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Outline of the talk

@ The Classification Problem and Theorem 1

© Proof of Theorem 1: Reduction to a Matrix Problem

© Examples and Classification Results
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Proof of Theorem 1 - Step 1: Rejection Lemma

We consider Py = P = K[z, v, 2] /(zy, 2%) and m = (2, v, 2).
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Proof of Theorem 1 - Step 1: Rejection Lemma

We consider Py = P = K[z, 9, 2] /(zy, 2%) and m = (z,y, z). We set

~

P := Endp(m)
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~

P~ Endp(m) = {g€ Q(P) | ¢-m = m} < Q(P).
Relation between P and P:

oPcP> k[z,y,v,w]/(zy, yv, vw, we, v2, w?)
Z—vt+w

o OM(P) <> CM(P), i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: “Rejection Lemma")

Since P is a Gorenstein curve singularity,

o [indCM(P)] U [P] £ [ind CM(P)]

= we may study P instead of P.

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Proof of Theorem 1 - Step 1: Rejection Lemma

We consider Py = P = K[z, 9, 2] /(zy, 2%) and m = (z,y, z). We set

~

P~ Endp(m) = {g€ Q(P) | ¢-m = m} < Q(P).
Relation between P and P:

oPcP> k[z,y,v,w]/(zy, yv, vw, we, v2, w?)
Z—vt+w

o OM(P) <> CM(P), i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: “Rejection Lemma")

Since P is a Gorenstein curve singularity,

o [indCM(P)] U [P] £ [ind CM(P)]

= we may study P instead of P.

e P is not Gorenstein but a Cohen-Macaulay curve singularity.

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Proof of Theorem 1 - Step 1: Rejection Lemma

We consider Py = P = K[z, 9, 2] /(zy, 2%) and m = (z,y, z). We set

~

P~ Endp(m) = {g€ Q(P) | ¢-m = m} < Q(P).
Relation between P and P:

oPcP> k[z,y,v,w]/(zy, yv, vw, we, v2, w?)
Z—vt+w

o OM(P) <> CM(P), i.e. the restriction functor is fully faithful.

Proposition (H. Bass, 1961: “Rejection Lemma")

Since P is a Gorenstein curve singularity,

o [indCM(P)] U [P] £ [ind CM(P)]

= we may study P instead of P.

e P is not Gorenstein but a Cohen-Macaulay curve singularity.

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



~

Step 2: Construct a category Tri(P) equivalent to CM(P)

Let P = k[z, y, v, w]/(zy, yv, vw, wz, v2, w?) and f its maximal ideal.
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Step 2: Construct a category Tri(P) equivalent to CM(P)

Let P = k[z, y, v, w]/(zy, yv, vw, wz, v2, w?) and f its maximal ideal.
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Step 2: Construct a category Tri(P) equivalent to Cl\wl(fv’)

Let P = k[z,y,v,w]/(zy, yv, vw, wr,v?, w?) and ™ its maximal ideal.
Set S = Endg(m). Then the following holds:

PcPcS=> Ko v]/(v?) x kly, w]/(w?)

~
product of curve singularities of type A
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Step 2: Construct a category Tri(P) equivalent to Cl\wl(fv’)

Let P = k[z,y,v,w]/(zy, yv, vw, wr,v?, w?) and ™ its maximal ideal.
Set S = Endg(m). Then the following holds:

PcPcS=> Ko v]/(v?) x kly, w]/(w?)

~
product of curve singularities of type A

mcm=radS =: I is the conductor ideal, i.e.

[ =amz(S/P), PI=SI=1I

The conductor square
1v3 ¢ > S
2

B/ =k C2, S /rad S = k x k
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Step 2: Construct a category Tri(P) equivalent to Cl\wl(fv’)

Let P = k[z,y,v,w]/(zy, yv, vw, wr,v?, w?) and ™ its maximal ideal.
Set S = Endg(m). Then the following holds:
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~
product of curve singularities of type A

mcm=radS =: I is the conductor ideal, i.e.
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Step 2: Construct a category Tri(P) equivalent to Cl\wl(fv’)
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Step 2: Construct a category Tri(P) equivalent to CM(PV’)

Let P = k[z,y,v,w]/(zy, yv, vw, wr,v?, w?) and ™ its maximal ideal.
Set S = Endg(m). Then the following holds:

PcPcS=> Ko v]/(v?) x kly, w]/(w?)

~
product of curve singularities of type A

mcm=radS =: I is the conductor ideal, i.e.

[ =amz(S/P), PI=SI=1I

The conductor square induces a diagram of categories and functors:

P +S CM(P) ey CM(S)
- l = lt0p= _/rad _
B/ = k <28, §/radS = k x k mod (k) —*s mod(k x k)

~

Idea of Tri(P): Construct a “pullback category” of top and _ x _.
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Step 2: Construct a category Tri(P) equivalent to CM(PV’)

Let P = k[z,y,v,w]/(zy, yv, vw, wr,v?, w?) and ™ its maximal ideal.
Set S = Endg(m). Then the following holds:

PcPcS=> Ko v]/(v?) x kly, w]/(w?)

~
product of curve singularities of type A

mcm=radS =: I is the conductor ideal, i.e.

