\right)=\underline{\mathrm{CM}}(\mathbf{A})$ if \mathbf{A} is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)

Properties of $\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P})$:
(1) has Auslander-Reiten sequences and the 0-Calabi-Yau-property:

$$
\underline{\operatorname{Hom}}_{\mathbf{P}}(M, N) \cong \mathbb{D}_{\operatorname{Hom}_{\mathbf{P}}}(N, M) \quad \text { for } M, N \in \underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P})
$$

(2) Hom-finite triangulated subcategory of $\underline{\mathrm{CM}}(\mathbf{P})$.

Goal: Description of $\left[\right.$ ind $\left.\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P})\right]$.

An interesting category of CM modules

Definition

Let $M \in \operatorname{CM}(\mathbf{P}) . M$ is locally free on the punctured spectrum (loc. free) $\Longleftrightarrow M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in \operatorname{Spec}(\mathbf{P}) \backslash\{\mathfrak{m}\}$.
${\underline{C_{M}}}^{\mathrm{lf}}(\mathbf{P}):=$ stable category of loc. free CM modules $\subset \underline{\mathrm{CM}}(\mathbf{P})$.
\left. - ${\underline{\mathrm{CM}^{\mathrm{lf}}}}^{\mathrm{A}}\right)=\underline{\mathrm{CM}}(\mathbf{A})$ if \mathbf{A} is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)

Properties of $\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P})$:
(1) has Auslander-Reiten sequences and the 0-Calabi-Yau-property:

$$
\underline{\operatorname{Hom}}_{\mathbf{P}}(M, N) \cong \mathbb{D}_{\operatorname{Hom}_{\mathbf{P}}}(N, M) \quad \text { for } M, N \in \underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P})
$$

(2) Hom-finite triangulated subcategory of $\underline{\mathrm{CM}}(\mathbf{P})$.

Goal: Description of $\left[\right.$ ind $\left.\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P})\right]$.

Main Classification Result

Theorem 2 (Burban and G., 2013)

- Constructive and complete classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$.

Main Classification Result

Theorem 2 (Burban and G., 2013)

- Constructive and complete classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$.

Main Classification Result

Theorem 2 (Burban and G., 2013)

(1) Constructive and complete classification of $[$ ind $\mathrm{CM}(\mathbf{P})]$.

Proof.

(1) Returning the Path of Reductions:

Main Classification Result

Theorem 2 (Burban and G., 2013)

(1) Constructive and complete classification of $[$ ind $\mathrm{CM}(\mathbf{P})]$.

Proof.

(1) Returning the Path of Reductions:

$$
\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B})
$$

Main Classification Result

Theorem 2 (Burban and G., 2013)

(1) Constructive and complete classification of $[$ ind $\mathrm{CM}(\mathbf{P})]$.

Proof.

(1) Returning the Path of Reductions:

$$
\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \operatorname{CM}(\check{\mathbf{P}}) \longrightarrow \sim \underset{\vartheta}{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B})
$$

Main Classification Result

Theorem 2 (Burban and G., 2013)

(1) Constructive and complete classification of $[$ ind $\mathrm{CM}(\mathbf{P})]$.

Proof.

(1) Returning the Path of Reductions:

$$
\begin{aligned}
& \operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \operatorname{CM}(\check{\mathbf{P}}) \longrightarrow \sim \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
&(V, L, \vartheta) \longleftrightarrow \longmapsto
\end{aligned}
$$

Main Classification Result

Theorem 2 (Burban and G., 2013)

(1) Constructive and complete classification of $[$ ind $\mathrm{CM}(\mathbf{P})]$.

Proof.

