Maximal Cohen-Macaulay Modules over some non-reduced Curve Singularities

Wassilij Gnedin, joint work with Igor Burban

Mathematical Institute, University of Cologne, Germany

Annual conference of the DFG priority programme in representation theory, SPP 1388, Bad Boll 26th March 2013

The Classification Problem and Theorem 1

Proof of Theorem 1: Reduction to a Matrix Problem

3 Examples and Classification Results

$$\mathbf{P} = \mathbf{k}[\![x, y, z]\!] / (xy, z^2)$$

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

э

$$\mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$$

Basic properties of \mathbf{P} :

• curve singularity: kr. dim $\mathbf{P} = 1$.

$$\mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$$

- curve singularity: kr. dim $\mathbf{P} = 1$.
- complete intersection \Rightarrow *Gorenstein*, i.e. inj. dim $\mathbf{P} < \infty$.

$$\mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$$

- curve singularity: kr. dim $\mathbf{P} = 1$.
- complete intersection \Rightarrow *Gorenstein*, i.e. inj. dim $\mathbf{P} < \infty$.
- non-isolated, i.e. *non-reduced*: $z^2 = 0$.

$$\mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$$

- curve singularity: kr. dim $\mathbf{P} = 1$.
- complete intersection \Rightarrow *Gorenstein*, i.e. inj. dim $\mathbf{P} < \infty$.
- non-isolated, i.e. *non-reduced*: $z^2 = 0$.

Definition

Let $M \in \text{mod}(\mathbf{P})$. M is a maximal Cohen-Macaulay (CM) module $\iff \text{Hom}_{\mathbf{P}}(\mathbf{k}, M) = 0$.

$$\mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$$

- curve singularity: kr. dim $\mathbf{P} = 1$.
- complete intersection \Rightarrow *Gorenstein*, i.e. inj. dim $\mathbf{P} < \infty$.
- non-isolated, i.e. *non-reduced*: $z^2 = 0$.

Definition

Let $M \in \text{mod}(\mathbf{P})$. M is a maximal Cohen-Macaulay (CM) module $\iff \text{Hom}_{\mathbf{P}}(\mathbf{k}, M) = 0 \iff M$ is torsion-free.

$$\mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$$

- curve singularity: kr. dim $\mathbf{P} = 1$.
- complete intersection \Rightarrow *Gorenstein*, i.e. inj. dim $\mathbf{P} < \infty$.
- non-isolated, i.e. *non-reduced*: $z^2 = 0$.

Definition

Let $M \in \text{mod}(\mathbf{P})$. M is a maximal Cohen-Macaulay (CM) module $\iff \text{Hom}_{\mathbf{P}}(\mathbf{k}, M) = 0 \iff M$ is torsion-free.

Problem

Classify the indecomposable CM modules over P.

Wassilij Gnedin (Cologne University)

MCM over some non-reduced CS

$$\mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$$

- curve singularity: kr. dim $\mathbf{P} = 1$.
- complete intersection \Rightarrow *Gorenstein*, i.e. inj. dim $\mathbf{P} < \infty$.
- non-isolated, i.e. *non-reduced*: $z^2 = 0$.

Definition

Let $M \in \text{mod}(\mathbf{P})$. M is a maximal Cohen-Macaulay (CM) module $\iff \text{Hom}_{\mathbf{P}}(\mathbf{k}, M) = 0 \iff M$ is torsion-free.

Problem

Classify the indecomposable CM modules over P.

Classify the indecomposable submodules of $\mathbf{P}^{\oplus n}$ for any $n \in \mathbb{N}$.

$$\mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$$

- curve singularity: kr. dim $\mathbf{P} = 1$.
- complete intersection \Rightarrow *Gorenstein*, i.e. inj. dim $\mathbf{P} < \infty$.
- non-isolated, i.e. *non-reduced*: $z^2 = 0$.

Definition

Let $M \in \text{mod}(\mathbf{P})$. M is a maximal Cohen-Macaulay (CM) module $\iff \text{Hom}_{\mathbf{P}}(\mathbf{k}, M) = 0 \iff M$ is torsion-free.

Problem

Classify the indecomposable CM modules over P.

Classify the indecomposable submodules of $\mathbf{P}^{\oplus n}$ for any $n \in \mathbb{N}$.

Interpretations of CM modules over a (Curve) Singularity A:

(special case of) Lattices over an order,

.

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",
 - includes representation theory of finite groups over *p*-adic integers.

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",
 - includes representation theory of finite groups over *p*-adic integers.
- **2** Singularity category $\underline{CM}(A)$ (if A is isolated Gorenstein),

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",
 - includes representation theory of finite groups over *p*-adic integers.
- **2** Singularity category $\underline{CM}(A)$ (if A is isolated Gorenstein),
 - $\bullet\,$ may have a cluster-tilting object T

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",
 - includes representation theory of finite groups over *p*-adic integers.
- **2** Singularity category $\underline{CM}(A)$ (if A is isolated Gorenstein),
 - $\bullet\,$ may have a cluster-tilting object T
 - \Rightarrow relates $\underline{CM}(\mathbf{A})$ to modules over the self-injective algebra $\underline{End}_{\mathbf{A}}(T)$.

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",
 - includes representation theory of finite groups over *p*-adic integers.
- **2** Singularity category $\underline{CM}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
 - may have a cluster-tilting object \boldsymbol{T}
 - \Rightarrow relates $\underline{CM}(\mathbf{A})$ to modules over the self-injective algebra $\underline{End}_{\mathbf{A}}(T)$.
- 3 Matrix factorizations $\underline{MF}(f)$ (if $\mathbf{A} = \mathbf{k}[[x, y]]/(f)$),

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",
 - includes representation theory of finite groups over *p*-adic integers.
- **2** Singularity category $\underline{CM}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
 - may have a cluster-tilting object \boldsymbol{T}
 - \Rightarrow relates $\underline{CM}(\mathbf{A})$ to modules over the self-injective algebra $\underline{End}_{\mathbf{A}}(T).$
- 3 Matrix factorizations $\underline{MF}(f)$ (if $\mathbf{A} = \mathbf{k}[[x, y]]/(f)$),
 - applications in knot theory and theoretical physics,

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",
 - includes representation theory of finite groups over *p*-adic integers.
- **2** Singularity category $\underline{CM}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
 - $\bullet\,$ may have a cluster-tilting object T
 - \Rightarrow relates $\underline{CM}(\mathbf{A})$ to modules over the self-injective algebra $\underline{End}_{\mathbf{A}}(T)$.
- Solution Matrix factorizations $\underline{MF}(f)$ (if $\mathbf{A} = \mathbf{k}[[x, y]]/(f)$),
 - applications in knot theory and theoretical physics,
 - Knörrer's periodicity Theorem:

$$\underline{\mathrm{MF}}(f) \xrightarrow{\sim} \underline{\mathrm{MF}}(f + uv)$$

Interpretations of CM modules over a (Curve) Singularity A:

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",
 - includes representation theory of finite groups over *p*-adic integers.
- **2** Singularity category $\underline{CM}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
 - may have a cluster-tilting object \boldsymbol{T}
 - \Rightarrow relates $\underline{CM}(\mathbf{A})$ to modules over the self-injective algebra $\underline{End}_{\mathbf{A}}(T)$.
- 3 Matrix factorizations $\underline{MF}(f)$ (if $\mathbf{A} = \mathbf{k}[[x, y]]/(f)$),
 - applications in knot theory and theoretical physics,
 - Knörrer's periodicity Theorem:

$$\underline{\mathrm{MF}}(f) \xrightarrow{\sim} \underline{\mathrm{MF}}(f + uv)$$

 \Rightarrow CM modules over 3-dimensional singularity $\mathbf{k}[\![x, y, u, v]\!]/(f + uv)$.

Interpretations of CM modules over a (Curve) Singularity A:

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",
 - includes representation theory of finite groups over *p*-adic integers.
- **2** Singularity category $\underline{CM}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
 - may have a cluster-tilting object \boldsymbol{T}
 - \Rightarrow relates $\underline{CM}(\mathbf{A})$ to modules over the self-injective algebra $\underline{End}_{\mathbf{A}}(T)$.
- 3 Matrix factorizations $\underline{MF}(f)$ (if $\mathbf{A} = \mathbf{k}[[x, y]]/(f)$),
 - applications in knot theory and theoretical physics,
 - Knörrer's periodicity Theorem:

$$\underline{\mathrm{MF}}(f) \xrightarrow{\sim} \underline{\mathrm{MF}}(f + uv)$$

 \Rightarrow CM modules over 3-dimensional singularity $\mathbf{k}[\![x, y, u, v]\!]/(f + uv)$.

Motivation to study $\mathrm{CM}(\mathbf{P}){:}$

• Explicit descriptions of [ind CM(A)] are known mostly for CM-finite and CM-discrete singularities A.

Interpretations of CM modules over a (Curve) Singularity A:

- (special case of) Lattices over an order,
 - general framework for "CM modules over non-commutative CM rings",
 - includes representation theory of finite groups over *p*-adic integers.
- **2** Singularity category $\underline{CM}(\mathbf{A})$ (if \mathbf{A} is isolated Gorenstein),
 - may have a cluster-tilting object \boldsymbol{T}
 - \Rightarrow relates $\underline{CM}(\mathbf{A})$ to modules over the self-injective algebra $\underline{End}_{\mathbf{A}}(T)$.
- 3 Matrix factorizations $\underline{MF}(f)$ (if $\mathbf{A} = \mathbf{k}[[x, y]]/(f)$),
 - applications in knot theory and theoretical physics,
 - Knörrer's periodicity Theorem:

$$\underline{\mathrm{MF}}(f) \xrightarrow{\sim} \underline{\mathrm{MF}}(f + uv)$$

 \Rightarrow CM modules over 3-dimensional singularity $\mathbf{k}[\![x, y, u, v]\!]/(f + uv)$.

Motivation to study $\mathrm{CM}(\mathbf{P}){:}$

• Explicit descriptions of [ind CM(A)] are known mostly for CM-finite and CM-discrete singularities A.

The reduced curve singularities of type P_{pq} are CM-tame, where

$$\mathbf{P}_{pq} = \mathbf{k}[\![x, y, z]\!]/(xy, x^p + y^q - z^2), \quad p, q \in \mathbb{N}^{\ge 2}, \quad \text{char } \mathbf{k} \neq 2.$$

The reduced curve singularities of type P_{pq} are CM-tame, where

$$\mathbf{P}_{pq} = \mathbf{k}[\![x, y, z]\!]/(xy, x^p + y^q - z^2), \qquad p, q \in \mathbb{N}^{\geqslant 2}, \qquad \mathrm{char}\, \mathbf{k} \neq 2.$$

Idea of proof: Reduction of the classification problem to a matrix problem.

The reduced curve singularities of type P_{pq} are CM-tame, where

$$\mathbf{P}_{pq} = \mathbf{k}[\![x, y, z]\!]/(xy, x^p + y^q - z^2), \quad p, q \in \mathbb{N}^{\ge 2}, \quad \text{char } \mathbf{k} \neq 2.$$

Idea of proof: Reduction of the classification problem to a matrix problem.