[ =amz(S/P), PI=SI=1I

The conductor square induces a diagram of categories and functors:

P +S CM(P) ey CM(S)
- l = lt0p= _/rad _
B/ = k <28, §/radS = k x k mod (k) —*s mod(k x k)

~

Idea of Tri(P): Construct a “pullback category” of top and _ x _.
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

ae S

CM(P) s CM(S)

Jtop
5

mod(k) —— mod(k x k)
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

ae S

CM(P) s CM(S)

ltop
5

mod(k) —— mod(k x k)

Definition

Objects of Tri(P) := {(
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

CM(TD) » CM(S)

ltop

V € mod(k) —— mod(k x k)
X

Definition

Objects of Tri(P) := {(V,
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

CM(P) » CM(S) s L

ltop

V € mod(k) —— mod(k x k)
X

Definition

Objects of Tri(f’) = {(V, L,
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

CM(P) » CM(S) s L

ltop

V € mod(k) —— mod(k x k)
X

—<

VxV

Definition

Objects of Tri(f’) = {(V, L,
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Step 2: Reconstruction of CM(P) from Tri(fv’)

CM(P) > CM(S) 3 L L
Ve m;d(k) —— mod(k x k) J

VxV top(L)

Definition

Objects of Tri(f’) = {(V, L,

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 2: Reconstruction of CM(P ) igelny Tr1(P)

CM(P) » CM(S) s L

ltop

V € mod(k) —— mod(k x k)
X

VxV—Ls top(L)

Definition

Objects of Tri(P) := {(V,Lg&) | 9 surjective,
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

CM(

ae S

) » CM(S)> L

ltop

V € mod(k) —— mod(k x k) v
X

diag[

VxV—"s top(L)

Definition

Objects of Tri(P) := {(V,L,ﬁ) | 9 surjective,
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

Definition

Objects of Tri(P) := {(V,L,ﬁ) | 9 surjective, ¥y injective}.
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

CM(P) » CM(S) s L
: ltop
V e mod(k) —— mod(k x k) v, top(L
diag H

VxVi»top

Definition

Objects of Tri(P) := {(V,L,ﬁ) | 9 surjective, ¥y injective}.

A,

Theorem (Burban and Drozd, 2012)

Tri(P) —— CM(P)
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

CM(P) » CM(S) s L
| Jom
Ve m;d(k) —— mod(k x k) V<|—> top(L
ding H
Vxv 2y top(L
Definition

Objects of Tri(P) := {(V,L,ﬁ) | 9 surjective, ¥y injective}.

A,

Theorem (Burban and Drozd, 2012)

Tri(P) —— CM(P)
(V.L,0)
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Step 2: Reconstruction of CM(P) from Tri(

Objects of Tri(P) := {(V,L,ﬁ) | 9 surjective, ¥y injective}.

A,

Theorem (Burban and Drozd, 2012)

Tri(P) —— CM(P)
(V.L,0)
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

M e CM(P) » CM(S) s L Mc¢ » L
ltop -l lﬂ'L
V e mod(k) —— mod(k x k) v L top(L)
diag H

VxV—"s top(L)

Definition

Objects of Tri(P) := {(V,L,ﬁ) | 9 surjective, ¥y injective}.

A,

Theorem (Burban and Drozd, 2012)
Tri(P) —— CM(P)
(V,L,0) — M := pullback of 9|y and 7, in mod(P).
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Step 2: Reconstruction of CM(P ) igelny Tr1(P)

M e CM(P) » CM(S) s L Mc¢ » L
ltop -l lﬂ'L
V e mod(k) —— mod(k x k) v L top(L)
diag H

VxV—"s top(L)

Definition

Objects of Tri(P) := {(V,L,ﬁ) | 9 surjective, ¥y injective}.

A,

Theorem (Burban and Drozd, 2012)
Tri(P) —— CM(P)
(V,L,0) — M := pullback of 9|y and 7, in mod(P).
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Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

[ind CM(f’)] PN [ind Tri(f’)]
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Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

[indCM(f’)] A1, [ ind Tri f’)]
M «— V =k",
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Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

[ind CM(f’)] A1, [ ind Tri f’)]
M «— V =k"
L = Ll X L2 € CM(AOO X Aoo)
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Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes

[ind CM(f’)] A1, [ ind Tri f’)]
M «— V =k"
L=1;xLyeCM(Ay x Ay),

A,

Proposition (Buchweitz, Greuel and Schreyer, 1987)
Let Ay, = k[y, w]/(w?). [ind CM(A,)] = {(1), (y™, w), (w) | m € N}. )
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Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes
[ind CM(P)] <% [ind Tri(P)]
M «— V =k"
¥ =91 x 93 € Maty,, xn(k) X Maty,, xn(k) s.t.

. T\ ...
¥ surjective and < 191> is injective.
2

Proposition (Buchweitz, Greuel and Schreyer, 1987)
Let Ay = k[y, w]/(w?). [ind CM(Ax)] = {(1), (y™, w), (w) | m € N}. )
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Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes
[ind CM(P)] <% [ind Tri(P)]
M «— V =k"
¥ =91 x 93 € Maty,, xn(k) X Maty,, xn(k) s.t.

