Finding PIM's for finite groups of Lie type

Olivier Dudas

CNRS & Paris-Diderot University

March 2013

O. Dudas (CNRS)

イロト イポト イヨト イ

990

Main goal. Extend geometric methods introduced by Deligne and Lusztig to the modular setting (representations in positive characteristic)

Main goal. Extend geometric methods introduced by Deligne and Lusztig to the modular setting (representations in positive characteristic)

Less ambitious. Determine *decomposition matrices* of such groups

Main goal. Extend geometric methods introduced by Deligne and Lusztig to the modular setting (representations in positive characteristic)

Less ambitious. Determine decomposition matrices of such groups i.e

▶ given χ an irreducible character of G(q) (in char. 0), find the composition factors of any reduction of χ in positive characteristic

DQ C

<ロト < 同ト < ヨト < ヨト

Main goal. Extend geometric methods introduced by Deligne and Lusztig to the modular setting (representations in positive characteristic)

Less ambitious. Determine decomposition matrices of such groups i.e

- ▶ given χ an irreducible character of G(q) (in char. 0), find the composition factors of any reduction of χ in positive characteristic
- given a projective indecomposable module PIM (in positive characteristic), compute the character of this module (in char. 0)

DQ C

イロト イポト イヨト

Inductive approach

M representation

O. Dudas (CNRS)

5900

< D > < B > < E > < E >

O. Dudas (CNRS)

Э March 2013 3 / 9

Ξ

5900

<ロト <回ト < 注ト <

< □ > < 同 >

-

5900

5900

DQ P

G reductive algebraic group over $\overline{\mathbb{F}}_{p}$ $F : \mathbf{G} \longrightarrow \mathbf{G}$ Frobenius endomorphism / \mathbb{F}_q $\mathbf{G}^{F} = G(q)$ is a finite reductive group

DQ (V

(日)

G reductive algebraic group over $\overline{\mathbb{F}}_p$ $F: \mathbf{G} \longrightarrow \mathbf{G}$ Frobenius endomorphism / \mathbb{F}_{q} $\mathbf{G}^{F} = G(q)$ is a finite reductive group

Example. $\mathbf{G} = \operatorname{GL}_n(\overline{\mathbb{F}}_p)$ with $F : (a_{i,j}) \longmapsto (a_{i,j}^q)$ then $G(q) = \operatorname{GL}_n(q)$

DQ C

イロト イポト イヨト イヨ

G reductive algebraic group over $\overline{\mathbb{F}}_p$ $F : \mathbf{G} \longrightarrow \mathbf{G}$ Frobenius endomorphism $/ \mathbb{F}_q$ $\mathbf{G}^F = G(q)$ is a finite reductive group **Example.** $\mathbf{G} = \operatorname{GL}_n(\overline{\mathbb{F}}_p)$ with $F : (a_{i,j}) \longmapsto (a_{i,j}^q)$ then $G(q) = \operatorname{GL}_n(q)$ Parabolic induction and restriction functors, given **L** a standard *F*-stable Levi subgroup

$$R_L^G : kL(q) \operatorname{-mod} \longrightarrow kG(q) \operatorname{-mod}$$

 $*R_L^G : kG(q) \operatorname{-mod} \longrightarrow kL(q) \operatorname{-mod}$

DQ C

<ロト < 同ト < ヨト < ヨト

G reductive algebraic group over \mathbb{F}_p $F: \mathbf{G} \longrightarrow \mathbf{G}$ Frobenius endomorphism / \mathbb{F}_{q} $\mathbf{G}^{F} = G(q)$ is a finite reductive group **Example.** $\mathbf{G} = \operatorname{GL}_n(\overline{\mathbb{F}}_p)$ with $F: (a_{i,j}) \longmapsto (a_{i,j}^q)$ then $G(q) = \operatorname{GL}_n(q)$ Parabolic induction and restriction functors, given L a standard F-stable Levi subgroup

$$R_L^G : kL(q)\operatorname{-mod} \longrightarrow kG(q)\operatorname{-mod} \\ {}^*R_L^G : kG(q)\operatorname{-mod} \longrightarrow kL(q)\operatorname{-mod}$$

Properties of induction/restriction

- (i) $(R_{L}^{G}, *R_{L}^{G})$ pair of adjoint functors
- (ii) They are exact if char $k \neq p$, in particular they map projective modules to projective modules

O. Dudas (CNRS)

nan

イロト イボト イヨト イヨト

Cuspidality

Definition

A kG(q)-module M is cuspidal if $*R_{L}^{G}(M) = 0$ for all proper standard F-stable Levi subgroup.

