Finding PIM's for finite groups of Lie type

Olivier Dudas

CNRS \& Paris-Diderot University
March 2013

Decomposition matrices

Representations of finite groups of Lie type $\mathrm{GL}_{n}(q), \operatorname{Sp}_{2 n}(q), \ldots, E_{8}(q)$
Main goal. Extend geometric methods introduced by Deligne and Lusztig to the modular setting (representations in positive characteristic)

Decomposition matrices

Representations of finite groups of Lie type $\mathrm{GL}_{n}(q), \operatorname{Sp}_{2 n}(q), \ldots, E_{8}(q)$
Main goal. Extend geometric methods introduced by Deligne and Lusztig to the modular setting (representations in positive characteristic)

Less ambitious. Determine decomposition matrices of such groups

Decomposition matrices

Representations of finite groups of Lie type $\mathrm{GL}_{n}(q), \mathrm{Sp}_{2 n}(q), \ldots, E_{8}(q)$
Main goal. Extend geometric methods introduced by Deligne and Lusztig to the modular setting (representations in positive characteristic)

Less ambitious. Determine decomposition matrices of such groups i.e

- given χ an irreducible character of $G(q)$ (in char. 0), find the composition factors of any reduction of χ in positive characteristic

Decomposition matrices

Representations of finite groups of Lie type $\mathrm{GL}_{n}(q), \mathrm{Sp}_{2 n}(q), \ldots, E_{8}(q)$
Main goal. Extend geometric methods introduced by Deligne and Lusztig to the modular setting (representations in positive characteristic)

Less ambitious. Determine decomposition matrices of such groups i.e

- given χ an irreducible character of $G(q)$ (in char. 0), find the composition factors of any reduction of χ in positive characteristic
- given a projective indecomposable module PIM (in positive characteristic), compute the character of this module (in char. 0)

Inductive approach

M representation

Inductive approach

Parabolic induction

G reductive algebraic group over $\overline{\mathbb{F}}_{p}$
$F: \mathbf{G} \longrightarrow \mathbf{G}$ Frobenius endomorphism $/ \mathbb{F}_{q}$
$\mathbf{G}^{F}=G(q)$ is a finite reductive group

Parabolic induction

G reductive algebraic group over $\overline{\mathbb{F}}_{p}$
$F: \mathbf{G} \longrightarrow \mathbf{G}$ Frobenius endomorphism $/ \mathbb{F}_{q}$
$\mathbf{G}^{F}=G(q)$ is a finite reductive group
Example. $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$ with $F:\left(a_{i, j}\right) \longmapsto\left(a_{i, j}^{q}\right)$ then $G(q)=G L_{n}(q)$

Parabolic induction

G reductive algebraic group over $\overline{\mathbb{F}}_{p}$
$F: \mathbf{G} \longrightarrow \mathbf{G}$ Frobenius endomorphism $/ \mathbb{F}_{q}$
$\mathbf{G}^{F}=G(q)$ is a finite reductive group
Example. $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$ with $F:\left(a_{i, j}\right) \longmapsto\left(a_{i, j}^{q}\right)$ then $G(q)=\mathrm{GL}_{n}(q)$
Parabolic induction and restriction functors, given \mathbf{L} a standard F-stable Levi subgroup

$$
\begin{aligned}
R_{L}^{G} & : k L(q)-\bmod \longrightarrow k G(q)-\bmod \\
* & R_{L}^{G}:
\end{aligned} \quad k G(q)-\bmod \longrightarrow k L(q)-\bmod
$$

Parabolic induction

G reductive algebraic group over $\overline{\mathbb{F}}_{p}$
$F: \mathbf{G} \longrightarrow \mathbf{G}$ Frobenius endomorphism $/ \mathbb{F}_{q}$
$\mathbf{G}^{F}=G(q)$ is a finite reductive group
Example. $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$ with $F:\left(a_{i, j}\right) \longmapsto\left(a_{i, j}^{q}\right)$ then $G(q)=G L_{n}(q)$
Parabolic induction and restriction functors, given \mathbf{L} a standard F-stable Levi subgroup

$$
\begin{aligned}
R_{L}^{G} & : k L(q)-\bmod \longrightarrow k G(q)-\bmod \\
* R_{L}^{G} & : k G(q)-\bmod \longrightarrow k L(q)-\bmod
\end{aligned}
$$

Properties of induction/restriction

(i) $\left(R_{L}^{G},{ }^{*} R_{L}^{G}\right)$ pair of adjoint functors
(ii) They are exact if char $k \neq p$, in particular they map projective modules to projective modules

Cuspidality

Definition

A $k G(q)$-module M is cuspidal if $* R_{L}^{G}(M)=0$ for all proper standard F-stable Levi subgroup.