. T\ ...
¥ surjective and < 191> is injective.
2

Proposition (Buchweitz, Greuel and Schreyer, 1987)
Let Ay = k[y, w]/(w?). [ind CM(Ax)] = {(1), (y™, w), (w) | m € N}. )

~

Goal: Formulation of the classification problem in Tri(P)
as a matrix problem.
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Step 2: Conclusion on the Category of Triples

Corollary

There is a bijection of isomorphism classes
[ind CM(P)] <% [ind Tri(P)]
M «— V =k"
¥ =91 x 93 € Maty,, xn(k) X Maty,, xn(k) s.t.

. T\ ...
¥ surjective and < 191> is injective.
2

Proposition (Buchweitz, Greuel and Schreyer, 1987)
Let Ay = k[y, w]/(w?). [ind CM(Ax)] = {(1), (y™, w), (w) | m € N}. )

~

Goal: Formulation of the classification problem in Tri(P)
as a matrix problem.

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 3: Reduction to Matrix Problem

Let Vemod(k), LeCM(AyxAy), :VxV-—ntopL.
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Step 3: Reduction to Matrix Problem

Let Vemod(k), LeCM(AyxAy), :VxV-—ntopL.

(V,L,9) = (V',L',V¥) <
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Step 3: Reduction to Matrix Problem

Let Vemod(k), LeCM(AyxAy), :VxV-—ntopL.

(V,L,9) = (V,L,¥) <
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Step 3: Reduction to Matrix Problem

Let Vemod(k), LeCM(AyxAy), :VxV-—ntopL.

(V,L,9¥) = (V, L,¥) < there exist ¢ € Auty (V) and £ € Autg(L) such
that the following diagram commutes:

VxV—2Y  stopL

¢><¢l2 topék

VxV—Y  stopL
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Step 3: Reduction to Matrix Problem

Let Vemod(k), LeCM(AyxAy), :VxV-—ntopL.

(V,L,¥) = (V,L,¥) < there exist ¢ € Auty (V) and £ € Autg(L) such
that the following diagram commutes:

VxV=k"xk" =01 xd2

d’xd’l? topé=¢; X§2l2
9 =9 x 9,
VxV=K"xKk" —»topL =Kk™ x k"™

top L = k™ x k™2
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Step 3: Reduction to Matrix Problem

Let Vemod(k), LeCM(AyxAy), :VxV-—ntopL.

(V,L,¥) = (V,L,¥) < there exist ¢ € Auty (V) and £ € Autg(L) such
that the following diagram commutes:

VxV=k"xk" =01 xd2

d’xd’l? topé=¢; X§2l2
9 =9 x 9,
VxV=K"xKk" —»topL =Kk™ x k"™

top L = k™ x k™2

=> an isomorphism of triples acts by conjugation on matrices ¥y and Js:
(91,02) —> (& - V1 - ¢!, &y Da- 07 1)
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Step 3: Reduction to Matrix Problem

Let Vemod(k), LeCM(AyxAy), :VxV-—ntopL.

(V,L,¥) = (V,L,¥) < there exist ¢ € Auty (V) and £ € Autg(L) such
that the following diagram commutes:

VxV=k"xk" =01 xd2

d’xd’l? topé=¢; X§2l2
9 =9 x 9,
VxV=K"xKk" —»topL =Kk™ x k"™

top L = k™ x k™2

=> an isomorphism of triples acts by conjugation on matrices ¥y and Js:
(01,92) —> (& - V1 - ¢ 1 & Va7 Y)
@ ¢ induces simultaneous column transformations of ¥ and ¥s.
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Step 3: Reduction to Matrix Problem

Let Vemod(k), LeCM(AyxAy), :VxV-—ntopL.

(V,L,¥) = (V,L,¥) < there exist ¢ € Auty (V) and £ € Autg(L) such
that the following diagram commutes:

VxV=k"xk" =01 xd2

¢X¢l«2 topé=¢; X§2l2
9 =9 x 9,
VxV=K"xKk" —»topL =Kk™ x k"™

top L = k™ x k™2

=> an isomorphism of triples acts by conjugation on matrices ¥y and Js:
(01,92) —> (& - V1 - ¢ 1 & Va7 Y)
@ ¢ induces simultaneous column transformations of ¥ and ¥s.

@ automorphisms of L; € CM(A) induce certain row transformations
of 19@
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Step 3: Reduction to Matrix Problem

Let Vemod(k), LeCM(AyxAy), :VxV-—ntopL.

(V,L,¥) = (V,L,¥) < there exist ¢ € Auty (V) and £ € Autg(L) such
that the following diagram commutes:

VXV =k x k? 22002 o0 = ki k2

¢X¢l«2 topé=¢; X§2l2
9 =9 x 9,
VxV=K"xKk" —»topL =Kk™ x k"™

= an isomorphism of triples acts by conjugation on matrices ¥; and ¥s:
(91,09) = (§1 - V1 - 71, & D2 07
@ ¢ induces simultaneous column transformations of ¥ and ¥s.
@ automorphisms of L; € CM(A) induce certain row transformations
of 19@

= The problem to classify (11, 12) is a matrix problem,
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Step 3: Reduction to Matrix Problem

Let Vemod(k), LeCM(AyxAy), :VxV-—ntopL.