(1) Returning the Path of Reductions:

$$
\begin{aligned}
& \mathrm{CM}(\mathbf{P}) \xrightarrow{\approx 1: 1} \mathrm{CM}(\check{\mathbf{P}}) \rightleftarrows \sim \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& M \longleftarrow(V, L, \vartheta) \longleftrightarrow \longleftarrow
\end{aligned}
$$

Main Classification Result

Theorem 2 (Burban and G., 2013)

(1) Constructive and complete classification of $[$ ind $\mathrm{CM}(\mathbf{P})]$.

Proof.

(1) Returning the Path of Reductions:

$$
\begin{aligned}
& \operatorname{CM}(\mathbf{P}) \underset{\text { res }}{\stackrel{\approx 1: 1}{\longleftrightarrow}} \mathrm{CM}(\check{\mathbf{P}}) \longleftrightarrow \sim \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& \operatorname{res}(M) \stackrel{\longleftrightarrow}{\longleftrightarrow}(V, L, \vartheta) \longleftrightarrow \succcurlyeq
\end{aligned}
$$

Main Classification Result

Theorem 2 (Burban and G., 2013)

(1) Constructive and complete classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$.
(2) Characterization of $\left[\operatorname{ind} \mathrm{CM}^{\mathrm{lf}}(\mathbf{P})\right]$.

Proof.

(1) Returning the Path of Reductions:

$$
\begin{aligned}
& \operatorname{CM}(\mathbf{P}) \underset{\text { res }}{\stackrel{\approx 1: 1}{\rightleftarrows}} \mathrm{CM}(\check{\mathbf{P}}) \underset{\sim}{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& \operatorname{res}(M) \stackrel{\text { res }}{\longleftarrow} M \longleftarrow(V, L, \vartheta) \longleftarrow \vartheta
\end{aligned}
$$

Main Classification Result

Theorem 2 (Burban and G., 2013)

(1) Constructive and complete classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$.
(2) Characterization of $\left[\operatorname{ind} \mathrm{CM}^{\mathrm{lf}}(\mathbf{P})\right]$.

Proof.

(1) Returning the Path of Reductions:

$$
\begin{aligned}
& \operatorname{CM}(\mathbf{P}) \underset{\text { res }}{\stackrel{\approx 1: 1}{\rightleftarrows}} \mathrm{CM}(\check{\mathbf{P}}) \underset{\sim}{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& \operatorname{res}(M) \stackrel{\text { res }}{\longleftrightarrow} M \longleftarrow(V, L, \vartheta) \longleftarrow \vartheta
\end{aligned}
$$

(2) $\operatorname{res}(M) \in \underline{\mathrm{CM}}(\mathbf{P}) \quad L \in \operatorname{CM}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right)$.

Main Classification Result

Theorem 2 (Burban and G., 2013)

- Constructive and complete classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$.
(2) Characterization of $\left[\operatorname{ind} \mathrm{CM}^{\mathrm{lf}}(\mathbf{P})\right]$.

Proof.

(1) Returning the Path of Reductions:

$$
\begin{aligned}
& \operatorname{CM}(\mathbf{P}) \underset{\text { res }}{\stackrel{\approx 1: 1}{\longleftrightarrow}} \mathrm{CM}(\check{\mathbf{P}}) \longleftrightarrow \sim \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& \operatorname{res}(M) \stackrel{\sim}{\longleftrightarrow}(V, L, \vartheta) \longleftrightarrow \vartheta
\end{aligned}
$$

(2) $\operatorname{res}(M) \in \underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P}) \Longleftrightarrow L \in \mathrm{CM}^{\mathrm{lf}}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right)$.

Main Classification Result

Theorem 2 (Burban and G., 2013)

- Constructive and complete classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$.
(2) Characterization of $\left[\mathrm{ind}_{\mathrm{CM}^{1 \mathrm{f}}}(\mathbf{P})\right]$.
- [bands] $\subset \underline{C M}^{\mathrm{If}}(\mathbf{P})$.

Proof.