Theorem 1 (Burban and Gnedin, 2013)

The non-reduced curve singularities of type $P_{\infty q}$ are CM-tame, where

$$\mathbf{P}_{\boldsymbol{\infty} q} = \mathbf{k}[\![x, y, z]\!]/(xy, y^q - z^2). \qquad q \in \mathbb{N}^{\geq 2} \cup \{\boldsymbol{\infty}\}.$$

The reduced curve singularities of type \mathbf{P}_{pq} are CM-tame, where

$$\mathbf{P}_{pq} = \mathbf{k}[\![x, y, z]\!]/(xy, x^p + y^q - z^2), \quad p, q \in \mathbb{N}^{\ge 2}, \quad \text{char } \mathbf{k} \neq 2.$$

Idea of proof: Reduction of the classification problem to a matrix problem.

Theorem 1 (Burban and Gnedin, 2013)

The non-reduced curve singularities of type $\mathbf{P}_{\infty q}$ are CM-tame, where

$$\mathbf{P}_{\infty q} = \mathbf{k}[\![x, y, z]\!]/(xy, y^q - z^2). \qquad q \in \mathbb{N}^{\ge 2} \cup \{\infty\}.$$

Idea of proof: Generalization of Drozd and Greuel's proof using the *category of triples* by Burban and Drozd.

The reduced curve singularities of type \mathbf{P}_{pq} are CM-tame, where

$$\mathbf{P}_{pq} = \mathbf{k}[\![x, y, z]\!]/(xy, x^p + y^q - z^2), \quad p, q \in \mathbb{N}^{\ge 2}, \quad \text{char } \mathbf{k} \neq 2.$$

Idea of proof: Reduction of the classification problem to a matrix problem.

Theorem 1 (Burban and Gnedin, 2013)

The non-reduced curve singularities of type $\mathbf{P}_{\infty q}$ are CM-tame, where

$$\mathbf{P}_{\infty q} = \mathbf{k}[\![x, y, z]\!]/(xy, y^q - z^2). \qquad q \in \mathbb{N}^{\ge 2} \cup \{\infty\}.$$

Idea of proof: Generalization of Drozd and Greuel's proof using the *category of triples* by Burban and Drozd.

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$.

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[[x, y, z]]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$. We set

 $\check{\mathbf{P}} := \operatorname{End}_{\mathbf{P}}(\mathfrak{m})$

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[[x, y, z]]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$. We set

$$\check{\mathbf{P}} := \operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong \left\{ q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m} \right\} \subset Q(\mathbf{P}).$$

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[[x, y, z]]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$. We set

$$\dot{\mathbf{P}} := \operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong \left\{ q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m} \right\} \subset Q(\mathbf{P}).$$

 $\frac{\text{Relation between } \mathbf{P} \text{ and } \check{\mathbf{P}}:}{\bullet \mathbf{P} \subset \check{\mathbf{P}}}$

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$. We set

$$\check{\mathbf{P}} := \operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong \left\{ q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m} \right\} \subset Q(\mathbf{P}).$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

•
$$\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$$

 $z \longmapsto v + w$

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$. We set

$$\check{\mathbf{P}} := \operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong \left\{ q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m} \right\} \subset Q(\mathbf{P}).$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

•
$$\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$$

 $z \longmapsto v + w$

•
$$\operatorname{CM}(\mathbf{P}) \xleftarrow{\operatorname{res}} \operatorname{CM}(\widecheck{\mathbf{P}})$$
 ,

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$. We set

$$\check{\mathbf{P}} := \operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong \left\{ q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m} \right\} \subset Q(\mathbf{P}).$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

•
$$\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$$

 $z \longmapsto v + w$

•
$$CM(\mathbf{P}) \xleftarrow{res} CM(\mathbf{\breve{P}})$$
, i.e. the restriction functor is fully faithful.

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$. We set

$$\check{\mathbf{P}} := \operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong \left\{ q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m} \right\} \subset Q(\mathbf{P}).$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

•
$$\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$$

 $z \longmapsto v + w$

• $CM(\mathbf{P}) \xleftarrow{res} CM(\check{\mathbf{P}})$, i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: "Rejection Lemma")

Since P is a Gorenstein curve singularity,

•
$$\left[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})\right] \cup \left[\mathbf{P}\right] \stackrel{1:1}{\longleftrightarrow} \left[\operatorname{ind} \operatorname{CM}(\mathbf{P})\right]$$

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$. We set

$$\check{\mathbf{P}} := \operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong \left\{ q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m} \right\} \subset Q(\mathbf{P}).$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

•
$$\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$$

 $z \longmapsto v + w$

• $CM(\mathbf{P}) \xleftarrow{res} CM(\check{\mathbf{P}})$, i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: "Rejection Lemma")

Since P is a Gorenstein curve singularity,

•
$$\left[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})\right] \cup \left[\mathbf{P}\right] \stackrel{1:1}{\longleftrightarrow} \left[\operatorname{ind} \operatorname{CM}(\mathbf{P})\right]$$

 \Rightarrow we may study $\check{\mathbf{P}}$ instead of \mathbf{P} .

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$. We set

$$\check{\mathbf{P}} := \operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong \left\{ q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m} \right\} \subset Q(\mathbf{P}).$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

•
$$\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$$

 $z \longmapsto v + w$

• $CM(\mathbf{P}) \xleftarrow{res} CM(\mathbf{\check{P}})$, i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: "Rejection Lemma")

Since P is a Gorenstein curve singularity,

•
$$\left[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})\right] \cup \left[\mathbf{P}\right] \stackrel{1:1}{\longleftrightarrow} \left[\operatorname{ind} \operatorname{CM}(\mathbf{P})\right]$$

 \Rightarrow we may study $\check{\mathbf{P}}$ instead of \mathbf{P} .

• $\check{\mathbf{P}}$ is not Gorenstein but a Cohen-Macaulay curve singularity.

Proof of Theorem 1 - Step 1: Rejection Lemma

We consider $\mathbf{P}_{\infty\infty} = \mathbf{P} = \mathbf{k}[\![x, y, z]\!]/(xy, z^2)$ and $\mathfrak{m} = (x, y, z)$. We set

$$\check{\mathbf{P}} := \operatorname{End}_{\mathbf{P}}(\mathfrak{m}) \cong \left\{ q \in Q(\mathbf{P}) \mid q \cdot \mathfrak{m} \subseteq \mathfrak{m} \right\} \subset Q(\mathbf{P}).$$

Relation between \mathbf{P} and $\check{\mathbf{P}}$:

•
$$\mathbf{P} \subset \check{\mathbf{P}} \cong \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$$

 $z \longmapsto v + w$

• $CM(\mathbf{P}) \xleftarrow{res} CM(\mathbf{\check{P}})$, i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: "Rejection Lemma")

Since P is a Gorenstein curve singularity,

•
$$\left[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})\right] \cup \left[\mathbf{P}\right] \stackrel{1:1}{\longleftrightarrow} \left[\operatorname{ind} \operatorname{CM}(\mathbf{P})\right]$$

 \Rightarrow we may study $\check{\mathbf{P}}$ instead of \mathbf{P} .

• $\check{\mathbf{P}}$ is not Gorenstein but a Cohen-Macaulay curve singularity.

Let $\check{\mathbf{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\check{\mathfrak{m}}$ its maximal ideal.

Let $\mathbf{\check{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\check{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\check{P}}}(\mathfrak{\check{m}})$.

Let $\mathbf{\check{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\check{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\check{P}}}(\mathfrak{\check{m}})$. Then the following holds:

 $P \subset \check{P} \subset S$

Let $\mathbf{\tilde{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\tilde{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\tilde{P}}}(\mathfrak{\tilde{m}})$. Then the following holds:

$$\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \quad \mathbf{k}[\![x, v]\!]/(v^2) \times \mathbf{k}[\![y, w]\!]/(w^2)$$

product of curve singularities of type \mathbf{A}_∞

Let $\mathbf{\tilde{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\tilde{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\tilde{P}}}(\mathfrak{\tilde{m}})$. Then the following holds:

$$\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k}[\![x,v]\!]/(v^2) \times \mathbf{k}[\![y,w]\!]/(w^2)}_{\mathbf{k}[\![y,w]\!]/(w^2)}$$

product of curve singularities of type \mathbf{A}_∞

 $\mathfrak{m} \subset \check{\mathfrak{m}} = \mathrm{rad}\,\mathbf{S}$

Let $\mathbf{\tilde{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\tilde{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\tilde{P}}}(\mathfrak{\tilde{m}})$. Then the following holds:

$$\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k}[\![x,v]\!]/(v^2) \times \mathbf{k}[\![y,w]\!]/(w^2)}_{\mathbf{K}[\![x,v]\!]/(w^2)}$$

product of curve singularities of type \mathbf{A}_∞

 $\mathfrak{m} \subset \check{\mathfrak{m}} = \operatorname{rad} \mathbf{S} =: I$

Let $\mathbf{\tilde{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\tilde{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\tilde{P}}}(\mathfrak{\tilde{m}})$. Then the following holds:

$$\mathbf{P} \subset \mathbf{\check{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k}[\![x, v]\!]/(v^2) \times \mathbf{k}[\![y, w]\!]/(w^2)}_{\text{product of curve singularities of type } \mathbf{A}_{\infty}}$$
$$\mathfrak{m} \subset \check{\mathfrak{m}} = \operatorname{rad} \mathbf{S} =: I \text{ is the conductor ideal, i.e.}$$
$$I = \operatorname{ann}_{\mathbf{\check{P}}}(\mathbf{S}/\mathbf{\check{P}}), \qquad \mathbf{\check{P}} I = \mathbf{S} I = I$$

Let $\mathbf{\tilde{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\tilde{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\tilde{P}}}(\mathfrak{\tilde{m}})$. Then the following holds:

$$\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k}[\![x, v]\!]/(v^2) \times \mathbf{k}[\![y, w]\!]/(w^2)}_{\text{product of curve singularities of type } \mathbf{A}_{\infty}}$$
$$\mathfrak{m} \subset \check{\mathfrak{m}} = \operatorname{rad} \mathbf{S} =: I \text{ is the conductor ideal, i.e.}$$
$$I = \operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S}/\check{\mathbf{P}}), \qquad \check{\mathbf{P}} I = \mathbf{S} I = I$$

$$\begin{split} & \mathbf{S} \\ & \downarrow \\ \widetilde{\mathbf{P}} / \widetilde{\mathfrak{m}} = \mathbf{k} \overset{\mathrm{diag}}{\longleftrightarrow} \mathbf{S} / \mathrm{rad} \, \mathbf{S} = \mathbf{k} \times \mathbf{k} \end{split}$$