(V,L,¥) = (V,L,¥) < there exist ¢ € Auty (V) and £ € Autg(L) such
that the following diagram commutes:

VXV =k x k? 22002 o0 = ki k2

¢X¢l«2 topé=¢; X§2l2
9 =9 x 9,
VxV=K"xKk" —»topL =Kk™ x k"™

= an isomorphism of triples acts by conjugation on matrices ¥; and ¥s:
(91,09) = (§1 - V1 - 71, & D2 07
@ ¢ induces simultaneous column transformations of ¥ and ¥s.
@ automorphisms of L; € CM(A) induce certain row transformations
of 19@

= The problem to classify (11, 12) is a matrix problem,
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Step 3: A typical part of the Matrix Problem

51 ¥9
™ * ok k% * ok k% ym
x™ * ok ok ok * ok ok k i
v ¥ ok k% * %k ok w
v ¥ ok ok ok * %k ok w

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * ko %k * * y"
™ k0 k * * ko ok * * yn
v % % % % * % % % w
v *k ok * * k ok * * w

Admissible transformations:

© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),
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Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * k0 %k * * y"
v % % % % * % % % w
v k% * * k% * * w

Admissible transformations:

© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),
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Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * k0 %k * * y"
™ k0 ok * * ko k * * yn
v % % % % * % % % w
v k% * * k% * * w

Admissible transformations:

© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),
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Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * ko %k * * y"
™ k0 ok * * k0 ok * * yn
v ¢ % % % % ® % % % w
v k% * * k% * * w

Admissible transformations:

© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),
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Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * ko %k * * y"
™ k0 ok * * k0 ok * * yn
v </ % % % % ® % % % w
v k% * * k% * * w

Admissible transformations:

© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),
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Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * ko %k * * y"
™ k0 k * * ko ok * * yn
v % % % % * % % % w
v *k ok * * k ok * * w

Admissible transformations:
© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),

@ simultaneous elementary row transformations in the horizontal blocks
2™ and v (resp. y" and w),
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Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * k0 %k * * y"
v % % % % ® % % % w
v g k% * * k% * * w

Admissible transformations:
© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),

@ simultaneous elementary row transformations in the horizontal blocks
2™ and v (resp. y" and w),
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Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * k0 %k * * y"
v % % % % ® % % % w
v C k% * * k% * * w

Admissible transformations:
© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),

@ simultaneous elementary row transformations in the horizontal blocks
2™ and v (resp. y" and w),

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * ko %k * * y"
™ k0 k * * \] ko ok * * yn
v ¥ % % x| [* % %= = w
v *k ok * * k ok * * w

Admissible transformations:
© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),

@ simultaneous elementary row transformations in the horizontal blocks
2™ and v (resp. y" and w),

Wassilij Gnedin (Cologne University) MCM over some non-reduced CS DFG representation theory conference 2013



Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * ko %k * * y"
™ k0 k * * k ok * * yn
\
v ES * * * | * * * ES w
/
v *k ok * * k% * * w

Admissible transformations:
© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),

@ simultaneous elementary row transformations in the horizontal blocks
2™ and v (resp. y" and w),
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Step 3: A typical part of the Matrix Problem

Al )
™ k0 k * * ko %k * * y"
™ k0 k * * ko ok * * yn
v % % % % * % % % w
v *k ok * * k ok * * w

Admissible transformations:
© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),

@ simultaneous elementary row transformations in the horizontal blocks
2™ and v (resp. y" and w),

© simultaneous elementary column transformations of ¥ and .
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Step 3: A typical part of the Matrix Problem

~ ~
s N
/ \
™ * ok ok % * ok k% ym
x™ * ok ok ok * ok ok ok i
v ¥k k% * %k ok w
v ¥ ok ok ok EE T w

Admissible transformations:
© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),

@ simultaneous elementary row transformations in the horizontal blocks
2™ and v (resp. y" and w),

© simultaneous elementary column transformations of ¢ and .
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Step 3: A typical part of the Matrix Problem

51 ¥9
™ * ok k% * ok k% ym
x™ * ok ok ok * ok ok k i
v ¥ ok k% * %k ok w
v ¥ ok ok ok * %k ok w

Admissible transformations:
© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),
@ simultaneous elementary row transformations in the horizontal blocks
2™ and v (resp. y" and w),
© simultaneous elementary column transformations of ¥ and .

Matrix problem : find canonical forms of ©¥; and ¥
using only admissible transformations.
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Step 3: A typical part of the Matrix Problem

51 ¥9
™ * ok k% * ok k% ym
x™ * ok ok ok * ok ok k i
v ¥ ok k% * %k ok w
v ¥ ok ok ok * %k ok w

Admissible transformations:
© add a multiple of any row of ™ (resp. y™) to any row of v (resp. w),
@ simultaneous elementary row transformations in the horizontal blocks
2™ and v (resp. y" and w),
© simultaneous elementary column transformations of ¥ and .

Matrix problem : find canonical forms of ©¥; and ¥
using only admissible transformations.
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Step 4: Solution of the Matrix Problem

~

The classification problem of Tri(P) turns out to be equivalent to a matrix
problem of type “bunches of chains”.
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Step 4: Solution of the Matrix Problem

~

The classification problem of Tri(P) turns out to be equivalent to a matrix
problem of type “bunches of chains”.

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains B is tame.
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Step 4: Solution of the Matrix Problem

~

The classification problem of Tri(P) turns out to be equivalent to a matrix
problem of type “bunches of chains”.