(1) Returning the Path of Reductions:

$$
\left.\begin{array}{l}
\operatorname{CM}(\mathbf{P}) \stackrel{\approx 1: 1}{\longleftrightarrow} \mathrm{CM}(\check{\mathbf{P}}) \rightleftarrows \sim \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
\operatorname{res}(M) \stackrel{\sim}{\longleftrightarrow}
\end{array}\right)
$$

(2) $\operatorname{res}(M) \in \underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P}) \Longleftrightarrow L \in \mathrm{CM}^{\mathrm{lf}}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right)$.

Main Classification Result

Theorem 2 (Burban and G., 2013)

- Constructive and complete classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$.
(2) Characterization of $\left[\mathrm{ind}_{\mathrm{CM}^{\mathrm{If}}}(\mathbf{P})\right]$.
- [bands] $\subset{\underline{C^{1 f}}}^{\text {lf }}(\mathbf{P})$. In particular, $\underline{C M}^{\text {lf }}(\mathbf{P})$ is tame.

Proof.

(1) Returning the Path of Reductions:

$$
\begin{aligned}
& \operatorname{CM}(\mathbf{P}) \stackrel{\approx 1: 1}{\longleftrightarrow} \mathrm{CM}(\check{\mathbf{P}}) \rightleftarrows \sim \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& \operatorname{res}(M) \stackrel{\text { res }}{\longleftrightarrow} M \longleftarrow(V, L, \vartheta) \longleftrightarrow \vartheta
\end{aligned}
$$

(2) $\operatorname{res}(M) \in \underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P}) \Longleftrightarrow L \in \mathrm{CM}^{\mathrm{lf}}\left(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}\right)$.

Main Classification Result

Theorem 2 (Burban and G., 2013)

- Constructive and complete classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$.
(2) Characterization of $\left[\right.$ ind $\left.\mathrm{CM}^{1 \mathrm{f}}(\mathbf{P})\right]$.

Proof.

(1) Returning the Path of Reductions:

$$
\begin{aligned}
& \mathrm{CM}(\mathbf{P}) \stackrel{\approx 1: 1}{\longleftrightarrow} \mathrm{CM}(\check{\mathbf{P}}) \rightleftarrows \sim \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& \operatorname{res}(M) \stackrel{\text { res }}{\longleftrightarrow} M \longleftarrow(V, L, \vartheta) \longleftarrow \longleftrightarrow
\end{aligned}
$$

\Rightarrow explicit description of indecomposable objects in a tame 0-CY category.

Main Classification Result

Theorem 2 (Burban and G., 2013)

- Constructive and complete classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$.
(2) Characterization of $\left[\right.$ ind $\left.\mathrm{CM}^{1 \mathrm{f}}(\mathbf{P})\right]$.

Proof.

(1) Returning the Path of Reductions:

$$
\begin{aligned}
& \mathrm{CM}(\mathbf{P}) \stackrel{\approx 1: 1}{\longleftrightarrow} \mathrm{CM}(\check{\mathbf{P}}) \rightleftarrows \sim \operatorname{Tri}(\check{\mathbf{P}}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{rep}(\mathfrak{B}) \\
& \operatorname{res}(M) \stackrel{\text { res }}{\longleftrightarrow} M \longleftarrow(V, L, \vartheta) \longleftarrow \longleftrightarrow
\end{aligned}
$$

\Rightarrow explicit description of indecomposable objects in a tame 0-CY category.

Matrix Factorizations of $a^{2} b^{2}$

$$
\mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)
$$

Matrix Factorizations of $a^{2} b^{2}$

$$
\begin{aligned}
& \mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \longleftrightarrow \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \\
& a \longmapsto x+z \\
& b \longmapsto y+z
\end{aligned}
$$

Matrix Factorizations of $a^{2} b^{2}$

$$
\begin{gathered}
\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \longleftrightarrow \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \\
a \longmapsto x+z \\
b \longmapsto y+z
\end{gathered}
$$

Theorem (Burban and Drozd, 2012)

\mathbf{T} is CM-tame (for $\mathbf{k}=\overline{\mathbf{k}}$ and char $\mathbf{k} \neq 2$).