Let $\mathbf{\tilde{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\tilde{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\tilde{P}}}(\mathfrak{\tilde{m}})$. Then the following holds:

$$\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k}[\![x, v]\!]/(v^2) \times \mathbf{k}[\![y, w]\!]/(w^2)}_{\text{product of curve singularities of type } \mathbf{A}_{\infty}}$$
$$\mathfrak{m} \subset \check{\mathfrak{m}} = \operatorname{rad} \mathbf{S} =: I \text{ is the conductor ideal, i.e.}$$
$$I = \operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S}/\check{\mathbf{P}}), \qquad \check{\mathbf{P}} I = \mathbf{S} I = I$$

The conductor square

Let $\mathbf{\tilde{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\tilde{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\tilde{P}}}(\mathfrak{\tilde{m}})$. Then the following holds:

$$\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k}[\![x, v]\!]/(v^2) \times \mathbf{k}[\![y, w]\!]/(w^2)}_{\text{product of curve singularities of type } \mathbf{A}_{\infty}}$$
$$\mathfrak{m} \subset \check{\mathfrak{m}} = \operatorname{rad} \mathbf{S} =: I \text{ is the conductor ideal, i.e.}$$
$$I = \operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S}/\check{\mathbf{P}}), \qquad \check{\mathbf{P}} I = \mathbf{S} I = I$$

The conductor square induces a diagram of categories and functors:

Let $\mathbf{\tilde{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\tilde{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\tilde{P}}}(\mathfrak{\tilde{m}})$. Then the following holds:

$$\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k}[\![x, v]\!]/(v^2) \times \mathbf{k}[\![y, w]\!]/(w^2)}_{\text{product of curve singularities of type } \mathbf{A}_{\infty}}$$
$$\mathfrak{m} \subset \check{\mathfrak{m}} = \operatorname{rad} \mathbf{S} =: I \text{ is the conductor ideal, i.e.}$$
$$I = \operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S}/\check{\mathbf{P}}), \qquad \check{\mathbf{P}} I = \mathbf{S} I = I$$

The conductor square induces a diagram of categories and functors:

Let $\mathbf{\check{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\check{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\check{P}}}(\mathfrak{\check{m}})$. Then the following holds:

$$\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k}[\![x, v]\!]/(v^2) \times \mathbf{k}[\![y, w]\!]/(w^2)}_{\text{product of curve singularities of type } \mathbf{A}_{\infty}}$$
$$\mathfrak{m} \subset \check{\mathfrak{m}} = \operatorname{rad} \mathbf{S} =: I \text{ is the conductor ideal, i.e.}$$
$$I = \operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S}/\check{\mathbf{P}}), \qquad \check{\mathbf{P}} I = \mathbf{S} I = I$$

The conductor square induces a diagram of categories and functors:

 $\begin{array}{c} \breve{\mathbf{P}} & \overset{\frown}{\longrightarrow} \mathbf{S} & \operatorname{CM}(\breve{\mathbf{P}}) & \longrightarrow \operatorname{CM}(\mathbf{S}) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \breve{\mathbf{P}}/\breve{\mathfrak{m}} = \mathbf{k} & \overset{\operatorname{diag}}{\longrightarrow} \mathbf{S}/\operatorname{rad} \mathbf{S} = \mathbf{k} \times \mathbf{k} & \operatorname{mod}(\mathbf{k}) & \overset{-\times-}{\longrightarrow} \operatorname{mod}(\mathbf{k} \times \mathbf{k}) \\ \end{array}$ **Idea of** Tri(\breve{\mathbf{P}}): Construct a "pullback category" of top and _ × _.

Let $\mathbf{\check{P}} = \mathbf{k}[\![x, y, v, w]\!]/(xy, yv, vw, wx, v^2, w^2)$ and $\mathfrak{\check{m}}$ its maximal ideal. Set $\mathbf{S} = \operatorname{End}_{\mathbf{\check{P}}}(\mathfrak{\check{m}})$. Then the following holds:

$$\mathbf{P} \subset \check{\mathbf{P}} \subset \mathbf{S} \cong \underbrace{\mathbf{k}[\![x, v]\!]/(v^2) \times \mathbf{k}[\![y, w]\!]/(w^2)}_{\text{product of curve singularities of type } \mathbf{A}_{\infty}}$$
$$\mathfrak{m} \subset \check{\mathfrak{m}} = \operatorname{rad} \mathbf{S} =: I \text{ is the conductor ideal, i.e.}$$
$$I = \operatorname{ann}_{\check{\mathbf{P}}}(\mathbf{S}/\check{\mathbf{P}}), \qquad \check{\mathbf{P}} I = \mathbf{S} I = I$$

The conductor square induces a diagram of categories and functors:

 $\begin{array}{c} \breve{\mathbf{P}} & \overset{\frown}{\longrightarrow} \mathbf{S} & \operatorname{CM}(\breve{\mathbf{P}}) & \longrightarrow \operatorname{CM}(\mathbf{S}) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \breve{\mathbf{P}}/\breve{\mathfrak{m}} = \mathbf{k} & \overset{\operatorname{diag}}{\longrightarrow} \mathbf{S}/\operatorname{rad} \mathbf{S} = \mathbf{k} \times \mathbf{k} & \operatorname{mod}(\mathbf{k}) & \overset{-\times-}{\longrightarrow} \operatorname{mod}(\mathbf{k} \times \mathbf{k}) \\ \end{array}$ **Idea of** Tri(\breve{\mathbf{P}}): Construct a "pullback category" of top and _ × _.

$$\begin{array}{c} \operatorname{CM}(\check{\mathbf{P}}) & \longrightarrow & \operatorname{CM}(\mathbf{S}) \\ & & & \downarrow^{\operatorname{top}} \\ & & & \downarrow^{\operatorname{top}} \\ \operatorname{mod}(\mathbf{k}) & \xrightarrow[-\times]{-} & \operatorname{mod}(\mathbf{k} \times \mathbf{k}) \end{array}$$

$$\begin{array}{c} \mathrm{CM}(\widecheck{\mathbf{P}}) & \longrightarrow & \mathrm{CM}(\mathbf{S}) \\ & & & \downarrow^{\mathrm{top}} \\ & & & \downarrow^{\mathrm{top}} \\ \mathrm{mod}(\mathbf{k}) & \xrightarrow[-\times^{-}]{} & \mathrm{mod}(\mathbf{k} \times \mathbf{k}) \end{array}$$

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \left\{ ($$

$$\begin{array}{c} \operatorname{CM}(\check{\mathbf{P}}) & \longrightarrow & \operatorname{CM}(\mathbf{S}) \\ & & & \downarrow^{\operatorname{top}} \\ V \in \operatorname{mod}(\mathbf{k}) \xrightarrow[-\times]{-} & \operatorname{mod}(\mathbf{k} \times \mathbf{k}) \end{array}$$

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \{(V,$$

Wassilij Gnedin (Cologne University)

$$\begin{array}{c} \operatorname{CM}(\check{\mathbf{P}}) & \longrightarrow & \operatorname{CM}(\mathbf{S}) \ni \boldsymbol{L} \\ & & & \downarrow^{\operatorname{top}} \\ V \in \mod(\mathbf{k}) \xrightarrow[-\times]{} & \operatorname{mod}(\mathbf{k} \times \mathbf{k}) \end{array}$$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}) := \left\{ (V, \underline{L}, \right.$

Wassilij Gnedin (Cologne University)

$$\begin{array}{ccc}
\mathrm{CM}(\check{\mathbf{P}}) & \longrightarrow & \mathrm{CM}(\mathbf{S}) \ni L \\
& & & \downarrow^{\mathrm{top}} \\
V \in \mod(\mathbf{k}) \xrightarrow{} & \mod(\mathbf{k} \times \mathbf{k}) \\
& & & \downarrow^{} \\
& & &$$

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \{(V, L,$$

Wassilij Gnedin (Cologne University)

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \{(V, L,$$

$$CM(\check{\mathbf{P}}) \xrightarrow{} CM(\mathbf{S}) \ni L$$

$$\downarrow top$$

$$V \in mod(\check{\mathbf{k}}) \xrightarrow{} mod(\check{\mathbf{k}} \times \check{\mathbf{k}})$$

$$V \times V \xrightarrow{\vartheta} \operatorname{top}(L)$$

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \left\{ (V, L, \vartheta) \mid \vartheta \text{ surjective,} \right\}$$

Wassilij Gnedin (Cologne University)

$$CM(\check{\mathbf{P}}) \xrightarrow{} CM(\mathbf{S}) \ni L$$

$$\downarrow top$$

$$V \in mod(\check{\mathbf{k}}) \xrightarrow{} mod(\check{\mathbf{k}} \times \check{\mathbf{k}}) \qquad V$$

$$\underset{diag}{\overset{diag}{}} V \times V \xrightarrow{\vartheta} top(L)$$

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \Big\{ (V, L, \vartheta) \mid \vartheta \text{ surjective}, \Big\}$$

Definition

Objects of $\operatorname{Tri}(\check{\mathbf{P}}) := \{(V, L, \vartheta) \mid \vartheta \text{ surjective}, \vartheta|_V \text{ injective} \}.$

Wassilij Gnedin (Cologne University)

$$\begin{array}{ccc} \mathrm{CM}(\check{\mathbf{P}}) & \longrightarrow & \mathrm{CM}(\mathbf{S}) \ni L \\ & & & \downarrow^{\mathrm{top}} \\ V \in \mathrm{mod}(\mathbf{k}) & \xrightarrow{}_{-\times_{-}} & \mathrm{mod}(\mathbf{k} \times \mathbf{k}) \\ & & & V \overset{\vartheta|_{V}}{\longrightarrow} \mathrm{top}(L) \\ & & & \downarrow^{\mathrm{diag}} \\ & & & V \times V \overset{\vartheta}{\longrightarrow} \mathrm{top}(L) \end{array}$$

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \{ (V, L, \vartheta) \mid \vartheta \text{ surjective}, \vartheta|_V \text{ injective} \}.$$

Theorem (Burban and Drozd, 2012)

$$\operatorname{Tri}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{CM}(\check{\mathbf{P}})$$

$$\begin{array}{ccc} \operatorname{CM}(\check{\mathbf{P}}) & \longrightarrow & \operatorname{CM}(\mathbf{S}) \ni L \\ & & & \downarrow^{\operatorname{top}} \\ V \in \operatorname{mod}(\mathbf{k}) & \xrightarrow{}_{-\times_{-}} & \operatorname{mod}(\mathbf{k} \times \mathbf{k}) \\ & & & V \overset{\vartheta|_{V}}{\longrightarrow} \operatorname{top}(L) \\ & & & \underset{V \times V \xrightarrow{\vartheta} & \operatorname{top}(L)}{\operatorname{diag}} \\ & & & V \times V \xrightarrow{\vartheta} \operatorname{top}(L) \end{array}$$

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \{ (V, L, \vartheta) \mid \vartheta \text{ surjective}, \vartheta|_V \text{ injective} \}.$$