Cuspidality

Definition

A kG(q)-module M is cuspidal if ${}^*R_L^G(M) = 0$ for all proper standard F-stable Levi subgroup.

If M is non-cuspidal simple module, take L to be minimal s.t ${}^*R_L^G(M) \neq 0$

Definition

A kG(q)-module M is cuspidal if ${}^*R_L^G(M) = 0$ for all proper standard F-stable Levi subgroup.

If *M* is non-cuspidal simple module, take *L* to be minimal s.t ${}^*R_L^G(M) \neq 0$ Then there exists *N* cuspidal kL(q)-module such that

• *M* is in the head of $R_L^G(N)$

Definition

A kG(q)-module M is cuspidal if ${}^*R_L^G(M) = 0$ for all proper standard F-stable Levi subgroup.

If *M* is non-cuspidal simple module, take *L* to be minimal s.t ${}^*R_L^G(M) \neq 0$ Then there exists *N* cuspidal kL(q)-module such that

- *M* is in the head of $R_L^G(N)$
- P_M is a direct summand of $R_L^G(P_N)$

200

Definition

A kG(q)-module M is cuspidal if $*R_{L}^{G}(M) = 0$ for all proper standard F-stable Levi subgroup.

If M is non-cuspidal simple module, take L to be minimal s.t $*R_L^G(M) \neq 0$ Then there exists N cuspidal kL(q)-module such that

- \blacktriangleright M is in the head of $R_{I}^{G}(N)$
- > P_M is a direct summand of $R_L^G(P_N)$

Consequence. it is enough to

- know the projective cover of cuspidal simple modules
- know how to decompose $R_{l}^{G}(P_{N})$ (Howlett-Lehrer, Dipper-Du-James, Geck-Hiss...)

DQ C

イロト イボト イヨト

Cuspidality

900

イロト イボト イヨト

Geometric construction of the representations

W Weyl group of G

<ロト < 同ト < ヨト < ヨト

990

Geometric construction of the representations

W Weyl group of ${\bf G}$

Given $w \in W$, Deligne-Lusztig variety X(w), quasi-projective variety of dimension $\ell(w)$ endowed with action of G(q)

W Weyl group of ${\bf G}$

Given $w \in W$, Deligne-Lusztig variety X(w), quasi-projective variety of dimension $\ell(w)$ endowed with action of G(q)

Linearisation. *l*-adic cohomology groups

$$\mathsf{H}^i_c(\mathbf{X}(w),\overline{\mathbb{Q}}_\ell)$$
 and $\mathsf{H}^i_c(\mathbf{X}(w),\overline{\mathbb{F}}_\ell)$

give f.d. representations of G(q) over $\overline{\mathbb{Q}}_{\ell}$ or $\overline{\mathbb{F}}_{\ell}$ (non-zero when $i \in \{\ell(w), \ldots, 2\ell(w)\}$ only)

${\it W}$ Weyl group of ${\bf G}$

Given $w \in W$, Deligne-Lusztig variety X(w), quasi-projective variety of dimension $\ell(w)$ endowed with action of G(q)

Linearisation. *l*-adic cohomology groups

$$\mathsf{H}^i_c(\mathbf{X}(w),\overline{\mathbb{Q}}_\ell)$$
 and $\mathsf{H}^i_c(\mathbf{X}(w),\overline{\mathbb{F}}_\ell)$

give f.d. representations of G(q) over $\overline{\mathbb{Q}}_{\ell}$ or $\overline{\mathbb{F}}_{\ell}$ (non-zero when $i \in \{\ell(w), \ldots, 2\ell(w)\}$ only)