Matrix Factorizations of $a^{2} b^{2}$

$$
\begin{aligned}
& \mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \longleftrightarrow \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \\
& a \longmapsto x+z \\
& b \longmapsto y+z
\end{aligned}
$$

Theorem (Burban and Drozd, 2012)

\mathbf{T} is CM-tame (for $\mathbf{k}=\overline{\mathbf{k}}$ and char $\mathbf{k} \neq 2$).

Definition

$\underline{\operatorname{MF}}\left(a^{2} b^{2}\right)=\left\{(\phi, \psi) \in \operatorname{Mat}_{n \times n}(\mathbf{k} \llbracket a, b \rrbracket) \mid \phi \cdot \psi=\psi \cdot \phi=a^{2} b^{2} \cdot \operatorname{Id}_{n}\right\}$.

Matrix Factorizations of $a^{2} b^{2}$

$$
\begin{array}{rl}
\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \longleftrightarrow \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \\
a & x+z \\
b \longmapsto y+z
\end{array}
$$

Theorem (Burban and Drozd, 2012)

\mathbf{T} is CM-tame (for $\mathbf{k}=\overline{\mathbf{k}}$ and char $\mathbf{k} \neq 2$).

Definition

$\underline{\operatorname{MF}}\left(a^{2} b^{2}\right)=\left\{(\phi, \psi) \in \operatorname{Mat}_{n \times n}(\mathbf{k} \llbracket a, b \rrbracket) \mid \phi \cdot \psi=\psi \cdot \phi=a^{2} b^{2} \cdot \operatorname{Id}_{n}\right\}$.

Theorem (Eisenbud, 1980)

$$
\underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}}\left(a^{2} b^{2}\right) .
$$

Matrix Factorizations of $a^{2} b^{2}$

$$
\begin{array}{rl}
\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \longleftrightarrow \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \\
a & x+z \\
b \longmapsto y+z
\end{array}
$$

Theorem (Burban and Drozd, 2012)

\mathbf{T} is CM-tame (for $\mathbf{k}=\overline{\mathbf{k}}$ and char $\mathbf{k} \neq 2$).

Definition

$\underline{\operatorname{MF}}\left(a^{2} b^{2}\right)=\left\{(\phi, \psi) \in \operatorname{Mat}_{n \times n}(\mathbf{k} \llbracket a, b \rrbracket) \mid \phi \cdot \psi=\psi \cdot \phi=a^{2} b^{2} \cdot \operatorname{Id}_{n}\right\}$.

Theorem (Eisenbud, 1980)

$$
\underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}}\left(a^{2} b^{2}\right) .
$$

Example: Computing a matrix factorization of $a^{2} b^{2}$

$$
\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \subset \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \text { gives rise to }
$$

$$
\mathrm{CM}(\mathbf{P})^{\stackrel{\text { res }}{\longrightarrow}} \mathrm{CM}(\mathbf{T})
$$

Example: Computing a matrix factorization of $a^{2} b^{2}$

$$
\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \subset \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \text { gives rise to }
$$

$$
\mathrm{CM}(\mathbf{P}) \stackrel{\text { res }}{\longrightarrow} \mathrm{CM}(\mathbf{T}) \longrightarrow \underline{\mathrm{CM}}(\mathbf{T})
$$

Example: Computing a matrix factorization of $a^{2} b^{2}$

$$
\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \subset \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \text { gives rise to }
$$

$$
\mathrm{CM}(\mathbf{P}) \stackrel{\text { res }}{\longrightarrow} \mathrm{CM}(\mathbf{T}) \longrightarrow \underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}}\left(a^{2} b^{2}\right)
$$