Cuspidality

Definition

A $k G(q)$-module M is cuspidal if $* R_{L}^{G}(M)=0$ for all proper standard F-stable Levi subgroup.

If M is non-cuspidal simple module, take L to be minimal s.t $* R_{L}^{G}(M) \neq 0$

Cuspidality

Definition

A $k G(q)$-module M is cuspidal if $* R_{L}^{G}(M)=0$ for all proper standard F-stable Levi subgroup.

If M is non-cuspidal simple module, take L to be minimal s.t * $R_{L}^{G}(M) \neq 0$ Then there exists N cuspidal $k L(q)$-module such that
$\checkmark M$ is in the head of $R_{L}^{G}(N)$

Cuspidality

Definition

A $k G(q)$-module M is cuspidal if $* R_{L}^{G}(M)=0$ for all proper standard F-stable Levi subgroup.

If M is non-cuspidal simple module, take L to be minimal s.t * $R_{L}^{G}(M) \neq 0$ Then there exists N cuspidal $k L(q)$-module such that
$\checkmark M$ is in the head of $R_{L}^{G}(N)$

- P_{M} is a direct summand of $R_{L}^{G}\left(P_{N}\right)$

Cuspidality

Definition

A $k G(q)$-module M is cuspidal if $* R_{L}^{G}(M)=0$ for all proper standard F-stable Levi subgroup.

If M is non-cuspidal simple module, take L to be minimal s.t ${ }^{*} R_{L}^{G}(M) \neq 0$ Then there exists N cuspidal $k L(q)$-module such that

- M is in the head of $R_{L}^{G}(N)$
- P_{M} is a direct summand of $R_{L}^{G}\left(P_{N}\right)$

Consequence. it is enough to

- know the projective cover of cuspidal simple modules
- know how to decompose $R_{L}^{G}\left(P_{N}\right)$ (Howlett-Lehrer, Dipper-Du-James, Geck-Hiss...)

Cuspidality

know the projective cover of cuspidal simple modules

Geometric construction of the representations

W Weyl group of G

Geometric construction of the representations

W Weyl group of G
Given $w \in W$, Deligne-Lusztig variety $\mathbf{X}(w)$, quasi-projective variety of dimension $\ell(w)$ endowed with action of $G(q)$

Geometric construction of the representations

W Weyl group of G
Given $w \in W$, Deligne-Lusztig variety $\mathbf{X}(w)$, quasi-projective variety of dimension $\ell(w)$ endowed with action of $G(q)$

Linearisation. ℓ-adic cohomology groups

$$
\mathrm{H}_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{Q}}_{\ell}\right) \text { and } \mathrm{H}_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)
$$

give f.d. representations of $G(q)$ over $\overline{\mathbb{Q}}_{\ell}$ or $\overline{\mathbb{F}}_{\ell}$ (non-zero when $i \in\{\ell(w), \ldots, 2 \ell(w)\}$ only)

Geometric construction of the representations

W Weyl group of G
Given $w \in W$, Deligne-Lusztig variety $\mathbf{X}(w)$, quasi-projective variety of dimension $\ell(w)$ endowed with action of $G(q)$

Linearisation. ℓ-adic cohomology groups

$$
\mathrm{H}_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{Q}}_{\ell}\right) \text { and } \mathrm{H}_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)
$$

give f.d. representations of $G(q)$ over $\overline{\mathbb{Q}}_{\ell}$ or $\overline{\mathbb{F}}_{\ell}$ (non-zero when $i \in\{\ell(w), \ldots, 2 \ell(w)\}$ only)
Example. Drinfeld curve $\mathbf{X}=\left\{(x, y) \in \overline{\mathbb{F}}_{p}^{2} \mid x y^{q}-y x^{q}=1\right\}$ then $\mathrm{H}_{c}^{1}(\mathbf{X})$ contains the discrete series of $\mathrm{SL}_{2}(q)$ (cuspidal representations)