Theorem (Burban and Drozd, 2012)

$$\operatorname{Tri}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{CM}(\check{\mathbf{P}})$$

V. L. θ)

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \{(V, L, \vartheta) \mid \vartheta \text{ surjective}, \vartheta|_V \text{ injective}\}.$$

Theorem (Burban and Drozd, 2012)

$$\operatorname{Tri}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{CM}(\check{\mathbf{P}})$$
$$V, L, \theta)$$

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \{(V, L, \vartheta) \mid \vartheta \text{ surjective}, \vartheta|_V \text{ injective}\}.$$

Theorem (Burban and Drozd, 2012)

$$\operatorname{Tri}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{CM}(\check{\mathbf{P}})$$
$$(V, L, \theta) \longmapsto M := \quad pullback \text{ of } \vartheta|_V \text{ and } \pi_L \text{ in } \operatorname{mod}(\check{\mathbf{P}}).$$

Wassilij Gnedin (Cologne University)

MCM over some non-reduced CS

Definition

Objects of
$$\operatorname{Tri}(\check{\mathbf{P}}) := \{(V, L, \vartheta) \mid \vartheta \text{ surjective}, \vartheta|_V \text{ injective}\}.$$

Theorem (Burban and Drozd, 2012)

$$\operatorname{Tri}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{CM}(\check{\mathbf{P}})$$
$$(V, L, \theta) \longmapsto M := \quad pullback \text{ of } \vartheta|_V \text{ and } \pi_L \text{ in } \operatorname{mod}(\check{\mathbf{P}}).$$

Wassilij Gnedin (Cologne University)

MCM over some non-reduced CS

Corollary

There is a bijection of isomorphism classes

$$\left[\operatorname{ind} \operatorname{CM}(\check{\mathbf{P}})\right] \stackrel{1:1}{\longleftrightarrow} \left[\operatorname{ind} \operatorname{Tri}(\check{\mathbf{P}})\right]$$

Corollary

There is a bijection of isomorphism classes

$$\begin{bmatrix} \operatorname{ind} \operatorname{CM}(\check{\mathbf{P}}) \end{bmatrix} & \stackrel{1:1}{\longleftrightarrow} & \begin{bmatrix} \operatorname{ind} \operatorname{Tri}(\check{\mathbf{P}}) \end{bmatrix} \\ M & \longleftrightarrow & V = \mathbf{k}^n, \end{bmatrix}$$

Corollary

There is a bijection of isomorphism classes

$$\begin{bmatrix} \operatorname{ind} \operatorname{CM}(\check{\mathbf{P}}) \end{bmatrix} & \stackrel{1:1}{\longleftrightarrow} & \begin{bmatrix} \operatorname{ind} \operatorname{Tri}(\check{\mathbf{P}}) \end{bmatrix} \\ M & \longleftrightarrow & V = \mathbf{k}^n, \\ L = L_1 \times L_2 \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}) \end{bmatrix}$$

Corollary

There is a bijection of isomorphism classes

$$\begin{bmatrix} \operatorname{ind} \operatorname{CM}(\check{\mathbf{P}}) \end{bmatrix} & \stackrel{1:1}{\longleftrightarrow} & \begin{bmatrix} \operatorname{ind} \operatorname{Tri}(\check{\mathbf{P}}) \end{bmatrix} \\ M & \longleftrightarrow & V = \mathbf{k}^n, \\ L = \mathbf{L}_1 \times L_2 \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}) \end{bmatrix}$$

Proposition (Buchweitz, Greuel and Schreyer, 1987)

Let $\mathbf{A}_{\infty} = \mathbf{k}\llbracket y, w \rrbracket / (w^2)$. $\left[\operatorname{ind} \operatorname{CM}(\mathbf{A}_{\infty}) \right] = \left\{ (1), (y^m, w), (w) \mid m \in \mathbb{N} \right\}$.

Corollary

There is a bijection of isomorphism classes

$$\begin{bmatrix} \operatorname{ind} \operatorname{CM}(\check{\mathbf{P}}) \end{bmatrix} & \stackrel{1:1}{\longleftrightarrow} & \begin{bmatrix} \operatorname{ind} \operatorname{Tri}(\check{\mathbf{P}}) \end{bmatrix} \\ M & \longleftrightarrow & V = \mathbf{k}^n, \\ & L = L_1 \times L_2 \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}), \\ \vartheta = \vartheta_1 \times \vartheta_2 \in \operatorname{Mat}_{m_1 \times n}(\mathbf{k}) \times \operatorname{Mat}_{m_2 \times n}(\mathbf{k}) \text{ s.t.} \\ \vartheta \text{ surjective and } \begin{pmatrix} \vartheta_1 \\ \vartheta_2 \end{pmatrix} \text{ is injective.} \end{bmatrix}$$

Proposition (Buchweitz, Greuel and Schreyer, 1987)

Let
$$\mathbf{A}_{\infty} = \mathbf{k}\llbracket y, w \rrbracket / (w^2)$$
. $\left[\operatorname{ind} \operatorname{CM}(\mathbf{A}_{\infty}) \right] = \left\{ (1), (y^m, w), (w) \mid m \in \mathbb{N} \right\}$.

Corollary

There is a bijection of isomorphism classes

$$\begin{bmatrix} \operatorname{ind} \operatorname{CM}(\check{\mathbf{P}}) \end{bmatrix} & \stackrel{1:1}{\longleftrightarrow} & \begin{bmatrix} \operatorname{ind} \operatorname{Tri}(\check{\mathbf{P}}) \end{bmatrix} \\ M & \longleftrightarrow & V = \mathbf{k}^n, \\ & L = L_1 \times L_2 \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}), \\ \vartheta = \vartheta_1 \times \vartheta_2 \in \operatorname{Mat}_{m_1 \times n}(\mathbf{k}) \times \operatorname{Mat}_{m_2 \times n}(\mathbf{k}) \text{ s.t.} \\ \vartheta \text{ surjective and } \begin{pmatrix} \vartheta_1 \\ \vartheta_2 \end{pmatrix} \text{ is injective.} \end{bmatrix}$$

Proposition (Buchweitz, Greuel and Schreyer, 1987)

Let
$$\mathbf{A}_{\infty} = \mathbf{k}\llbracket y, w \rrbracket / (w^2)$$
. $[\operatorname{ind} CM(\mathbf{A}_{\infty})] = \{ (1), (y^m, w), (w) \mid m \in \mathbb{N} \}.$

Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

$$\begin{bmatrix} \operatorname{ind} \operatorname{CM}(\check{\mathbf{P}}) \end{bmatrix} & \stackrel{1:1}{\longleftrightarrow} & \begin{bmatrix} \operatorname{ind} \operatorname{Tri}(\check{\mathbf{P}}) \end{bmatrix} \\ M & \longleftrightarrow & V = \mathbf{k}^n, \\ & L = L_1 \times L_2 \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}), \\ \vartheta = \vartheta_1 \times \vartheta_2 \in \operatorname{Mat}_{m_1 \times n}(\mathbf{k}) \times \operatorname{Mat}_{m_2 \times n}(\mathbf{k}) \text{ s.t.} \\ \vartheta \text{ surjective and } \begin{pmatrix} \vartheta_1 \\ \vartheta_2 \end{pmatrix} \text{ is injective.} \end{bmatrix}$$

Proposition (Buchweitz, Greuel and Schreyer, 1987)

Let
$$\mathbf{A}_{\infty} = \mathbf{k}\llbracket y, w \rrbracket / (w^2)$$
. $\left[\operatorname{ind} \operatorname{CM}(\mathbf{A}_{\infty}) \right] = \left\{ (1), (y^m, w), (w) \mid m \in \mathbb{N} \right\}.$

Wassilij Gnedin (Cologne University)

Let $V \in \operatorname{mod}(\mathbf{k}), \quad L \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}), \quad \vartheta : V \times V \longrightarrow \operatorname{top} L$.

Let $V \in \operatorname{mod}(\mathbf{k}), \quad L \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}), \quad \vartheta : V \times V \longrightarrow \operatorname{top} L$.

Definition

 $(V, L, \vartheta) \cong (V', L', \vartheta') \iff$

Let $V \in \operatorname{mod}(\mathbf{k}), \quad L \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}), \quad \vartheta : V \times V \longrightarrow \operatorname{top} L$.

Definition

 $(V,L,\vartheta)\cong (V,L,\vartheta') \Longleftrightarrow$

Let $V \in \operatorname{mod}(\mathbf{k})$, $L \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty})$, $\vartheta : V \times V \longrightarrow \operatorname{top} L$.

Definition

 $(V, L, \vartheta) \cong (V, L, \vartheta') \iff$ there exist $\phi \in Aut_{\mathbf{k}}(V)$ and $\xi \in Aut_{\mathbf{S}}(L)$ such that the following diagram commutes:

$$V \times V \xrightarrow{\vartheta} \operatorname{top} L$$

$$\phi \times \phi \downarrow \wr \qquad \qquad \operatorname{top} \xi \downarrow \wr$$

$$V \times V \xrightarrow{\vartheta'} \operatorname{top} L$$

Let $V \in \operatorname{mod}(\mathbf{k})$, $L \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty})$, $\vartheta : V \times V \longrightarrow \operatorname{top} L$.

Definition

 $(V, L, \vartheta) \cong (V, L, \vartheta') \iff$ there exist $\phi \in Aut_{\mathbf{k}}(V)$ and $\xi \in Aut_{\mathbf{S}}(L)$ such that the following diagram commutes:

Let $V \in \operatorname{mod}(\mathbf{k})$, $L \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty})$, $\vartheta : V \times V \longrightarrow \operatorname{top} L$.

Definition

 $(V, L, \vartheta) \cong (V, L, \vartheta') \iff$ there exist $\phi \in Aut_{\mathbf{k}}(V)$ and $\xi \in Aut_{\mathbf{S}}(L)$ such that the following diagram commutes:

$$V \times V = \mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta = \vartheta_{1} \times \vartheta_{2}} \operatorname{stop} L = \mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}$$

$$\phi \times \phi \downarrow \wr \qquad \operatorname{top} \xi = \overline{\xi}_{1} \times \overline{\xi}_{2} \downarrow \wr \qquad \operatorname{top} \xi = \overline{\xi}_{1} \times \overline{\xi}_{2} \downarrow \wr \qquad \operatorname{top} L = \mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}$$

 $\Rightarrow \text{ an isomorphism of triples acts by conjugation on matrices } \vartheta_1 \text{ and } \vartheta_2: \\ (\vartheta_1, \vartheta_2) \longmapsto (\overline{\xi}_1 \cdot \vartheta_1 \cdot \phi^{-1}, \overline{\xi}_2 \cdot \vartheta_2 \cdot \phi^{-1})$

Let $V \in \operatorname{mod}(\mathbf{k})$, $L \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty})$, $\vartheta : V \times V \longrightarrow \operatorname{top} L$.