Example: Computing a matrix factorization of $a^{2} b^{2}$

$$
\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \subset \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \text { gives rise to }
$$

$$
\mathrm{CM}(\mathbf{P}) \stackrel{\text { res }}{\longrightarrow} \mathrm{CM}(\mathbf{T}) \longrightarrow \underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}\left(a^{2} b^{2}\right)}
$$

Input: $\quad M \in[\operatorname{ind~CM}(\mathbf{P})]$,

Example: Computing a matrix factorization of $a^{2} b^{2}$

$$
\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \subset \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \text { gives rise to }
$$

$$
\mathrm{CM}(\mathbf{P}) \stackrel{\text { res }}{\longrightarrow} \mathrm{CM}(\mathbf{T}) \longrightarrow \underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}}\left(a^{2} b^{2}\right)
$$

Input: $\quad M \in[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$,
Example: $\quad\left(x^{m+1}+\lambda y z, x z+y^{n+1}\right) \subset \mathbf{P}$

Example: Computing a matrix factorization of $a^{2} b^{2}$

$$
\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \subset \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right) \text { gives rise to }
$$

$$
\mathrm{CM}(\mathbf{P}) \stackrel{\text { res }}{\longrightarrow} \mathrm{CM}(\mathbf{T}) \longrightarrow \underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}}\left(a^{2} b^{2}\right)
$$

Input: $\quad M \in[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$,
Example: $\quad\left(x^{m+1}+\lambda y z, x z+y^{n+1}\right) \subset \mathbf{P}$
$\operatorname{res}(M): \quad\left(a^{m+2}+\lambda a b^{2}, a^{2} b+b^{n+2}\right) \subset \mathbf{T}$

Example: Computing a matrix factorization of $a^{2} b^{2}$

$\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \subset \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ gives rise to

$$
\mathrm{CM}(\mathbf{P}) \stackrel{\text { res }}{\longrightarrow} \mathrm{CM}(\mathbf{T}) \longrightarrow \underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \mathrm{MF}\left(a^{2} b^{2}\right)
$$

Input: $\quad M \in[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$,
Example: $\quad\left(x^{m+1}+\lambda y z, x z+y^{n+1}\right) \subset \mathbf{P}$
$\operatorname{res}(M): \quad\left(a^{m+2}+\lambda a b^{2}, a^{2} b+b^{n+2}\right) \subset \mathbf{T}$
Output: indecomposable matrix factorization (ϕ, ψ) of $a^{2} b^{2}$.

$$
\left(\left(\begin{array}{cc}
a b & -b^{n+1} \\
-a^{m+1} & \lambda a b
\end{array}\right), \quad\left(\begin{array}{cc}
a b & \lambda^{-1} b^{n+1} \\
\lambda^{-1} a^{m+1} & \lambda^{-1} a b
\end{array}\right)\right)
$$

Example: Computing a matrix factorization of $a^{2} b^{2}$

$\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \subset \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ gives rise to

$$
\mathrm{CM}(\mathbf{P}) \stackrel{\text { res }}{\longrightarrow} \mathrm{CM}(\mathbf{T}) \longrightarrow \underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \mathrm{MF}\left(a^{2} b^{2}\right)
$$

Input: $\quad M \in[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$,
Example: $\quad\left(x^{m+1}+\lambda y z, x z+y^{n+1}\right) \subset \mathbf{P}$
$\operatorname{res}(M): \quad\left(a^{m+2}+\lambda a b^{2}, a^{2} b+b^{n+2}\right) \subset \mathbf{T}$
Output: indecomposable matrix factorization (ϕ, ψ) of $a^{2} b^{2}$.

$$
\left(\begin{array}{cc}
a b & -b^{n+1} \\
-a^{m+1} & \lambda a b
\end{array}\right) \cdot\left(\begin{array}{cc}
a b & \lambda^{-1} b^{n+1} \\
\lambda^{-1} a^{m+1} & \lambda^{-1} a b
\end{array}\right)=\left(\begin{array}{cc}
a^{2} b^{2} & 0 \\
0 & a^{2} b^{2}
\end{array}\right)
$$