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains B is tame.
Explicit description of the canonical forms of %5
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Step 4: Solution of the Matrix Problem

~

The classification problem of Tri(P) turns out to be equivalent to a matrix
problem of type “bunches of chains”.

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains B is tame.
Explicit description of the canonical forms of %5 :

[indrep(B)] = [strings] U [ bands ]
S—— S——

discrete series continuous series
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Step 4: Solution of the Matrix Problem

~

The classification problem of Tri(P) turns out to be equivalent to a matrix
problem of type “bunches of chains”.

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains B is tame.
Explicit description of the canonical forms of %5 :

[indrep(B)] = [strings] U [ bands ]
S—— S——

discrete series continuous series

Summary: Path of Reductions
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Step 4: Solution of the Matrix Problem

~

The classification problem of Tri(P) turns out to be equivalent to a matrix
problem of type “bunches of chains”.

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains B is tame.
Explicit description of the canonical forms of %5 :

[indrep(B)] = [strings] U [ bands ]
S—— S——

discrete series continuous series

Summary: Path of Reductions

CM(P)
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Step 4: Solution of the Matrix Problem

~

The classification problem of Tri(P) turns out to be equivalent to a matrix
problem of type “bunches of chains”.

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains B is tame.
Explicit description of the canonical forms of %5 :

[indrep(B)] = [strings] U [ bands |
S— =

discrete series continuous series

Summary: Path of Reductions

~1:1
——

CM(P) CM(P)
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Step 4: Solution of the Matrix Problem

~

The classification problem of Tri(P) turns out to be equivalent to a matrix
problem of type “bunches of chains”.

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains B is tame.
Explicit description of the canonical forms of %5 :

[indrep(B)] = [strings] U [ bands |
S— =

discrete series continuous series

Summary: Path of Reductions

CM(P) =1L oM(P) — Tvi(P)
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Step 4: Solution of the Matrix Problem

~

The classification problem of Tri(P) turns out to be equivalent to a matrix
problem of type “bunches of chains”.

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains B is tame.
Explicit description of the canonical forms of %5 :

[indrep(B)] = [strings] U [ bands |
S— =

discrete series continuous series

Summary: Path of Reductions

~1:1
——

CM(P) CM(P) —— Tri(P) «=L rep(B)
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Step 4: Solution of the Matrix Problem

~

The classification problem of Tri(P) turns out to be equivalent to a matrix
problem of type “bunches of chains”.

Theorem (Bondarenko, 1988)

The matrix problem over any bunch of (semi-)chains B is tame.
Explicit description of the canonical forms of %5 :

[indrep(B)] = [strings] U [ bands |
S— =

discrete series continuous series

Summary: Path of Reductions

~1:1
——

CM(P) CM(P) —— Tri(P) «=L rep(B)

= P = Kk[z,vy, z]/(zy, 2%) is CM-tame. Theorem 1 is proven.
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Example: From a Band to a CM module

Path of Reductions:
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Example: From a Band to a CM module

Path of Reductions:

~1:1 - - .
CM(P) — 7 CM(P) —~ 7 Tri(P) «=1 rep(B)
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Example: From a Band to a CM module

Returning the Path of Reductions:

~1:1 - - .
CM(P) — 7 CM(P) —~ 7 Tri(P) «=1 rep(B)
9
0 o
am [1000] [0010] w»
am [0100] [0001]
v [0010] [X100] w
v [0001] [0A00] w
A € k\{0}
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Example: From a Band to a CM module

Returning the Path of Reductions:

~1:1 - - .
CM(P) — 7 CM(P) —~ 7 Tri(P) «=1 rep(B)

(V,L,9) 10

a1 o
«» [1000 0010]
@m (0100 0001 o
v 0010 A100| w
v 10001 OAX00| w
(V,L,9) = (k% A e k\{0}
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Example: From a Band to a CM module

Returning the Path of Reductions:

~1:1 - - .
CM(P) — 7 CM(P) —~ 7 Tri(P) «=1 rep(B)

(V,L,9)«—9

a1 o
«» [1000 0010] o
@m (0100 0001 o
v 10010 AN100| w
v (0001 0X0O| w
(V,L,9) = (k% ((2™,0)2, (y", w)®?), A e k\{0}
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Example: From a Band to a CM module

Returning the Path of Reductions:

~1:1 - - .
CM(P) — 7 CM(P) —~ 7 Tri(P) «=1 rep(B)

(V,L,9) 9

1 P
z™ 1000 0010 y"
zm 10100 0001 y"
v 0010 A100 w
v 0001 OXOO w

(V,L,9) = (k% ((2™,0)®2, (y", w)®?), (01, 0)), A e k\{0}
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Example: From a Band to a CM module

Returning the Path of Reductions:

~1:1 - -

CM(P) ~ 7 CM(P), ~ " Tri(P) «~L rep(B)

M +——(V,L,9) «——9

1 P
z™ 1000 0010 y"
zm 10100 0001 y"
v 0010 A100 w
v 0001 OXOO w

(V,L,9) = (k% ((2™,0)®2, (y",w)®?), (91, 02)), A e k\{0}

M= (" 5) s (amtian ) (") (o)) < P2
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Example: From a Band to a CM module

Returning the Path of Reductions:

~1:1

CM(P) . 5 CM(P), ~ " Tri(P) + rep(B)
res(M) ——— M TR ) P a—)
1 P
am [1000] [0010]
am [0100] [0001]
v [0010] [X100] w
v [0001] [0A00] w

(V,L,9) = (k% ((2™,0)®2, (y",w)®?), (91, 02)), A e k\{0}
M = (75X (enw) s (V") (05yn )y € P

s00) = (Y (st ) (5 (o)) = P
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Example: From a Band to a CM module

Returning the Path of Reductions:

~1:1

CM(P) . 5 CM(P), ~ " Tri(P) + rep(B)
res(M) ———— M (V, L,9) 1
1 P
am [1000] [0010]
am [0100] [0001]
v [0010] [X100] w
v [0001] [0A00] w

(V,L,9) = (k% ((2™,0)®2, (y",w)®?), (91, 02)), A e k\{0}
M = (75X (enw) s (V") (05yn )y € P

s00) = (Y (st ) (5 (o)) = P
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An interesting category of CM modules

Definition

Let M € CM(P). M is locally free on the punctured spectrum (loc. free)
<= M, is a free module over P for any prime ideal q € Spec(P)\{m}.
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An interesting category of CM modules

Definition

Let M € CM(P). M is locally free on the punctured spectrum (loc. free)
<= M, is a free module over P for any prime ideal q € Spec(P)\{m}.

CM!(P) := stable category of loc. free CM modules = CM(P).
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An interesting category of CM modules

Definition

Let M € CM(P). M is locally free on the punctured spectrum (loc. free)
<= M, is a free module over P for any prime ideal q € Spec(P)\{m}.

CM!(P) := stable category of loc. free CM modules = CM(P).
o CM!(A)=CM(A) if A is isolated and Gorenstein.
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An interesting category of CM modules

Definition

Let M € CM(P). M is locally free on the punctured spectrum (loc. free)
<= M, is a free module over P for any prime ideal q € Spec(P)\{m}.

CM!(P) := stable category of loc. free CM modules = CM(P).
o CM"(A) = CM(A) if A is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)
Properties of CM"(P) :
© has Auslander-Reiten sequences and the 0-Calabi-Yau-property:

Homp (M, N) = DHomp (N, M)  for M, N € CM¥(P),
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An interesting category of CM modules

Definition

Let M € CM(P). M is locally free on the punctured spectrum (loc. free)
<= M, is a free module over P for any prime ideal q € Spec(P)\{m}.

CM!(P) := stable category of loc. free CM modules = CM(P).
o CM"(A) = CM(A) if A is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)
Properties of CM"(P) :
© has Auslander-Reiten sequences and the 0-Calabi-Yau-property:

Homp (M, N) = DHomp (N, M)  for M, N e CM¥(P),

@ Hom-finite triangulated subcategory of CM(P).
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An interesting category of CM modules

Definition

Let M € CM(P). M is locally free on the punctured spectrum (loc. free)
<= M, is a free module over P for any prime ideal q € Spec(P)\{m}.

CM!(P) := stable category of loc. free CM modules = CM(P).
o CM"(A) = CM(A) if A is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)
Properties of CM"(P) :
© has Auslander-Reiten sequences and the 0-Calabi-Yau-property:

Homp (M, N) = DHomp (N, M)  for M, N e CM¥(P),

@ Hom-finite triangulated subcategory of CM(P).

Goal: Description of [indCile(P)].
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An interesting category of CM modules

Definition

Let M € CM(P). M is locally free on the punctured spectrum (loc. free)
<= M, is a free module over P for any prime ideal q € Spec(P)\{m}.

CM!(P) := stable category of loc. free CM modules = CM(P).
o CM"(A) = CM(A) if A is isolated and Gorenstein.

Theorem (Auslander, 1986; Buchweitz, 1987)
Properties of CM"(P) :
© has Auslander-Reiten sequences and the 0-Calabi-Yau-property:

Homp (M, N) = DHomp (N, M)  for M, N e CM¥(P),

@ Hom-finite triangulated subcategory of CM(P).

Goal: Description of [indCile(P)].
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Main Classification Result

Theorem 2 (Burban and G., 2013)

Q@ Constructive and complete classification of | ind CM(P)].
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Main Classification Result

Theorem 2 (Burban and G., 2013)

Q@ Constructive and complete classification of | ind CM(P)].

© Returning the Path of Reductions:

A\
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Main Classification Result

Theorem 2 (Burban and G., 2013)

@ Constructive and complete classification of [ ind CM(P)].

Proof.

@ Returning the Path of Reductions:
~1:1 - - .
CM(P) — " CM(P) —~ 7 Tri(P) «=1 rep(B)
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Main Classification Result

Theorem 2 (Burban and G., 2013)

@ Constructive and complete classification of [ ind CM(P)].

Proof.

@ Returning the Path of Reductions:
~1:1 - - .
CM(P) — " CM(P) —~ 7 Tri(P) «=1 rep(B)

9
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Main Classification Result

Theorem 2 (Burban and G., 2013)

@ Constructive and complete classification of [ ind CM(P)].

Proof.

@ Returning the Path of Reductions:
~1:1 - - .
CM(P) — " CM(P) —~ 7 Tri(P) «=1 rep(B)

(V,L,9) +—1
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Main Classification Result

Theorem 2 (Burban and G., 2013)

@ Constructive and complete classification of [ ind CM(P)].