Example. Drinfeld curve $\mathbf{X} = \{(x, y) \in \overline{\mathbb{F}}_p^2 | xy^q - yx^q = 1\}$ then $H_c^1(\mathbf{X})$ contains the discrete series of $SL_2(q)$ (cuspidal representations)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ● ○○○

${\it W}$ Weyl group of ${\bf G}$

Given $w \in W$, Deligne-Lusztig variety X(w), quasi-projective variety of dimension $\ell(w)$ endowed with action of G(q)

Linearisation. *l*-adic cohomology groups

 $H^i_c(\mathbf{X}(w), \overline{\mathbb{Q}}_\ell)$ and $H^i_c(\mathbf{X}(w), \overline{\mathbb{F}}_\ell)$

give f.d. representations of G(q) over $\overline{\mathbb{Q}}_{\ell}$ or $\overline{\mathbb{F}}_{\ell}$ (non-zero when $i \in \{\ell(w), \ldots, 2\ell(w)\}$ only)

Example. Drinfeld curve $\mathbf{X} = \{(x, y) \in \overline{\mathbb{F}}_p^2 | xy^q - yx^q = 1\}$ then $H_c^1(\mathbf{X})$ contains the discrete series of $SL_2(q)$ (cuspidal representations)

Problem. How to know where the representations appear?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ● ○○○

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of G(q). If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

DQ C

< □ > < 同 >

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of G(q). If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \setminus \mathbf{X}(w) = \mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of G(q). If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \setminus \mathbf{X}(w) = \mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

$$\mathsf{H}_{c}^{i-1}(\mathsf{Z}) \longrightarrow \mathsf{H}_{c}^{i}(\mathsf{X}(w)) \longrightarrow \mathsf{H}_{c}^{i}(\overline{\mathsf{X}}(w)) \longrightarrow \mathsf{H}_{c}^{i}(\mathsf{Z})$$

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of G(q). If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \setminus \mathbf{X}(w) = \mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

$$H_{c}^{i-1}(\mathbf{Z}) \longrightarrow H_{c}^{i}(\mathbf{X}(w)) \longrightarrow H_{c}^{i}(\overline{\mathbf{X}}(w)) \longrightarrow H_{c}^{i}(\mathbf{Z})$$

$$\downarrow^{2}$$

$$H_{c}^{2\ell(w)-i}(\overline{\mathbf{X}}(w))^{*}$$

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of G(q). If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \setminus \mathbf{X}(w) = \mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

$$H_{c}^{i-1}(\mathbf{Z}) \longrightarrow H_{c}^{i}(\mathbf{X}(w)) \longrightarrow H_{c}^{i}(\overline{\mathbf{X}}(w)) \longrightarrow H_{c}^{i}(\mathbf{Z})$$

$$\downarrow^{2}$$

$$H_{c}^{2\ell(w)-i}(\mathbf{X}(w))^{*} \longleftarrow H_{c}^{2\ell(w)-i}(\overline{\mathbf{X}}(w))^{*}$$

O. Dudas (CNRS)

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of G(q). If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \setminus \mathbf{X}(w) = \mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

O. Dudas (CNRS)

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of G(q). If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \setminus \mathbf{X}(w) = \mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

Therefore $H_c^i(\mathbf{X}(w))_{\rho} = 0$ for $i \neq \ell(w)$

Same result if working in the good framework

Replace individual cohomology groups by a complex $\mathsf{RF}_c(\mathbf{X}(w), \overline{\mathbb{F}}_\ell)$

<ロト < 同ト < ヨト < ヨト

Same result if working in the good framework

Replace individual cohomology groups by a complex $\mathsf{R}\Gamma_c(\mathbf{X}(w), \overline{\mathbb{F}}_\ell)$

The terms can be assumed to be projective modules and the character $[R\Gamma_c(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell})] = \sum (-1)^i [H_c^i(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell})]$ is a virtual projective character

DQ C

イロト イポト イヨト イ

Same result if working in the good framework

Replace individual cohomology groups by a complex $\mathsf{R}\Gamma_c(\mathbf{X}(w), \overline{\mathbb{F}}_\ell)$

