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Main Goal

P “ kJx, y, zK{pxy, z2q

Basic properties of P:

curve singularity: kr. dimP “ 1.

complete intersection ñ Gorenstein, i.e. inj. dimP ă 8.

non-isolated, i.e. non-reduced: z2 “ 0.

Definition

Let M P modpPq. M is a maximal Cohen-Macaulay (CM) module
ðñ HomPpk,Mq “ 0

ðñM is torsion-free

.

Problem

Classify the indecomposable CM modules over P.

ðñ

Classify the indecomposable submodules of P‘n for any n P N.
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Motivation

Interpretations of CM modules over a (Curve) Singularity A:
1 (special case of) Lattices over an order,

general framework for “CM modules over non-commutative CM rings”,
includes representation theory of finite groups over p-adic integers.

2 Singularity category CMpAq (if A is isolated Gorenstein),

may have a cluster-tilting object T

ñ relates CMpAq to modules over the self-injective algebra EndApT q

.

3 Matrix factorizations MFpfq (if A “ kJx, yK{pfq),

applications in knot theory and theoretical physics,
Knörrer’s periodicity Theorem:

MFpfq
„
ÝÑ MFpf ` uvq

ñ CM modules over 3-dimensional singularity kJx, y, u, vK{pf ` uvq

.

Motivation to study CMpPq

:

Explicit descriptions of
“

indCMpAq
‰

are known mostly for CM-finite
and CM-discrete singularities A.
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Curve Singularities of type Ppq

Theorem (Drozd and Greuel, 1993)

The reduced curve singularities of type Ppq are CM-tame, where

Ppq “ kJx, y, zK{pxy, xp ` yq ´ z2q, p, q P Ně2, chark ‰ 2.

Idea of proof: Reduction of the classification problem
to a matrix problem.

Theorem 1 (Burban and Gnedin, 2013)

The non-reduced curve singularities of type P8q are CM-tame, where

P8q “ kJx, y, zK{pxy, yq ´ z2q. q P Ně2 Y t8u.

Idea of proof: Generalization of Drozd and Greuel’s proof using
the category of triples by Burban and Drozd.
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Proof of Theorem 1 - Step 1: Rejection Lemma

We consider P88 “ P “ kJx, y, zK{pxy, z2q and m “ px, y, zq.

We set

qP :“ EndPpmq

–

!

q P QpPq | q ¨m Ď m
)

Ă QpPq.

Relation between P and qP:

P Ă qP

– kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q

z ÞÝÑ v ` w

CMpPq CMpqPq ,

i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: “Rejection Lemma”)

Since P is a Gorenstein curve singularity,
“

indCMpqPq
‰ .
Y
“

P
‰ 1:1 //

“

indCMpPq
‰

oo

ñ we may study qP instead of P.
qP is not Gorenstein but a Cohen-Macaulay curve singularity.
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Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.

Set S “ End
qP
pqmq.

Then the following holds:

P Ă qP Ă S

– kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

S CMpqPq CMpSq

qP{qm “ k S{radS “ kˆ k modpkq modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq.

Then the following holds:

P Ă qP Ă S

– kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

S CMpqPq CMpSq

qP{qm “ k S{radS “ kˆ k modpkq modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S

– kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

S CMpqPq CMpSq

qP{qm “ k S{radS “ kˆ k modpkq modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S – kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

S CMpqPq CMpSq

qP{qm “ k S{radS “ kˆ k modpkq modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S – kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS

“: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

S CMpqPq CMpSq

qP{qm “ k S{radS “ kˆ k modpkq modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S – kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I

is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

S CMpqPq CMpSq

qP{qm “ k S{radS “ kˆ k modpkq modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S – kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

S CMpqPq CMpSq

qP{qm “ k S{radS “ kˆ k modpkq modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S – kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

S

����

CMpqPq CMpSq

qP{qm “ k �
� diag

// S{radS “ kˆ k

modpkq modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S – kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square

induces a diagram of categories and functors:

qP

J
����

� � // S

����

CMpqPq CMpSq

qP{qm “ k �
� diag

// S{radS “ kˆ k

modpkq modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S – kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

qP

J
����

� � // S

����

CMpqPq

ñ

CMpSq

top“ {rad

��
qP{qm “ k �

� diag
// S{radS “ kˆ k modpkq

ˆ
// modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S – kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

qP

J
����

� � // S

����

CMpqPq

ñ

//

��

CMpSq

top“ {rad

��
qP{qm “ k �

� diag
// S{radS “ kˆ k modpkq

ˆ
// modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S – kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

qP

J
����

� � // S

����

CMpqPq

ñ

//

��

CMpSq

top“ {rad

��
qP{qm “ k �

� diag
// S{radS “ kˆ k modpkq

ˆ
// modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Construct a category TripqPq equivalent to CMpqPq

Let qP “ kJx, y, v, wK{pxy, yv, vw,wx, v2, w2q and qm its maximal ideal.
Set S “ End

qP
pqmq. Then the following holds:

P Ă qP Ă S – kJx, vK{pv2q ˆ kJy, wK{pw2q
looooooooooooooooomooooooooooooooooon

product of curve singularities of type A8

m Ă qm “ radS “: I is the conductor ideal, i.e.