Proof.

@ Returning the Path of Reductions:
~1:1 - - .
CM(P) —  CM(P), ~  Tri(P) +=15 rep(B)

M +——(V,L,9)«—9
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Main Classification Result

Theorem 2 (Burban and G., 2013)

@ Constructive and complete classification of [ ind CM(P)].

Proof.

@ Returning the Path of Reductions:
~1:1 - - .
CM(P) . »CM(P), ~ " Tri(P) +=L5 rep(B)

res(M) i M < \(V, L, 9) 10
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Main Classification Result

Theorem 2 (Burban and G., 2013)

@ Constructive and complete classification of [ ind CM(P)].
@ Characterization of | ind CMH(P)].

Proof.

@ Returning the Path of Reductions:
~1:1 - - .
CM(P) . »CM(P), ~ " Tri(P) +=L5 rep(B)

res(M) - PUR (V,L,9) +——
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Main Classification Result

Theorem 2 (Burban and G., 2013)

@ Constructive and complete classification of [ ind CM(P)].
@ Characterization of | ind Cle(P)].

Proof.

@ Returning the Path of Reductions:
~1:1 - - .
CM(P) . »CM(P), ~ " Tri(P) +=L5 rep(B)

res(M) My (V,L,9) +——
Q res(M)e CM(P) LeCM(Ayp x Ay).
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Main Classification Result

Theorem 2 (Burban and G., 2013)

Q@ Constructive and complete classification of [ ind CM(P)].
@ Characterization of [ ind CM" (P)].

Proof.

@ Returning the Path of Reductions:
~1:1 - - .
CM(P),__»CM(P), ~ " Tri(P) +XLs rep(B)
res(M) ———— M \(V, L, 9) ——10

Q res(M) e CMY(P) «— L e CMY (A x Ay). O
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Main Classification Result

Theorem 2 (Burban and G., 2013)

Q@ Constructive and complete classification of [ ind CM(P)].
@ Characterization of [ ind CM" (P)].
° [ bands ] c C_le(P).

@ Returning the Path of Reductions:
~1:1 - - .
CM(P),__»CM(P), ~ " Tri(P) +XLs rep(B)
res(M) ———— M \(V, L, 9) ——10

Q res(M) e CMY(P) «— L e CM¥ (A, x Ay). O
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Main Classification Result

Theorem 2 (Burban and G., 2013)

Q@ Constructive and complete classification of [ ind CM(P)].
@ Characterization of [ ind CM" (P)].
o [ bands | « CM(P). In particular, CM"(P) is tame.

@ Returning the Path of Reductions:
~1:1 - - .
CM(P),__»CM(P), ~ " Tri(P) +XLs rep(B)
res(M) ———— M \(V, L, 9) ——10

Q res(M) e CMY(P) «— L e CM¥ (A, x Ay). O
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Main Classification Result

Theorem 2 (Burban and G., 2013)

Q@ Constructive and complete classification of [ ind CM(P)].
@ Characterization of [ ind CM" (P)].
o [ bands | = CM"(P). In particular, CM" (P) is tame.

@ Returning the Path of Reductions:

~1:1 - - .
CM(P),__»CM(P), ~ " Tri(P) +XLs rep(B)

res(M) 1 M [(V,L,9) +——9
Q res(M) e CMY(P) «— L e CM¥ (A, x Ay). O

v

= explicit description of indecomposable objects in a tame 0-CY category.
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Q@ Constructive and complete classification of [ ind CM(P)].
@ Characterization of [ ind CM" (P)].
o [ bands | = CM"(P). In particular, CM" (P) is tame.

@ Returning the Path of Reductions:

~1:1 - - .
CM(P),__»CM(P), ~ " Tri(P) +XLs rep(B)

res(M) 1 M [(V,L,9) +——9
Q res(M) e CMY(P) «— L e CM¥ (A, x Ay). O

v

= explicit description of indecomposable objects in a tame 0-CY category.
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Matrix Factorizations of a2 b2

P = k[[xa Y, z]]/(:cy, zZ)
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Matrix Factorizations of a2 b2

T = k[a, b]/(a*0*)—— P = k[z,y, 2] /(zy, 2°)
aH—x + z
b——y+ =z
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Matrix Factorizations of a2 b2

T = k[a, b]/(a**)—— P = k[z,y, 2] /(zy, 2%)
a—x + z
b——y+ =z

Theorem (Burban and Drozd, 2012)

T is CM-tame (for k = k and chark # 2).
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Matrix Factorizations of a2 b2

T = k[a, b]/(a**)—— P = k[z,y, 2] /(zy, 2%)
a—x + z
b——y+ =z

Theorem (Burban and Drozd, 2012)

T is CM-tame (for k = k and chark # 2).

Definition

MF (a?6?) = {(¢,%) € Matyxn(k[a,b]) | ¢ -9 = - ¢ = a®? - 1d,} .
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Matrix Factorizations of a2 b2

T = k[a, 0]/(a’0*)—— P = Kk[z,y, 2]/ (zy, %)
ab—x + 2
b——y+ =z

Theorem (Burban and Drozd, 2012)

T is CM-tame (for k = k and chark # 2).