Definition

 $(V, L, \vartheta) \cong (V, L, \vartheta') \iff$ there exist $\phi \in Aut_{\mathbf{k}}(V)$ and $\xi \in Aut_{\mathbf{S}}(L)$ such that the following diagram commutes:

$$V \times V = \mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta = \vartheta_{1} \times \vartheta_{2}} \operatorname{stop} L = \mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}$$

$$\phi \times \phi \downarrow \wr \qquad \operatorname{top} \xi = \overline{\xi}_{1} \times \overline{\xi}_{2} \downarrow \wr \qquad \operatorname{top} \chi = \mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}$$

$$V \times V = \mathbf{k}^{n} \times \mathbf{k}^{n} \xrightarrow{\vartheta' = \vartheta'_{1} \times \vartheta'_{2}} \operatorname{top} L = \mathbf{k}^{m_{1}} \times \mathbf{k}^{m_{2}}$$

 $\Rightarrow \text{ an isomorphism of triples acts by conjugation on matrices } \vartheta_1 \text{ and } \vartheta_2 \text{:} \\ (\vartheta_1, \vartheta_2) \longmapsto (\overline{\xi}_1 \cdot \vartheta_1 \cdot \phi^{-1}, \overline{\xi}_2 \cdot \vartheta_2 \cdot \phi^{-1})$

• ϕ induces simultaneous column transformations of ϑ_1 and ϑ_2 .

Let $V \in \operatorname{mod}(\mathbf{k})$, $L \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty})$, $\vartheta : V \times V \longrightarrow \operatorname{top} L$.

Definition

 $(V, L, \vartheta) \cong (V, L, \vartheta') \iff$ there exist $\phi \in Aut_{\mathbf{k}}(V)$ and $\xi \in Aut_{\mathbf{S}}(L)$ such that the following diagram commutes:

 $\Rightarrow \text{ an isomorphism of triples acts by conjugation on matrices } \vartheta_1 \text{ and } \vartheta_2:$ $(\vartheta_1, \vartheta_2) \longmapsto (\overline{\xi}_1 \cdot \vartheta_1 \cdot \phi^{-1}, \overline{\xi}_2 \cdot \vartheta_2 \cdot \phi^{-1})$

- ϕ induces simultaneous column transformations of ϑ_1 and ϑ_2 .
- ② automorphisms of $L_i \in CM(\mathbf{A}_{\infty})$ induce certain row transformations of ϑ_i .

Let $V \in \operatorname{mod}(\mathbf{k}), \quad L \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}), \quad \vartheta : V \times V \longrightarrow \operatorname{top} L$.

Definition

 $(V, L, \vartheta) \cong (V, L, \vartheta') \iff$ there exist $\phi \in Aut_{\mathbf{k}}(V)$ and $\xi \in Aut_{\mathbf{S}}(L)$ such that the following diagram commutes:

 $\Rightarrow \text{ an isomorphism of triples acts by conjugation on matrices } \vartheta_1 \text{ and } \vartheta_2:$ $(\vartheta_1, \vartheta_2) \longmapsto (\overline{\xi}_1 \cdot \vartheta_1 \cdot \phi^{-1}, \overline{\xi}_2 \cdot \vartheta_2 \cdot \phi^{-1})$

- ϕ induces simultaneous column transformations of ϑ_1 and ϑ_2 .
- ② automorphisms of L_i ∈ CM(A_{∞}) induce certain row transformations of ϑ_i .

 \Rightarrow The problem to classify $(\vartheta_1, \vartheta_2)$ is a matrix problem,

Wassilij Gnedin (Cologne University)

Let $V \in \operatorname{mod}(\mathbf{k}), \quad L \in \operatorname{CM}(\mathbf{A}_{\infty} \times \mathbf{A}_{\infty}), \quad \vartheta : V \times V \longrightarrow \operatorname{top} L$.

Definition

 $(V, L, \vartheta) \cong (V, L, \vartheta') \iff$ there exist $\phi \in Aut_{\mathbf{k}}(V)$ and $\xi \in Aut_{\mathbf{S}}(L)$ such that the following diagram commutes:

 $\Rightarrow \text{ an isomorphism of triples acts by conjugation on matrices } \vartheta_1 \text{ and } \vartheta_2:$ $(\vartheta_1, \vartheta_2) \longmapsto (\overline{\xi}_1 \cdot \vartheta_1 \cdot \phi^{-1}, \overline{\xi}_2 \cdot \vartheta_2 \cdot \phi^{-1})$

- ϕ induces simultaneous column transformations of ϑ_1 and ϑ_2 .
- ② automorphisms of L_i ∈ CM(A_{∞}) induce certain row transformations of ϑ_i .

 \Rightarrow The problem to classify $(\vartheta_1, \vartheta_2)$ is a matrix problem,

Wassilij Gnedin (Cologne University)

Admissible transformations:

- **(**) add a multiple of any row of x^m (resp. y^n) to any row of v (resp. w),
- ② simultaneous elementary row transformations in the horizontal blocks x^m and v (resp. y^n and w),

- **(**) add a multiple of any row of x^m (resp. y^n) to any row of v (resp. w),
- ② simultaneous elementary row transformations in the horizontal blocks x^m and v (resp. y^n and w),

- **(**) add a multiple of any row of x^m (resp. y^n) to any row of v (resp. w),
- ② simultaneous elementary row transformations in the horizontal blocks x^m and v (resp. y^n and w),

- **(**) add a multiple of any row of x^m (resp. y^n) to any row of v (resp. w),
- ② simultaneous elementary row transformations in the horizontal blocks x^m and v (resp. y^n and w),

- **(**) add a multiple of any row of x^m (resp. y^n) to any row of v (resp. w),
- ② simultaneous elementary row transformations in the horizontal blocks x^m and v (resp. y^n and w),

- **(**) add a multiple of any row of x^m (resp. y^n) to any row of v (resp. w),
- ② simultaneous elementary row transformations in the horizontal blocks x^m and v (resp. y^n and w),
- **③** simultaneous elementary column transformations of ϑ_1 and ϑ_2 .

- **(**) add a multiple of any row of x^m (resp. y^n) to any row of v (resp. w),
- 2 simultaneous elementary row transformations in the horizontal blocks x^m and v (resp. y^n and w),
- **③** simultaneous elementary column transformations of ϑ_1 and ϑ_2 .

Admissible transformations:

- **(**) add a multiple of any row of x^m (resp. y^n) to any row of v (resp. w),
- 2 simultaneous elementary row transformations in the horizontal blocks x^m and v (resp. y^n and w),
- **③** simultaneous elementary column transformations of ϑ_1 and ϑ_2 .

Admissible transformations:

- **(**) add a multiple of any row of x^m (resp. y^n) to any row of v (resp. w),
- 2 simultaneous elementary row transformations in the horizontal blocks x^m and v (resp. y^n and w),
- **③** simultaneous elementary column transformations of ϑ_1 and ϑ_2 .

The classification problem of $Tri(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

The classification problem of $Tri(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame.

The classification problem of $\mathrm{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B}

The classification problem of $Tri(\mathbf{\check{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$\left[\operatorname{ind}\operatorname{rep}(\mathfrak{B})\right] = \left[\operatorname{strings}\right] \stackrel{\cdot}{\cup} \left[\operatorname{strings}\right]$$

discrete series

continuous series

The classification problem of $Tri(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$\left[\operatorname{ind}\operatorname{rep}(\mathfrak{B})\right] = \left[\operatorname{strings}\right] \stackrel{\cdot}{\cup} \left[\operatorname{bands}\right]$$

discrete series

continuous series

The classification problem of $\mathrm{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$\left[\operatorname{ind}\operatorname{rep}(\mathfrak{B})\right] = \left[\operatorname{strings}\right] \stackrel{\cdot}{\cup} \left[$$

discrete series

continuous series

Summary: Path of Reductions

 $\mathrm{CM}(\mathbf{P})$

The classification problem of $\mathrm{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$\left[\operatorname{ind}\operatorname{rep}(\mathfrak{B})\right] = \left[\operatorname{strings}\right]$$
 \cup

discrete series

continuous series

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}})$$

The classification problem of $Tri(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$\left[\operatorname{ind}\operatorname{rep}(\mathfrak{B})\right] = \left[\operatorname{strings}\right] \stackrel{\cdot}{\cup} \left[\operatorname{bands}\right]$$

discrete series

continuous series

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}})$$

The classification problem of $Tri(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$\left[\operatorname{ind}\operatorname{rep}(\mathfrak{B})\right] = \left[\operatorname{strings}\right] \stackrel{\cdot}{\cup} \left[\operatorname{bands}\right]$$

discrete series

$$\mathrm{CM}(\mathbf{P}) \stackrel{\approx 1:1}{\longrightarrow} \mathrm{CM}(\check{\mathbf{P}}) \stackrel{\sim}{\longrightarrow} \mathrm{Tri}(\check{\mathbf{P}}) \stackrel{\sim}{\longleftrightarrow} \mathrm{rep}(\mathfrak{B})$$

The classification problem of $\mathrm{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$\left[\operatorname{ind}\operatorname{rep}(\mathfrak{B})\right] = \underbrace{\left[\operatorname{strings}\right]}_{\text{discrete series}} \stackrel{\cdot}{\cup} \underbrace{\left[\operatorname{bands}\right]}_{\text{continuous series}}$$

Summary: Path of Reductions

$$\mathrm{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \mathrm{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \mathrm{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \mathrm{rep}(\mathfrak{B})$$

 $\Rightarrow \mathbf{P} = \mathbf{k}[[x, y, z]]/(xy, z^2)$ is CM-tame. Theorem 1 is proven.

Step 4: Solution of the Matrix Problem

The classification problem of $\mathrm{Tri}(\check{\mathbf{P}})$ turns out to be equivalent to a matrix problem of type "bunches of chains".

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains \mathfrak{B} is tame. Explicit description of the canonical forms of \mathfrak{B} :

$$\left[\operatorname{ind}\operatorname{rep}(\mathfrak{B})\right] = \underbrace{\left[\operatorname{strings}\right]}_{\text{discrete series}} \stackrel{\cdot}{\cup} \underbrace{\left[\operatorname{bands}\right]}_{\text{continuous series}}$$

Summary: Path of Reductions

$$\mathrm{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \mathrm{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \mathrm{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \mathrm{rep}(\mathfrak{B})$$

 $\Rightarrow \mathbf{P} = \mathbf{k}[[x, y, z]]/(xy, z^2)$ is CM-tame. Theorem 1 is proven.