I “ ann
qP
pS{qPq, qP I “ S I “ I

The conductor square induces a diagram of categories and functors:

qP

J
����

� � // S

����

CMpqPq

ñ

//

��

CMpSq

top“ {rad

��
qP{qm “ k �

� diag
// S{radS “ kˆ k modpkq

ˆ
// modpkˆ kq

Idea of TripqPq: Construct a “pullback category” of top and ˆ .

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Reconstruction of CMpqPq from TripqPq

M P

CMpqPq //

��

CMpSq

Q L

top

��

L

V P

modpkq
ˆ
// modpkˆ kq

V toppLq

V ˆ V toppLq

Definition

Objects of TripqPq :“
!

p

V , L, ϑq | ϑ surjective, ϑ|V injective
)

.

Theorem (Burban and Drozd, 2012)

TripqPq
„ // CMpqPq

pV,L, θq M :“ pullback of ϑ|V and πL in modpqPq.
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Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

“

indCMpqPq
‰ 1:1
ÐÑ

“

indTripqPq
‰

M ÐÑ V “ kn,
L “ L1 ˆ L2 P CMpA8 ˆA8q,
ϑ “ ϑ1 ˆ ϑ2 P Matm1ˆnpkq ˆMatm2ˆnpkq s.t.

ϑ surjective and

ˆ

ϑ1
ϑ2

˙

is injective.

Proposition (Buchweitz, Greuel and Schreyer, 1987)

Let A8 “ kJy, wK{pw2q.
“

indCMpA8q
‰

“
 

p1q, pym, wq, pwq | m P N
(

.

Goal: Formulation of the classification problem in TripqPq
as a matrix problem.
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Step 3: Reduction to Matrix Problem

Let V P modpkq, L P CMpA8 ˆA8q, ϑ : V ˆ V // // topL .

Definition

pV,L, ϑq – pV , L, ϑ1q ðñ

there exist φ P AutkpV q and ξ P AutSpLq such
that the following diagram commutes:

V ˆ V
ϑ // //

��

„

φˆφ

topL

��

„

top ξ

V ˆ V
ϑ1 // // topL

ñ an isomorphism of triples acts by conjugation on matrices ϑ1 and ϑ2:
pϑ1, ϑ2q ÞÝÑ pξ1 ¨ ϑ1 ¨ φ

´1, ξ2 ¨ ϑ2 ¨ φ
´1q

1 φ induces simultaneous column transformations of ϑ1 and ϑ2.

2 automorphisms of Li P CMpA8q induce certain row transformations
of ϑi.

ñ The problem to classify pϑ1, ϑ2q is a matrix problem.
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Step 3: A typical part of the Matrix Problem

ϑ1 ϑ2
xm ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ yn

xm ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ yn

v ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ w

v ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ w

Admissible transformations:

1 add a multiple of any row of xm (resp. yn) to any row of v (resp. w),

2 simultaneous elementary row transformations in the horizontal blocks
xm and v (resp. yn and w),

3 simultaneous elementary column transformations of ϑ1 and ϑ2.

Matrix problem : find canonical forms of ϑ1 and ϑ2
using only admissible transformations.
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Step 4: Solution of the Matrix Problem

The classification problem of TripqPq turns out to be equivalent to a matrix
problem of type “bunches of chains”.

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains B is tame.

Explicit description of the canonical forms of B :

“

ind reppBq
‰

“ r strings s
loooomoooon

discrete series

¨
Y r bands s

loooomoooon

continuous series

Summary: Path of Reductions

CMpPq CMpqPq TripqPq reppBq

ñ P “ kJx, y, zK{pxy, z2q is CM-tame. Theorem 1 is proven.
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Example: From a Band to a CM module

Returning the

Path of Reductions:

CMpPq CMpqPq TripqPq reppBq

respMq M pV , L, ϑq ϑ

ϑ1 ϑ2
xm 1 0 0 0 0 0 1 0 yn

xm 0 1 0 0 0 0 0 1 yn

v 0 0 1 0 λ 1 0 0 w

v 0 0 0 1 0 λ 0 0 w

`

V , L, ϑ
˘

“
`

k4,
`

pxm, vq‘2, pyn, wq‘2
˘

, pϑ1, ϑ2q
˘

, λ P kzt0u

M “
@`

xm`λw
0

˘

, p w
xm`λw q ,

`

v`yn

0

˘

,
`

0
v`yn

˘D

Ă qP‘2

respMq “
A´

xm`1`λyz
0

¯

,
´

yz
xm`1`λyz

¯

,
´

xz`yn`1

0

¯

,
´

0
xz`yn`1

¯E

Ă P‘2.
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//
TripqPqoo

1:1 // reppBqoo

respMq M�oo pV , L, ϑq�oo ϑ�oo

ϑ1 ϑ2
xm 1 0 0 0 0 0 1 0 yn

xm 0 1 0 0 0 0 0 1 yn

v 0 0 1 0 λ 1 0 0 w

v 0 0 0 1 0 λ 0 0 w

`

V , L, ϑ
˘

“
`

k4,
`

pxm, vq‘2, pyn, wq‘2
˘

, pϑ1, ϑ2q
˘

, λ P kzt0u

M “
@`

xm`λw
0

˘

, p w
xm`λw q ,

`

v`yn

0

˘

,
`

0
v`yn

˘D

Ă qP‘2

respMq “
A´

xm`1`λyz
0

¯

,
´

yz
xm`1`λyz

¯

,
´

xz`yn`1

0

¯

,
´

0
xz`yn`1

¯E

Ă P‘2.
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An interesting category of CM modules

Definition

Let M P CMpPq. M is locally free on the punctured spectrum (loc. free)
ðñ Mq is a free module over Pq for any prime ideal q P SpecpPqztmu.

CMlfpPq :“ stable category of loc. free CM modules Ă CMpPq.

CMlfpAq “ CMpAq if A is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)

Properties of CMlfpPq :

1 has Auslander-Reiten sequences

and the 0-Calabi-Yau-property:

HomPpM,Nq – DHomPpN,Mq for M,N P CMlfpPq,

2 Hom-finite triangulated subcategory of CMpPq.

Goal: Description of
“

indCMlfpPq
‰

.
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Main Classification Result

Theorem 2 (Burban and G., 2013)

1 Constructive and complete classification of
“

indCMpPq
‰

.

2 Characterization of
“

indCMlfpPq
‰

.

“

bands
‰

Ă CMlf
pPq.

In particular, CMlf
pPq is tame.

Proof.

1 Returning the Path of Reductions:

CMpPq CMpqPq TripqPq reppBq

respMq M pV , L, ϑq ϑ

2 respMq P CMpPq

ðñ

L P CMpA8 ˆA8q.

ñ explicit description of indecomposable objects in a tame 0-CY category.
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Matrix Factorizations of a2 b2

T “ kJa, bK{pa2b2q

P “ kJx, y, zK{pxy, z2q

a x` z

b y ` z

Theorem (Burban and Drozd, 2012)

T is CM-tame pfor k “ k and chark ‰ 2q.

Definition

MFpa2b2q “
 

pφ, ψq P MatnˆnpkJa, bKq | φ ¨ ψ “ ψ ¨ φ “ a2b2 ¨ Idn
(

.

Theorem (Eisenbud, 1980)

CMpTq
„
ÝÑ MFpa2b2q.
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Example: Computing a matrix factorization of a2b2

T “ kJa, bK{pa2b2q Ă P “ kJx, y, zK{pxy, z2q gives rise to

CMpPq �
� res // CMpTq

CMpTq MFpa2b2q

Input: M P
“

indCMpPq
‰

,

Example: pxm`1 ` λyz, xz ` yn`1q Ă P

respMq : pam`2 ` λab2, a2b` bn`2q Ă T

Output: indecomposable matrix factorization pφ, ψq of a2b2.
ˆ

ab ´bn`1

´am`1 λab

˙

¨

ˆ

ab λ´1bn`1

λ´1am`1 λ´1ab

˙

“

ˆ

a2b2 0
0 a2b2

˙

Corollary of Theorem 2

Partial constructive classification of
“

indMFpa2b2q
‰

.
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MFpa2b2q

Input: M P
“

indCMpPq
‰

,

Example: pxm`1 ` λyz, xz ` yn`1q Ă P

respMq : pam`2 ` λab2, a2b` bn`2q Ă T

Output: indecomposable matrix factorization pφ, ψq of a2b2.
ˆ

ab ´bn`1

´am`1 λab

˙

¨

ˆ

ab λ´1bn`1

λ´1am`1 λ´1ab

˙

“

ˆ

a2b2 0
0 a2b2

˙

Corollary of Theorem 2

Partial constructive classification of
“

indMFpa2b2q
‰

.
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Summary of Results

Theorem 1

The non-reduced curve singularities of type P8q are CM-tame, where

P8q “ kJx, y, zK{pxy, yq ´ z2q, q P Ně2Yt8u.

Theorem 2

Constructive classification of
“

indCMpPpqq
‰

as well as
“

indCMlfpP8qq
‰

for any p, q P NY t8u.

Corollary of Theorem 2

Construction of families of indecomposable matrix factorizations over
odd-dimensional hypersurface singularities of type Tpq, in particular

d “ 1 : f “ ap ` bq ´ a2b2 p, q P NY t8u : 1
p `

1
q ă

1
2 .

d “ 3 : f## “ f ` uv
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Thank you for listening!
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