Definition
MF(a®b%) = {(¢,%) € Matpxn(k[a,0]) | ¢-¢ =9 - ¢ = a®b® - 1d,} .

| \

Theorem (Eisenbud, 1980)

CM(T) — MF(a?h?).
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ab—x + 2
b——y+ =z
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T is CM-tame (for k = k and chark # 2).

Definition
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Theorem (Eisenbud, 1980)
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Example: Computing a matrix factorization of a?b?

T = k[a, b]/(a®b?) c P = k[x,y, 2] /(zy, 2?) gives rise to

CM(P)—= CM(T)
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Example: Computing a matrix factorization of a?b?

T = k[a, b]/(a®b?) c P = k[x,y, 2] /(zy, 2?) gives rise to

CM(P)&—=5 CM(T) —— CM(T)
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Example: Computing a matrix factorization of a?b?
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Example: Computing a matrix factorization of a?b?

T = k[a, b]/(a®b?) c P = k[x,y, 2] /(zy, 2?) gives rise to

CM(P)&—=5 CM(T) —— CM(T) —— MF(a?b?)

Input: M e [ind CM(P)],
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Example: Computing a matrix factorization of a?b?

T = k[a, b]/(a®b?) c P = k[x,y, 2] /(zy, 2?) gives rise to

CM(P)&—=5 CM(T) —— CM(T) —— MF(a?b?)

Input: M e [ind CM(P)],
Example: (2™ 4 Nyz,zz+ " c P
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Example: Computing a matrix factorization of a?b?

T = k[a, b]/(a®b?) c P = k[x,y, 2] /(zy, 2?) gives rise to
CM(P)— CM(T) — CM(T) —— MF(a?b?)
Input: M e [ind CM(P)],

Example: (2™ 4 Nyz,zz+ " c P
res(M) : (™2 + ab?, b + 0" = T
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Example: Computing a matrix factorization of a?b?

T = k[a, b]/(a®b?) c P = k[x,y, 2] /(zy, 2?) gives rise to

CM(P)—5 CM(T) —— CM(T) —— MF(a?b?)

Input: M € [ind CM(P)],
Example: (2™ + Nyz,zz 4+ ") c P
res(M) : (™2 4 Nab?, @b + V") T

Output: indecomposable matrix factorization (¢, 1)) of a

ab _bn+1 ab )\—lbn+1
—a™ xab )7 \\la™t A lab

2p2.
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Example: Computing a matrix factorization of a?b?

T = k[a, b]/(a®b?) c P = k[x,y, 2] /(zy, 2?) gives rise to

CM(P)—5 CM(T) —— CM(T) —— MF(a?b?)

Input: M e [ind CM(P)],
Example: (2™ 4 Nyz,zz+ " c P
res(M) : (™2 + ab?, b + 0" = T

Output: indecomposable matrix factorization (¢, 1) of a

ab —pntl ‘ ab A lpntl B a2b? 0
—a™tl ab A tamtl o A lgh ) L 00 a2b?

2p2.
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Example: Computing a matrix factorization of a?b?

T = k[a, b]/(a®b?) c P = k[x,y, 2] /(zy, 2?) gives rise to

CM(P)— CM(T) —— CM(T) —— MF(a?b?)

Input: M e [ind CM(P)],
Example: (2™ 4 Nyz,zz+ " c P
res(M) : (™2 + ab?, b + 0" = T

Output: indecomposable matrix factorization (¢, ) of a

ab —pntl ‘ ab A lpntl B a2b? 0
—a™tl ab A tamtl o A lgh ) L 00 a2b?

2p2.

Corollary of Theorem 2

Partial constructive classification of [ind M(a262)].
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Example: Computing a matrix factorization of a?b?

T = k[a, b]/(a®b?) c P = k[x,y, 2] /(zy, 2?) gives rise to

CM(P)— CM(T) —— CM(T) —— MF(a?b?)

Input: M e [ind CM(P)],
Example: (2™ 4 Nyz,zz+ " c P
res(M) : (™2 + ab?, b + 0" = T

Output: indecomposable matrix factorization (¢, ) of a

ab —pntl ‘ ab A lpntl B a2b? 0
—a™tl ab A tamtl o A lgh ) L 00 a2b?

2p2.

Corollary of Theorem 2

Partial constructive classification of [ind M(a262)].
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Summary of Results

The non-reduced curve singularities of type P, are CM-tame, where

Poq = k[z,y, 2]/ (zy, y? — 2%), q € N2 {0},
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Summary of Results

The non-reduced curve singularities of type P, are CM-tame, where

Poq = k[z,y, 2]/ (zy, y? — 2%), q € N2 {0},

Constructive classification of | ind CM(P,,,)| as well as | ind CMH(P@q)]
for any p,q € N U {0}.
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Summary of Results

The non-reduced curve singularities of type P, are CM-tame, where

Poq = k[z,y, 2]/ (zy, y? — 2%), q € N2 {0},

Constructive classification of | ind CM(P,,)| as well as [ ind CMH(qu)]
for any p,q € N U {o0}.

v

Corollary of Theorem 2

Construction of families of indecomposable matrix factorizations over
odd-dimensional hypersurface singularities of type T',,, in particular

d=1: f=aP +b?—a%?® pgeNuU{w}: %+%<%.
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Thank you for listening!
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