Example: Computing a matrix factorization of $a^{2} b^{2}$

$\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \subset \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ gives rise to

$$
\mathrm{CM}(\mathbf{P}) \stackrel{\text { res }}{\longrightarrow} \mathrm{CM}(\mathbf{T}) \longrightarrow \underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}}\left(a^{2} b^{2}\right)
$$

Input: $\quad M \in[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$,
Example: $\quad\left(x^{m+1}+\lambda y z, x z+y^{n+1}\right) \subset \mathbf{P}$
$\operatorname{res}(M): \quad\left(a^{m+2}+\lambda a b^{2}, a^{2} b+b^{n+2}\right) \subset \mathbf{T}$
Output: indecomposable matrix factorization (ϕ, ψ) of $a^{2} b^{2}$.

$$
\left(\begin{array}{cc}
a b & -b^{n+1} \\
-a^{m+1} & \lambda a b
\end{array}\right) \cdot\left(\begin{array}{cc}
a b & \lambda^{-1} b^{n+1} \\
\lambda^{-1} a^{m+1} & \lambda^{-1} a b
\end{array}\right)=\left(\begin{array}{cc}
a^{2} b^{2} & 0 \\
0 & a^{2} b^{2}
\end{array}\right)
$$

Corollary of Theorem 2

Partial constructive classification of $\left[\operatorname{ind} \underline{\operatorname{MF}}\left(a^{2} b^{2}\right)\right]$.

Example: Computing a matrix factorization of $a^{2} b^{2}$

$\mathbf{T}=\mathbf{k} \llbracket a, b \rrbracket /\left(a^{2} b^{2}\right) \subset \mathbf{P}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, z^{2}\right)$ gives rise to

$$
\mathrm{CM}(\mathbf{P}) \stackrel{\text { res }}{\longrightarrow} \mathrm{CM}(\mathbf{T}) \longrightarrow \underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}}\left(a^{2} b^{2}\right)
$$

Input: $\quad M \in[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$,
Example: $\quad\left(x^{m+1}+\lambda y z, x z+y^{n+1}\right) \subset \mathbf{P}$
$\operatorname{res}(M): \quad\left(a^{m+2}+\lambda a b^{2}, a^{2} b+b^{n+2}\right) \subset \mathbf{T}$
Output: indecomposable matrix factorization (ϕ, ψ) of $a^{2} b^{2}$.

$$
\left(\begin{array}{cc}
a b & -b^{n+1} \\
-a^{m+1} & \lambda a b
\end{array}\right) \cdot\left(\begin{array}{cc}
a b & \lambda^{-1} b^{n+1} \\
\lambda^{-1} a^{m+1} & \lambda^{-1} a b
\end{array}\right)=\left(\begin{array}{cc}
a^{2} b^{2} & 0 \\
0 & a^{2} b^{2}
\end{array}\right)
$$

Corollary of Theorem 2

Partial constructive classification of $\left[\operatorname{ind} \underline{\operatorname{MF}}\left(a^{2} b^{2}\right)\right]$.

Summary of Results

Theorem 1

The non-reduced curve singularities of type $\mathbf{P}_{\infty \sim q}$ are CM-tame, where

$$
\left.\mathbf{P}_{\propto q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, y^{q}-z^{2}\right), \quad q \in \mathbb{N}^{2} \cup 2 \cup \infty\right\} .
$$

Summary of Results

Theorem 1

The non-reduced curve singularities of type $\mathbf{P}_{\infty 0 q}$ are CM-tame, where

$$
\mathbf{P}_{\infty q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, y^{q}-z^{2}\right), \quad q \in \mathbb{N}^{\geqslant 2} \cup\{\infty\} .
$$

Theorem 2

Constructive classification of $\left[\right.$ ind $\left.\mathrm{CM}\left(\mathbf{P}_{p q}\right)\right]$ as well as $\left[\right.$ ind $\mathrm{CM}^{\mathrm{lf}}\left(\mathbf{P}_{\infty q}\right)$] for any $p, q \in \mathbb{N} \cup\{\infty\}$.