Path of Reductions:

Path of Reductions:

$$\mathrm{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \mathrm{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \mathrm{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \mathrm{rep}(\mathfrak{B})$$

Returning the Path of Reductions:

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$

$$\vartheta$$

 $\lambda \in \mathbf{k} \backslash \{0\}$

Returning the Path of Reductions:

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$
$$(V, L, \vartheta) \xleftarrow{} \vartheta$$

$$\left(V, L, \vartheta \right) = \left(\mathbf{k}^4, \right.$$

 $\lambda \in \mathbf{k} \backslash \{0\}$

Returning the **Path of Reductions**:

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$
$$(V, L, \vartheta) \xleftarrow{} \vartheta$$

 $(V, L, \vartheta) = (\mathbf{k}^4, ((x^m, v)^{\oplus 2}, (y^n, w)^{\oplus 2}),$ $\lambda \in \mathbf{k} \setminus \{0\}$

DFG representation theory conference 2013

Returning the **Path of Reductions**:

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$
$$(V, L, \vartheta) \xleftarrow{} \vartheta$$

 $(V, L, \boldsymbol{\vartheta}) = (\mathbf{k}^4, ((x^m, v)^{\oplus 2}, (y^n, w)^{\oplus 2}), (\boldsymbol{\vartheta}_1, \boldsymbol{\vartheta}_2)),$ $\lambda \in \mathbf{k} \setminus \{0\}$

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$
$$\underbrace{M \longleftrightarrow (V, L, \vartheta) \longleftrightarrow \vartheta}$$

$$\operatorname{CM}(\mathbf{P}) \xrightarrow[\leftarrow]{\operatorname{res}} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow[\leftarrow]{\operatorname{res}} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$
$$\operatorname{res}(M) \xleftarrow{} M \xleftarrow{} (V, L, \vartheta) \xleftarrow{} \vartheta$$

$$\begin{aligned} \left(V,L,\vartheta\right) &= \left(\mathbf{k}^{4}, \left((x^{m},v)^{\oplus 2},(y^{n},w)^{\oplus 2}\right),(\vartheta_{1},\vartheta_{2})\right), \qquad \lambda \in \mathbf{k} \setminus \{0\} \\ M &= \left\langle \begin{pmatrix} x^{m}+\lambda w \\ 0 \end{pmatrix}, \begin{pmatrix} x^{m}+\lambda w \\ x^{m}+\lambda w \end{pmatrix}, \begin{pmatrix} v+y^{n} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ v+y^{n} \end{pmatrix} \right\rangle \subset \check{\mathbf{P}}^{\oplus 2} \\ \operatorname{res}(M) &= \left\langle \begin{pmatrix} x^{m+1}+\lambda yz \\ 0 \end{pmatrix}, \begin{pmatrix} yz \\ x^{m+1}+\lambda yz \end{pmatrix}, \begin{pmatrix} xz+y^{n+1} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ xz+y^{n+1} \end{pmatrix} \right\rangle \subset \mathbf{P}^{\oplus 2}. \end{aligned}$$

$$\operatorname{CM}(\mathbf{P}) \xrightarrow[\leftarrow]{\operatorname{res}} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow[\leftarrow]{\operatorname{res}} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$
$$\operatorname{res}(M) \xleftarrow{} M \xleftarrow{} (V, L, \vartheta) \xleftarrow{} \vartheta$$

$$\begin{aligned} \left(V,L,\vartheta\right) &= \left(\mathbf{k}^{4}, \left((x^{m},v)^{\oplus 2},(y^{n},w)^{\oplus 2}\right),(\vartheta_{1},\vartheta_{2})\right), \qquad \lambda \in \mathbf{k} \setminus \{0\} \\ M &= \left\langle \begin{pmatrix} x^{m}+\lambda w \\ 0 \end{pmatrix}, \begin{pmatrix} x^{m}+\lambda w \\ x^{m}+\lambda w \end{pmatrix}, \begin{pmatrix} v+y^{n} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ v+y^{n} \end{pmatrix} \right\rangle \subset \check{\mathbf{P}}^{\oplus 2} \\ \operatorname{res}(M) &= \left\langle \begin{pmatrix} x^{m+1}+\lambda yz \\ 0 \end{pmatrix}, \begin{pmatrix} yz \\ x^{m+1}+\lambda yz \end{pmatrix}, \begin{pmatrix} xz+y^{n+1} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ xz+y^{n+1} \end{pmatrix} \right\rangle \subset \mathbf{P}^{\oplus 2}. \end{aligned}$$

An interesting category of CM modules

Definition

Let $M \in CM(\mathbf{P})$. *M* is *locally free on the punctured spectrum* (loc. free) $\iff M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in Spec(\mathbf{P}) \setminus \{\mathfrak{m}\}$.

An interesting category of CM modules

Definition

Let $M \in CM(\mathbf{P})$. *M* is *locally free on the punctured spectrum* (loc. free) $\iff M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in Spec(\mathbf{P}) \setminus \{\mathfrak{m}\}$.

 $\underline{CM}^{lf}(\mathbf{P}) := \text{stable category of loc. free CM modules} \subset \underline{CM}(\mathbf{P}).$

An interesting category of CM modules

Definition

Let $M \in CM(\mathbf{P})$. *M* is *locally free on the punctured spectrum* (loc. free) $\iff M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in Spec(\mathbf{P}) \setminus \{\mathfrak{m}\}$.

 $\underline{CM}^{lf}(\mathbf{P}) := \text{stable category of loc. free CM modules} \subset \underline{CM}(\mathbf{P}).$

• $\underline{CM}^{lf}(\mathbf{A}) = \underline{CM}(\mathbf{A})$ if \mathbf{A} is isolated and Gorenstein.

Let $M \in CM(\mathbf{P})$. *M* is *locally free on the punctured spectrum* (loc. free) $\iff M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in Spec(\mathbf{P}) \setminus \{\mathfrak{m}\}$.

 $\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P}):=\text{stable category of loc. free CM modules} \subset \underline{\mathrm{CM}}(\mathbf{P}).$

• $\underline{CM}^{lf}(\mathbf{A}) = \underline{CM}(\mathbf{A})$ if \mathbf{A} is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)

Properties of $\underline{\mathrm{CM}}^{lf}(\mathbf{P})$:

has Auslander-Reiten sequences and the 0-Calabi-Yau-property:

 $\underline{\operatorname{Hom}}_{\mathbf{P}}(M,N) \cong \mathbb{D}\underline{\operatorname{Hom}}_{\mathbf{P}}(N,M) \quad \text{for } M, N \in \underline{\operatorname{CM}}^{\operatorname{lf}}(\mathbf{P}),$

Let $M \in CM(\mathbf{P})$. *M* is *locally free on the punctured spectrum* (loc. free) $\iff M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in Spec(\mathbf{P}) \setminus \{\mathfrak{m}\}$.

 $\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P}):=\text{stable category of loc. free CM modules} \subset \underline{\mathrm{CM}}(\mathbf{P}).$

• $\underline{CM}^{lf}(\mathbf{A}) = \underline{CM}(\mathbf{A})$ if \mathbf{A} is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)

Properties of $\underline{\mathrm{CM}}^{lf}(\mathbf{P})$:

1 has Auslander-Reiten sequences and the 0-Calabi-Yau-property:

 $\underline{\operatorname{Hom}}_{\mathbf{P}}(M,N) \cong \mathbb{D}\underline{\operatorname{Hom}}_{\mathbf{P}}(N,M) \quad \text{for } M,N \in \underline{\operatorname{CM}}^{\operatorname{lf}}(\mathbf{P}),$

2 <u>Hom</u>-finite triangulated subcategory of $\underline{CM}(\mathbf{P})$.

A (10) F (10)

Let $M \in CM(\mathbf{P})$. *M* is *locally free on the punctured spectrum* (loc. free) $\iff M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in Spec(\mathbf{P}) \setminus \{\mathfrak{m}\}$.

 $\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P}):=\text{stable category of loc. free CM modules} \subset \underline{\mathrm{CM}}(\mathbf{P}).$

• $\underline{CM}^{lf}(\mathbf{A}) = \underline{CM}(\mathbf{A})$ if \mathbf{A} is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)

Properties of $\underline{\mathrm{CM}}^{lf}(\mathbf{P})$:

In the sequences and the 0-Calabi-Yau-property:

 $\underline{\operatorname{Hom}}_{\mathbf{P}}(M,N) \cong \mathbb{D}\underline{\operatorname{Hom}}_{\mathbf{P}}(N,M) \quad \text{for } M,N \in \underline{\operatorname{CM}}^{\operatorname{lf}}(\mathbf{P}),$

2 <u>Hom</u>-finite triangulated subcategory of $\underline{CM}(\mathbf{P})$.

 $\textbf{Goal:} \quad \text{Description of } \big[\operatorname{ind} \underline{\mathrm{CM}}^{lf}(\mathbf{P}) \big].$

Wassilij Gnedin (Cologne University)

Let $M \in CM(\mathbf{P})$. *M* is *locally free on the punctured spectrum* (loc. free) $\iff M_{\mathfrak{q}}$ is a free module over $\mathbf{P}_{\mathfrak{q}}$ for any prime ideal $\mathfrak{q} \in Spec(\mathbf{P}) \setminus \{\mathfrak{m}\}$.

 $\underline{\mathrm{CM}}^{\mathrm{lf}}(\mathbf{P}):=\text{stable category of loc. free CM modules} \subset \underline{\mathrm{CM}}(\mathbf{P}).$

• $\underline{CM}^{lf}(\mathbf{A}) = \underline{CM}(\mathbf{A})$ if \mathbf{A} is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)

Properties of $\underline{\mathrm{CM}}^{lf}(\mathbf{P})$:

In the sequences and the 0-Calabi-Yau-property:

 $\underline{\operatorname{Hom}}_{\mathbf{P}}(M,N) \cong \mathbb{D}\underline{\operatorname{Hom}}_{\mathbf{P}}(N,M) \quad \text{for } M,N \in \underline{\operatorname{CM}}^{\operatorname{lf}}(\mathbf{P}),$

2 <u>Hom</u>-finite triangulated subcategory of $\underline{CM}(\mathbf{P})$.

 $\textbf{Goal:} \quad \text{Description of } \big[\operatorname{ind} \underline{\mathrm{CM}}^{lf}(\mathbf{P}) \big].$

Wassilij Gnedin (Cologne University)

Operative \mathcal{O} constructive and complete classification of $[\operatorname{ind} CM(\mathbf{P})]$.

Operative \mathcal{O} constructive and complete classification of $[\operatorname{ind} CM(\mathbf{P})]$.

O Constructive and complete classification of [ind CM(P)].

Proof.

One constructive and complete classification of [ind CM(**P**)].

Proof.

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$

One constructive and complete classification of [ind CM(**P**)].

Proof.

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx_{1:1}} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$

$$\vartheta$$

• Constructive and complete classification of $[\operatorname{ind} CM(\mathbf{P})]$.

Proof.

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$
$$(V, L, \vartheta) \xleftarrow{} \vartheta$$

One constructive and complete classification of [ind CM(**P**)].

Proof.

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$
$$\underbrace{M \longleftrightarrow (V, L, \vartheta) \longleftrightarrow \vartheta}$$

• Constructive and complete classification of $[\operatorname{ind} CM(\mathbf{P})]$.