Geometric construction of the representations

W Weyl group of G
Given $w \in W$, Deligne-Lusztig variety $\mathbf{X}(w)$, quasi-projective variety of dimension $\ell(w)$ endowed with action of $G(q)$
Linearisation. ℓ-adic cohomology groups

$$
\mathrm{H}_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{Q}}_{\ell}\right) \text { and } \mathrm{H}_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)
$$

give f.d. representations of $G(q)$ over $\overline{\mathbb{Q}}_{\ell}$ or $\overline{\mathbb{F}}_{\ell}$ (non-zero when $i \in\{\ell(w), \ldots, 2 \ell(w)\}$ only)
Example. Drinfeld curve $\mathbf{X}=\left\{(x, y) \in \overline{\mathbb{F}}_{p}^{2} \mid x y^{q}-y x^{q}=1\right\}$ then $\mathrm{H}_{c}^{1}(\mathbf{X})$ contains the discrete series of $\mathrm{SL}_{2}(q)$ (cuspidal representations)

Problem. How to know where the representations appear?

Middle degree in char. 0

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of $G(q)$. If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Middle degree in char. 0

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of $G(q)$. If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \backslash \mathbf{X}(w)=\mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

Middle degree in char. 0

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of $G(q)$. If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \backslash \mathbf{X}(w)=\mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

$$
\mathrm{H}_{c}^{i-1}(\mathbf{Z}) \longrightarrow \mathrm{H}_{c}^{i}(\mathbf{X}(w)) \longrightarrow \mathrm{H}_{c}^{i}(\overline{\mathbf{X}}(w)) \longrightarrow \mathrm{H}_{c}^{i}(\mathbf{Z})
$$

Middle degree in char. 0

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of $G(q)$. If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \backslash \mathbf{X}(w)=\mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

$$
\begin{gathered}
\mathrm{H}_{c}^{i-1}(\mathbf{Z}) \longrightarrow \mathrm{H}_{c}^{i}(\mathbf{X}(w)) \longrightarrow \mathrm{H}_{c}^{i}(\overline{\mathbf{X}}(w)) \longrightarrow \mathrm{H}_{c}^{i}(\mathbf{Z}) \\
\downarrow \imath^{2} \\
\mathrm{H}_{c}^{2 \ell(w)-i}(\overline{\mathbf{X}}(w))^{*}
\end{gathered}
$$

Middle degree in char. 0

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of $G(q)$. If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \backslash \mathbf{X}(w)=\mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

$$
\begin{gathered}
\mathrm{H}_{c}^{i-1}(\mathbf{Z}) \longrightarrow \mathrm{H}_{c}^{i}(\mathbf{X}(w)) \longrightarrow \mathrm{H}_{c}^{i}(\overline{\mathbf{X}}(w)) \longrightarrow \mathrm{H}_{c}^{i}(\mathbf{Z}) \\
\\
\mathrm{H}_{c}^{2 \ell(w)-i}(\mathbf{X}(w))^{*} \longleftarrow \mathrm{H}_{c}^{2 \ell(w)-i}(\overline{\mathbf{X}}(w))^{*}
\end{gathered}
$$

Middle degree in char. 0

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of $G(q)$. If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \backslash \mathbf{X}(w)=\mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

$$
\hat{\imath}_{c}^{\hat{H}_{c}^{2 \ell(w)-i}(\mathbf{X}(w))_{\rho}^{*} \leftarrow^{\sim} \mathrm{H}_{c}^{2 \ell(w)-i}(\overline{\mathbf{X}}(w))_{\rho}^{*}}
$$

Middle degree in char. 0

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of $G(q)$. If w is minimal such that ρ occurs in the cohomology of $\mathbf{X}(w)$, then ρ occurs in middle degree only

Proof. $\mathbf{X}(w)$ has a smooth compactification $\overline{\mathbf{X}}(w)$, such that $\overline{\mathbf{X}}(w) \backslash \mathbf{X}(w)=\mathbf{Z}$ is a disjoint union of smaller varieties $\mathbf{X}(v)$

Therefore $\mathrm{H}_{c}^{i}(\mathbf{X}(w))_{\rho}=0$ for $i \neq \ell(w)$

Middle degree in char. ℓ

Same result if working in the good framework
Replace individual cohomology groups by a complex $\mathrm{R}_{c}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)$