Summary of Results

Theorem 1

The non-reduced curve singularities of type $\mathbf{P}_{\infty 0 q}$ are CM-tame, where

$$
\mathbf{P}_{\infty q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, y^{q}-z^{2}\right), \quad q \in \mathbb{N}^{\geqslant 2} \cup\{\infty\} .
$$

Theorem 2

Constructive classification of $\left[\right.$ ind $\left.\mathrm{CM}\left(\mathbf{P}_{p q}\right)\right]$ as well as $\left[\right.$ ind $\left.\mathrm{CM}^{\mathrm{lf}}\left(\mathbf{P}_{\infty q}\right)\right]$ for any $p, q \in \mathbb{N} \cup\{\infty\}$.

Corollary of Theorem 2

Construction of families of indecomposable matrix factorizations over odd-dimensional hypersurface singularities of type $\mathbf{T}_{p q}$, in particular

$$
d=1: \quad f=a^{p}+b^{q}-a^{2} b^{2} \quad p, q \in \mathbb{N} \cup\{\infty\}: \quad \frac{1}{p}+\frac{1}{q}<\frac{1}{2} .
$$

Summary of Results

Theorem 1

The non-reduced curve singularities of type $\mathbf{P}_{\infty 0 q}$ are CM-tame, where

$$
\mathbf{P}_{\infty q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, y^{q}-z^{2}\right), \quad q \in \mathbb{N}^{\geqslant 2} \cup\{\infty\} .
$$

Theorem 2

Constructive classification of $\left[\right.$ ind $\left.\mathrm{CM}\left(\mathbf{P}_{p q}\right)\right]$ as well as $\left[\right.$ ind $\left.\mathrm{CM}^{\mathrm{lf}}\left(\mathbf{P}_{\infty q}\right)\right]$ for any $p, q \in \mathbb{N} \cup\{\infty\}$.

Corollary of Theorem 2

Construction of families of indecomposable matrix factorizations over odd-dimensional hypersurface singularities of type $\mathbf{T}_{p q}$, in particular

$$
\begin{aligned}
d & =1: & f & =a^{p}+b^{q}-a^{2} b^{2} \quad p, q \in \mathbb{N} \cup\{\infty\}: \\
d=3: & f^{\# \#} & =f+u v &
\end{aligned}
$$

Summary of Results

Theorem 1

The non-reduced curve singularities of type $\mathbf{P}_{\infty 0 q}$ are CM-tame, where

$$
\mathbf{P}_{\infty q}=\mathbf{k} \llbracket x, y, z \rrbracket /\left(x y, y^{q}-z^{2}\right), \quad q \in \mathbb{N}^{\geqslant 2} \cup\{\infty\} .
$$

Theorem 2

Constructive classification of $\left[\right.$ ind $\left.\mathrm{CM}\left(\mathbf{P}_{p q}\right)\right]$ as well as $\left[\right.$ ind $\left.\mathrm{CM}^{\mathrm{lf}}\left(\mathbf{P}_{\infty q}\right)\right]$ for any $p, q \in \mathbb{N} \cup\{\infty\}$.

Corollary of Theorem 2

Construction of families of indecomposable matrix factorizations over odd-dimensional hypersurface singularities of type $\mathbf{T}_{p q}$, in particular

$$
\begin{aligned}
d & =1: & f & =a^{p}+b^{q}-a^{2} b^{2} \quad p, q \in \mathbb{N} \cup\{\infty\}: \\
d=3: & f^{\# \#} & =f+u v &
\end{aligned}
$$

Thank you for listening!