Proof.

$$\operatorname{CM}(\mathbf{P}) \xrightarrow[\operatorname{res}]{\approx 1:1} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow[\operatorname{res}]{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$
$$\operatorname{res}(M) \xleftarrow{} M \xleftarrow{} (V, L, \vartheta) \xleftarrow{} \vartheta$$

- Constructive and complete classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P})]$.
- **2** Characterization of [ind $CM^{lf}(\mathbf{P})]$.

Proof.

$$\operatorname{CM}(\mathbf{P}) \xrightarrow[]{\approx 1:1} \\[-1.5ex][]{\leftarrow} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow[]{\sim} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B}) \\[-1.5ex][]{\operatorname{res}(M)} \\[-1.5ex][]{\operatorname{cm}(M)} \\[-1.5ex][]$$

- Constructive and complete classification of [ind CM(P)].
- **2** Characterization of [ind $CM^{lf}(\mathbf{P})]$.

Proof.

Returning the Path of Reductions:
CM(P) \xrightarrow{\approx 1:1} CM(\check{P}) \xrightarrow{\sim} Tri(\check{P}) \xleftarrow{1:1} rep(\mathfrak{B})
res(M) \xleftarrow{} M \xleftarrow{} (V, L, \vartheta) \xleftarrow{} \vartheta
res(M) ∈ CM(P) L ∈ CM(A_∞ × A_∞).

- Constructive and complete classification of [ind CM(P)].
- **2** Characterization of $\left[\operatorname{ind} CM^{lf}(\mathbf{P}) \right]$.

Proof.

Q Returning the **Path of Reductions**:

$$\operatorname{CM}(\mathbf{P}) \xrightarrow[\leftarrow]{\operatorname{res}} \operatorname{CM}(\check{\mathbf{P}}) \xrightarrow[\leftarrow]{\operatorname{res}} \operatorname{Tri}(\check{\mathbf{P}}) \xleftarrow{1:1} \operatorname{rep}(\mathfrak{B})$$
$$\operatorname{res}(M) \xleftarrow{} M \xleftarrow{} (V, L, \vartheta) \xleftarrow{} \vartheta$$

- Constructive and complete classification of [ind $CM(\mathbf{P})]$.
- **2** Characterization of [ind $CM^{lf}(\mathbf{P})]$.
 - $\left[\text{ bands } \right] \subset \underline{CM}^{lf}(\mathbf{P}).$

Proof.

1 Returning the Path of Reductions: CM(P) → CM(P) → Tri(P) → tri(P) → rep(B) res(M) ↔ M ↔ (V, L, ϑ) ↔ ϑ **2** res(M) ∈ CM^{lf}(P) ⇔ L ∈ CM^{lf}(A_∞ × A_∞).

過 ト イヨ ト イヨト

- Constructive and complete classification of [ind $CM(\mathbf{P})]$.
- **2** Characterization of [ind $CM^{lf}(\mathbf{P})]$.
 - $[\text{ bands }] \subset \underline{CM}^{lf}(\mathbf{P})$. In particular, $\underline{CM}^{lf}(\mathbf{P})$ is tame.

Proof.

Path of Reductions:
CM(P) → CM(P) → Tri(P) → Tri(P) → rep(B)
res(M) ↔ M ↔ (V, L, ϑ) ↔ ϑ
res(M) ∈ CM^{lf}(P) ⇔ L ∈ CM^{lf}(A_∞ × A_∞).

過 ト イヨ ト イヨト

- Constructive and complete classification of [ind $CM(\mathbf{P})]$.
- **2** Characterization of [ind $CM^{lf}(\mathbf{P})]$.
 - $[bands] \subset \underline{CM}^{lf}(\mathbf{P})$. In particular, $\underline{CM}^{lf}(\mathbf{P})$ is tame.

Proof.

 \Rightarrow explicit description of indecomposable objects in a tame 0-CY category.

- Constructive and complete classification of [ind $CM(\mathbf{P})]$.
- **2** Characterization of [ind $CM^{lf}(\mathbf{P})]$.
 - $[bands] \subset \underline{CM}^{lf}(\mathbf{P})$. In particular, $\underline{CM}^{lf}(\mathbf{P})$ is tame.

Proof.

 \Rightarrow explicit description of indecomposable objects in a tame 0-CY category.

$$\mathbf{P} = \mathbf{k}[\![x,y,z]\!]/(xy,z^2)$$

→ Ξ →

1 1

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013

$$\begin{split} \mathbf{T} &= \mathbf{k} [\![a, b]\!] / (a^2 b^2) & \longleftrightarrow \mathbf{P} = \mathbf{k} [\![x, y, z]\!] / (xy, z^2) \\ & a \longmapsto x + z \\ & b \longmapsto y + z \end{split}$$

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013

→ Ξ →

1 1

$$\begin{split} \mathbf{T} &= \mathbf{k}[\![a,b]\!]/(a^2b^2) & \longleftrightarrow \mathbf{P} = \mathbf{k}[\![x,y,z]\!]/(xy,z^2) \\ & a \longmapsto x+z \\ & b \longmapsto y+z \end{split}$$

Theorem (Burban and Drozd, 2012)

T is **CM-tame** (for $\mathbf{k} = \overline{\mathbf{k}}$ and char $\mathbf{k} \neq 2$).

$$\begin{split} \mathbf{T} &= \mathbf{k}[\![a,b]\!]/(a^2b^2) & \longleftrightarrow \mathbf{P} = \mathbf{k}[\![x,y,z]\!]/(xy,z^2) \\ & a \longmapsto x+z \\ & b \longmapsto y+z \end{split}$$

Theorem (Burban and Drozd, 2012)

T is *CM*-tame (for $\mathbf{k} = \overline{\mathbf{k}}$ and char $\mathbf{k} \neq 2$).

Definition

$$\underline{\mathrm{MF}}(a^2b^2) = \left\{ (\phi, \psi) \in \mathrm{Mat}_{n \times n}(\mathbf{k}\llbracket a, b\rrbracket) \mid \phi \cdot \psi = \psi \cdot \phi = a^2b^2 \cdot \mathrm{Id}_n \right\}.$$

Matrix Factorizations of $a^2 b^2$

$$\begin{split} \mathbf{T} &= \mathbf{k}[\![a,b]\!]/(a^2b^2) & \longleftrightarrow \mathbf{P} = \mathbf{k}[\![x,y,z]\!]/(xy,z^2) \\ & a \longmapsto x+z \\ & b \longmapsto y+z \end{split}$$

Theorem (Burban and Drozd, 2012)

T is **CM-tame** (for $\mathbf{k} = \overline{\mathbf{k}}$ and char $\mathbf{k} \neq 2$).

Definition

$$\underline{\mathrm{MF}}(a^2b^2) = \left\{ (\phi, \psi) \in \mathrm{Mat}_{n \times n}(\mathbf{k}\llbracket a, b \rrbracket) \mid \phi \cdot \psi = \psi \cdot \phi = a^2b^2 \cdot \mathrm{Id}_n \right\}.$$

Theorem (Eisenbud, 1980)

$$\underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}}(a^2b^2).$$

Wassilij Gnedin (Cologne University)

Matrix Factorizations of $a^2 b^2$

$$\begin{split} \mathbf{T} &= \mathbf{k}[\![a,b]\!]/(a^2b^2) & \longleftrightarrow \mathbf{P} = \mathbf{k}[\![x,y,z]\!]/(xy,z^2) \\ & a \longmapsto x+z \\ & b \longmapsto y+z \end{split}$$

Theorem (Burban and Drozd, 2012)

T is **CM-tame** (for $\mathbf{k} = \overline{\mathbf{k}}$ and char $\mathbf{k} \neq 2$).

Definition

$$\underline{\mathrm{MF}}(a^2b^2) = \left\{ (\phi, \psi) \in \mathrm{Mat}_{n \times n}(\mathbf{k}\llbracket a, b \rrbracket) \mid \phi \cdot \psi = \psi \cdot \phi = a^2b^2 \cdot \mathrm{Id}_n \right\}.$$

Theorem (Eisenbud, 1980)

$$\underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}}(a^2b^2).$$

Wassilij Gnedin (Cologne University)

 $\mathbf{T}=\mathbf{k}[\![a,b]\!]/(a^2b^2)\subset\mathbf{P}=\mathbf{k}[\![x,y,z]\!]/(xy,z^2)$ gives rise to

 $\operatorname{CM}(\mathbf{P}) \xrightarrow{\operatorname{res}} \operatorname{CM}(\mathbf{T})$

 $\mathbf{T}=\mathbf{k}[\![a,b]\!]/(a^2b^2)\subset\mathbf{P}=\mathbf{k}[\![x,y,z]\!]/(xy,z^2)$ gives rise to

 $\operatorname{CM}(\mathbf{P}) \xrightarrow{\operatorname{res}} \operatorname{CM}(\mathbf{T}) \longrightarrow \underline{\operatorname{CM}}(\mathbf{T})$

 $\mathbf{T}=\mathbf{k}[\![a,b]\!]/(a^2b^2)\subset\mathbf{P}=\mathbf{k}[\![x,y,z]\!]/(xy,z^2)$ gives rise to

 $\operatorname{CM}(\mathbf{P}) \xrightarrow{\operatorname{res}} \operatorname{CM}(\mathbf{T}) \longrightarrow \underline{\operatorname{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\operatorname{MF}}(a^2b^2)$

$$\mathbf{T}=\mathbf{k}[\![a,b]\!]/(a^2b^2)\subset\mathbf{P}=\mathbf{k}[\![x,y,z]\!]/(xy,z^2)$$
 gives rise to

$$\underline{\mathrm{CM}}(\mathbf{P}) \xrightarrow{\mathrm{res}} \mathrm{CM}(\mathbf{T}) \longrightarrow \underline{\mathrm{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\mathrm{MF}}(a^2b^2)$$

Input:
$$M \in [\operatorname{ind} \operatorname{CM}(\mathbf{P})],$$

$$\mathbf{T}=\mathbf{k}[\![a,b]\!]/(a^2b^2)\subset\mathbf{P}=\mathbf{k}[\![x,y,z]\!]/(xy,z^2)$$
 gives rise to

$$\underline{\operatorname{CM}}(\mathbf{P}) \xrightarrow{\sim} \underline{\operatorname{CM}}(\mathbf{T}) \longrightarrow \underline{\operatorname{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\operatorname{MF}}(a^2b^2)$$

 $\begin{array}{ll} \underline{ \mathsf{Input:}} & M \in \big[\operatorname{ind} \operatorname{CM}(\mathbf{P}) \big], \\ \\ \mathsf{Example:} & (x^{m+1} + \lambda yz, xz + y^{n+1}) \subset \mathbf{P} \end{array}$

$$\mathbf{T}=\mathbf{k}[\![a,b]\!]/(a^2b^2)\subset\mathbf{P}=\mathbf{k}[\![x,y,z]\!]/(xy,z^2)$$
 gives rise to