The terms can be assumed to be projective modules and the character $[R\Gamma_c(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell})] = \sum (-1)^i [H_c^i(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell})]$ is a virtual projective character

Proposition (Bonnafé-Rouquier)

Let M be a simple module and w be minimal such that

$$\langle \sum (-1)^i [\mathsf{H}^i_c(\mathbf{X}(w), \overline{\mathbb{F}}_\ell)], [M] \rangle \neq 0$$

Same result if working in the good framework

Replace individual cohomology groups by a complex $\mathsf{RF}_c(\mathbf{X}(w), \overline{\mathbb{F}}_\ell)$

The terms can be assumed to be projective modules and the character $[R\Gamma_c(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell})] = \sum (-1)^i [H_c^i(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell})]$ is a virtual projective character

Proposition (Bonnafé-Rouquier)

Let M be a simple module and w be minimal such that

$$\langle \sum (-1)^i [\mathsf{H}^i_c(\mathbf{X}(w), \overline{\mathbb{F}}_\ell)], [M]
angle
eq 0$$

Then there exists a representative of $\mathsf{R}\Gamma_c(\mathbf{X}(w), \overline{\mathbb{F}}_\ell)$

$$0 \longrightarrow Q_{\ell(w)} \longrightarrow Q_{\ell(w)+1} \longrightarrow \cdots \longrightarrow Q_{2\ell(w)} \longrightarrow 0$$

such that each Q_i is a finitely generated projective module and P_M is a direct summand of Q_i for $i = \ell(w)$ only

$$\mathbf{G}=\mathsf{Sp}_4(q)$$
 and $2
eq \ell|q+1$
 $W=\langle s,t
angle$ Weyl group of type B_2

990

< ロ > < 回 > < 臣 > < 臣</p>

 $\mathbf{G} = \mathrm{Sp}_4(q)$ and $2 \neq \ell | q + 1$ $W = \langle s, t \rangle$ Weyl group of type B_2 Principal ℓ -block $b = \{1, St, \chi, \chi', \theta_{10}, \text{non-unip}\}$

590

イロト イボト イヨト イヨト

$$\begin{split} \mathbf{G} &= \mathsf{Sp}_4(q) \text{ and } 2 \neq \ell | q + 1 \\ W &= \langle s, t \rangle \text{ Weyl group of type } B_2 \\ \mathsf{Principal } \ell\text{-block } b &= \{1, \mathsf{St}, \chi, \chi', \theta_{10}, \mathsf{non-unip}\} \end{split}$$

Decomposition matrix

	P_1	P_2	P_3	P_4	P_5
1	1	•	•	•	•
χ	1	1	•	•	•
χ'	1	•	1	•	•
θ_{10}	•	•	•	1	•
St	1	1	1	lpha	1

1

5900

イロト イヨト イヨト イ

$$\begin{split} \mathbf{G} &= \mathsf{Sp}_4(q) \text{ and } 2 \neq \ell | q + 1 \\ W &= \langle s, t \rangle \text{ Weyl group of type } B_2 \\ \mathsf{Principal } \ell\text{-block } b &= \{1, \mathsf{St}, \chi, \chi', \theta_{10}, \mathsf{non-unip}\} \end{split}$$

Decomposition matrix

	P_1	P_2	P_3	P_4	P_5
1	1	•	•	•	•
χ	1	1	•	•	•
χ'	1	•	1		•
θ_{10}	•	•	•	1	•
St	1	1	1	lpha	1
and (ifℓ;	2 ≤ 0 ≠ 5)	$\alpha \leq 0$	(q –	1)/2	

Ξ

990

イロト イヨト イヨト イ

$$\begin{split} \mathbf{G} &= \operatorname{Sp}_4(q) \text{ and } 2 \neq \ell | q + 1 \\ \mathcal{W} &= \langle s, t \rangle \text{ Weyl group of type } B_2 \\ \text{Principal } \ell\text{-block } b &= \{1, \operatorname{St}, \chi, \chi', \theta_{10}, \operatorname{non-unip} \} \end{split}$$