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\operatorname{res}} \operatorname{CM}(\mathbf{T}) \longrightarrow \underline{\operatorname{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\operatorname{MF}}(a^2b^2)$$

$$\begin{array}{ll} \underline{\mathsf{Input}}: & M \in \big[\operatorname{ind} \operatorname{CM}(\mathbf{P}) \big], \\ \\ \mathsf{Example}: & (x^{m+1} + \lambda yz, xz + y^{n+1}) \subset \mathbf{P} \\ \\ \underline{\mathsf{res}}(M): & (a^{m+2} + \lambda ab^2, a^2b + b^{n+2}) \subset \mathbf{T} \end{array}$$

$$\mathbf{T}=\mathbf{k}[\![a,b]\!]/(a^2b^2)\subset\mathbf{P}=\mathbf{k}[\![x,y,z]\!]/(xy,z^2)$$
 gives rise to

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\sim} \operatorname{CM}(\mathbf{T}) \longrightarrow \underline{\operatorname{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\operatorname{MF}}(a^2b^2)$$

 $\begin{array}{ll} \underline{\operatorname{Input}}: & M \in \big[\operatorname{ind}\operatorname{CM}(\mathbf{P}) \big], \\ \\ \text{Example:} & (x^{m+1} + \lambda yz, xz + y^{n+1}) \subset \mathbf{P} \\ \\ \operatorname{res}(M): & (a^{m+2} + \lambda ab^2, a^2b + b^{n+2}) \subset \mathbf{T} \\ \\ \underline{\operatorname{Output}}: & \text{indecomposable matrix factorization } (\phi, \psi) \text{ of } a^2b^2. \end{array}$

$$\left(\begin{pmatrix}ab & -b^{n+1}\\-a^{m+1} & \lambda ab\end{pmatrix}, \begin{pmatrix}ab & \lambda^{-1}b^{n+1}\\\lambda^{-1}a^{m+1} & \lambda^{-1}ab\end{pmatrix}\right)$$

Wassilij Gnedin (Cologne University)

$$\mathbf{T}=\mathbf{k}[\![a,b]\!]/(a^2b^2)\subset\mathbf{P}=\mathbf{k}[\![x,y,z]\!]/(xy,z^2)$$
 gives rise to

$$\operatorname{CM}(\mathbf{P}) \xrightarrow{\operatorname{res}} \operatorname{CM}(\mathbf{T}) \longrightarrow \underline{\operatorname{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\operatorname{MF}}(a^2b^2)$$

 $\begin{array}{ll} \underline{\operatorname{Input}}: & M \in \big[\operatorname{ind}\operatorname{CM}(\mathbf{P}) \big], \\ \\ \text{Example:} & (x^{m+1} + \lambda yz, xz + y^{n+1}) \subset \mathbf{P} \\ \\ \operatorname{res}(M): & (a^{m+2} + \lambda ab^2, a^2b + b^{n+2}) \subset \mathbf{T} \\ \\ \underline{\operatorname{Output}}: & \operatorname{indecomposable matrix factorization}(\phi, \psi) \text{ of } a^2b^2. \end{array}$

$$\begin{pmatrix} ab & -b^{n+1} \\ -a^{m+1} & \lambda ab \end{pmatrix} \cdot \begin{pmatrix} ab & \lambda^{-1}b^{n+1} \\ \lambda^{-1}a^{m+1} & \lambda^{-1}ab \end{pmatrix} = \begin{pmatrix} a^2b^2 & 0 \\ 0 & a^2b^2 \end{pmatrix}$$

-

$$\mathbf{T}=\mathbf{k}[\![a,b]\!]/(a^2b^2)\subset\mathbf{P}=\mathbf{k}[\![x,y,z]\!]/(xy,z^2)$$
 gives rise to

-

$$\underline{\operatorname{CM}}(\mathbf{P}) \xrightarrow{\sim} \underline{\operatorname{CM}}(\mathbf{T}) \longrightarrow \underline{\operatorname{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\operatorname{MF}}(a^2b^2)$$

$$\begin{array}{ll} \underline{\operatorname{Input}}: & M \in [\operatorname{ind}\operatorname{CM}(\mathbf{P})],\\ \text{Example:} & (x^{m+1} + \lambda yz, xz + y^{n+1}) \subset \mathbf{P}\\ \mathrm{res}(M): & (a^{m+2} + \lambda ab^2, a^2b + b^{n+2}) \subset \mathbf{T}\\ \underline{\operatorname{Output}}: & \operatorname{indecomposable} \text{ matrix factorization } (\phi, \psi) \text{ of } a^2b^2.\\ & \begin{pmatrix} ab & -b^{n+1}\\ -a^{m+1} & \lambda ab \end{pmatrix} \cdot \begin{pmatrix} ab & \lambda^{-1}b^{n+1}\\ \lambda^{-1}a^{m+1} & \lambda^{-1}ab \end{pmatrix} = \begin{pmatrix} a^2b^2 & 0\\ 0 & a^2b^2 \end{pmatrix} \end{array}$$

Corollary of Theorem 2

Partial constructive classification of $\left[\operatorname{ind} \underline{\mathrm{MF}}(a^2b^2) \right]$.

Wassilij Gnedin (Cologne University)

MCM over some non-reduced CS

-

$$\mathbf{T}=\mathbf{k}[\![a,b]\!]/(a^2b^2)\subset\mathbf{P}=\mathbf{k}[\![x,y,z]\!]/(xy,z^2)$$
 gives rise to

-

$$\underline{\operatorname{CM}}(\mathbf{P}) \xrightarrow{\sim} \underline{\operatorname{CM}}(\mathbf{T}) \longrightarrow \underline{\operatorname{CM}}(\mathbf{T}) \xrightarrow{\sim} \underline{\operatorname{MF}}(a^2b^2)$$

$$\begin{array}{ll} \underline{\operatorname{Input}}: & M \in [\operatorname{ind}\operatorname{CM}(\mathbf{P})],\\ \text{Example:} & (x^{m+1} + \lambda yz, xz + y^{n+1}) \subset \mathbf{P}\\ \mathrm{res}(M): & (a^{m+2} + \lambda ab^2, a^2b + b^{n+2}) \subset \mathbf{T}\\ \underline{\operatorname{Output}}: & \operatorname{indecomposable} \text{ matrix factorization } (\phi, \psi) \text{ of } a^2b^2.\\ & \begin{pmatrix} ab & -b^{n+1}\\ -a^{m+1} & \lambda ab \end{pmatrix} \cdot \begin{pmatrix} ab & \lambda^{-1}b^{n+1}\\ \lambda^{-1}a^{m+1} & \lambda^{-1}ab \end{pmatrix} = \begin{pmatrix} a^2b^2 & 0\\ 0 & a^2b^2 \end{pmatrix} \end{array}$$

Corollary of Theorem 2

Partial constructive classification of $\left[\operatorname{ind} \underline{\mathrm{MF}}(a^2b^2) \right]$.

Wassilij Gnedin (Cologne University)

MCM over some non-reduced CS

Theorem 1

The non-reduced curve singularities of type $P_{\infty q}$ are CM-tame, where

$$\mathbf{P}_{\infty q} = \mathbf{k}[\![x, y, z]\!]/(xy, y^q - z^2), \qquad q \in \mathbb{N}^{\ge 2} \cup \{\infty\}.$$

Theorem 1

The non-reduced curve singularities of type $\mathbf{P}_{\infty q}$ are CM-tame, where

$$\mathbf{P}_{\infty q} = \mathbf{k}[\![x, y, z]\!]/(xy, y^q - z^2), \qquad q \in \mathbb{N}^{\ge 2} \cup \{\infty\}.$$

Theorem 2

Constructive classification of $\left[\operatorname{ind} \operatorname{CM}(\mathbf{P}_{pq})\right]$ as well as $\left[\operatorname{ind} \operatorname{CM}^{\mathrm{lf}}(\mathbf{P}_{\infty q})\right]$ for any $p, q \in \mathbb{N} \cup \{\infty\}$.

Theorem 1

The non-reduced curve singularities of type $\mathbf{P}_{\infty q}$ are CM-tame, where

$$\mathbf{P}_{\infty q} = \mathbf{k}[\![x, y, z]\!]/(xy, y^q - z^2), \qquad q \in \mathbb{N}^{\ge 2} \cup \{\infty\}.$$

Theorem 2

Constructive classification of $\left[\operatorname{ind} \operatorname{CM}(\mathbf{P}_{pq})\right]$ as well as $\left[\operatorname{ind} \operatorname{CM}^{\mathrm{lf}}(\mathbf{P}_{\infty q})\right]$ for any $p, q \in \mathbb{N} \cup \{\infty\}$.

Corollary of Theorem 2

Construction of families of indecomposable matrix factorizations over odd-dimensional hypersurface singularities of type T_{pq} , in particular

$$d = 1:$$
 $f = a^p + b^q - a^2 b^2$ $p, q \in \mathbb{N} \cup \{\infty\}: \frac{1}{p} + \frac{1}{q} < \frac{1}{2}$

Theorem 1

The non-reduced curve singularities of type $\mathbf{P}_{\infty q}$ are CM-tame, where

$$\mathbf{P}_{\infty q} = \mathbf{k}[\![x, y, z]\!]/(xy, y^q - z^2), \qquad q \in \mathbb{N}^{\ge 2} \cup \{\infty\}.$$

Theorem 2

Constructive classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P}_{pq})]$ as well as $[\operatorname{ind} \operatorname{CM}^{\mathrm{lf}}(\mathbf{P}_{\infty q})]$ for any $p, q \in \mathbb{N} \cup \{\infty\}$.

Corollary of Theorem 2

Construction of families of indecomposable matrix factorizations over odd-dimensional hypersurface singularities of type T_{pq} , in particular

$$d = 1:$$
 $f = a^p + b^q - a^2 b^2$ $p, q \in \mathbb{N} \cup \{\infty\}: \frac{1}{p} + \frac{1}{q} < \frac{1}{2}$

$$d = 3: \quad f^{\#\#} = f + uv$$

Theorem 1

The non-reduced curve singularities of type $\mathbf{P}_{\infty q}$ are CM-tame, where

$$\mathbf{P}_{\infty q} = \mathbf{k}[\![x, y, z]\!]/(xy, y^q - z^2), \qquad q \in \mathbb{N}^{\ge 2} \cup \{\infty\}.$$

Theorem 2

Constructive classification of $[\operatorname{ind} \operatorname{CM}(\mathbf{P}_{pq})]$ as well as $[\operatorname{ind} \operatorname{CM}^{\mathrm{lf}}(\mathbf{P}_{\infty q})]$ for any $p, q \in \mathbb{N} \cup \{\infty\}$.

Corollary of Theorem 2

Construction of families of indecomposable matrix factorizations over odd-dimensional hypersurface singularities of type T_{pq} , in particular

$$d = 1:$$
 $f = a^p + b^q - a^2 b^2$ $p, q \in \mathbb{N} \cup \{\infty\}: \frac{1}{p} + \frac{1}{q} < \frac{1}{2}$

$$d = 3: \quad f^{\#\#} = f + uv$$

Thank you for listening!

A.

3