Decomposition matrix

Decomposition of virtual characters

< □ > < 同 >

}

 $[bR\Gamma_c(\mathbf{X}(w))]$

5900

$$\begin{split} \mathbf{G} &= \mathrm{Sp}_4(q) \text{ and } 2 \neq \ell | q + 1 \\ \mathcal{W} &= \langle s, t \rangle \text{ Weyl group of type } B_2 \\ \mathrm{Principal} \ \ell\text{-block } b &= \{1, \mathrm{St}, \chi, \chi', \theta_{10}, \mathrm{non-unip}\} \end{split}$$

Decomposition matrix

Decomposition of virtual characters

<ロト < 同ト < 三ト <

$$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline &P_1 & P_2 & P_3 & P_4 & P_5 \\\hline 1 & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \chi & 1 & 1 & \cdot & \cdot & \cdot & \cdot & s & 1 + \chi' + \mathsf{St} \\\chi' & 1 & \cdot & 1 & \cdot & \cdot & t & 1 + \chi - \chi - \mathsf{St} \\\chi' & 1 & \cdot & 1 & \cdot & \cdot & t & 1 + \chi - \chi' - \mathsf{St} \\\theta_{10} & \cdot & \cdot & \cdot & 1 & \cdot & st & 1 + \theta_{10} + \mathsf{St} \\\mathsf{St} & 1 & 1 & 1 & \alpha & 1 \\ \texttt{and } 2 \leq \alpha \leq (q-1)/2 \\(\mathsf{if } \ell \neq \mathsf{5})\end{array}$$

DQ P

$$\begin{split} \mathbf{G} &= \mathrm{Sp}_4(q) \text{ and } 2 \neq \ell | q + 1 \\ \mathcal{W} &= \langle s, t \rangle \text{ Weyl group of type } B_2 \\ \mathrm{Principal} \ \ell\text{-block } b &= \{1, \mathrm{St}, \chi, \chi', \theta_{10}, \mathrm{non-unip}\} \end{split}$$

Decomposition matrix

Decomposition of virtual characters

<ロト < 同ト < 三ト <

DQ P

$$\begin{split} \mathbf{G} &= \mathrm{Sp}_4(q) \text{ and } 2 \neq \ell | q + 1 \\ \mathcal{W} &= \langle s, t \rangle \text{ Weyl group of type } B_2 \\ \mathrm{Principal} \ \ell\text{-block } b &= \{1, \mathrm{St}, \chi, \chi', \theta_{10}, \mathrm{non-unip}\} \end{split}$$

Decomposition matrix

Decomposition of virtual characters

nac

イロト イボト イヨト

$$\begin{split} \mathbf{G} &= \mathrm{Sp}_4(q) \text{ and } 2 \neq \ell | q + 1 \\ \mathcal{W} &= \langle s, t \rangle \text{ Weyl group of type } B_2 \\ \mathrm{Principal} \ \ell\text{-block } b &= \{1, \mathrm{St}, \chi, \chi', \theta_{10}, \mathrm{non\text{-unip}}\} \end{split}$$

Decomposition matrix

Decomposition of virtual characters

イロト イヨト イヨト イ

$$\begin{split} \mathbf{G} &= \mathrm{Sp}_4(q) \text{ and } 2 \neq \ell | q + 1 \\ \mathcal{W} &= \langle s, t \rangle \text{ Weyl group of type } B_2 \\ \mathrm{Principal} \ \ell\text{-block } b &= \{1, \mathrm{St}, \chi, \chi', \theta_{10}, \mathrm{non\text{-unip}}\} \end{split}$$

Decomposition matrix

Decomposition of virtual characters

イロト イヨト イヨト イ

$$\begin{split} \mathbf{G} &= \mathrm{Sp}_4(q) \text{ and } 2 \neq \ell | q + 1 \\ \mathcal{W} &= \langle s, t \rangle \text{ Weyl group of type } B_2 \\ \mathrm{Principal} \ \ell\text{-block } b &= \{1, \mathrm{St}, \chi, \chi', \theta_{10}, \mathrm{non-unip}\} \end{split}$$

Decomposition matrix

Decomposition of virtual characters

イロト イヨト イヨト イ