Middle degree in char. ℓ

Same result if working in the good framework
Replace individual cohomology groups by a complex $\mathrm{R}_{c}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)$
The terms can be assumed to be projective modules and the character $\left[\operatorname{R} \Gamma_{c}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)\right]=\sum(-1)^{i}\left[H_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)\right]$ is a virtual projective character

Middle degree in char. ℓ

Same result if working in the good framework
Replace individual cohomology groups by a complex $\mathrm{R}_{c}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)$
The terms can be assumed to be projective modules and the character $\left[\operatorname{R} \Gamma_{c}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)\right]=\sum(-1)^{i}\left[H_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)\right]$ is a virtual projective character

Proposition (Bonnafé-Rouquier)

Let M be a simple module and w be minimal such that

$$
\left\langle\sum(-1)^{i}\left[H_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{e}\right)\right],[M]\right\rangle \neq 0
$$

Middle degree in char. ℓ

Same result if working in the good framework
Replace individual cohomology groups by a complex $\mathrm{R}_{c}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)$
The terms can be assumed to be projective modules and the character $\left[\operatorname{R\Gamma }_{c}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)\right]=\sum(-1)^{i}\left[H_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)\right]$ is a virtual projective character

Proposition (Bonnafé-Rouquier)

Let M be a simple module and w be minimal such that

$$
\left\langle\sum(-1)^{i}\left[H_{c}^{i}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)\right],[M]\right\rangle \neq 0
$$

Then there exists a representative of $\mathrm{R} \Gamma_{c}\left(\mathbf{X}(w), \overline{\mathbb{F}}_{\ell}\right)$

$$
0 \longrightarrow Q_{\ell(w)} \longrightarrow Q_{\ell(w)+1} \longrightarrow \cdots \longrightarrow Q_{2 \ell(w)} \longrightarrow 0
$$

such that each Q_{i} is a finitely generated projective module and P_{M} is a direct summand of Q_{i} for $i=\ell(w)$ only

Application to decomposition matrices

```
\[
\mathbf{G}=\mathrm{Sp}_{4}(q) \text { and } 2 \neq \ell \mid q+1
\]
\[
W=\langle s, t\rangle \text { Weyl group of type } B_{2}
\]
```


Application to decomposition matrices

$\mathbf{G}=\mathrm{Sp}_{4}(q)$ and $2 \neq \ell \mid q+1$
$W=\langle s, t\rangle$ Weyl group of type B_{2}
Principal ℓ-block $b=\left\{1\right.$, St, $\chi, \chi^{\prime}, \theta_{10}$, non-unip $\}$

Application to decomposition matrices

$\mathbf{G}=\operatorname{Sp}_{4}(q)$ and $2 \neq \ell \mid q+1$
$W=\langle s, t\rangle$ Weyl group of type B_{2}
Principal ℓ-block $b=\left\{1, \mathrm{St}, \chi, \chi^{\prime}, \theta_{10}\right.$, non-unip $\}$
Decomposition matrix

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
1	1	\cdot	\cdot	\cdot	\cdot
χ	1	1	\cdot	\cdot	\cdot
χ^{\prime}	1	\cdot	1	\cdot	\cdot
θ_{10}	\cdot	\cdot	\cdot	1	\cdot
St	1	1	1	α	1

Application to decomposition matrices

$\mathbf{G}=\operatorname{Sp}_{4}(q)$ and $2 \neq \ell \mid q+1$
$W=\langle s, t\rangle$ Weyl group of type B_{2}
Principal ℓ-block $b=\left\{1, \mathrm{St}, \chi, \chi^{\prime}, \theta_{10}\right.$, non-unip $\}$
Decomposition matrix

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
1	1	\cdot	\cdot	\cdot	\cdot
χ	1	1	\cdot	\cdot	\cdot
χ^{\prime}	1	\cdot	1	\cdot	\cdot
θ_{10}	\cdot	\cdot	\cdot	1	\cdot
St	1	1	1	α	1

and $2 \leq \alpha \leq(q-1) / 2$
(if $\ell \neq 5$)

Application to decomposition matrices

$\mathbf{G}=\operatorname{Sp}_{4}(q)$ and $2 \neq \ell \mid q+1$
$W=\langle s, t\rangle$ Weyl group of type B_{2}
Principal ℓ-block $b=\left\{1\right.$, St, $\chi, \chi^{\prime}, \theta_{10}$, non-unip $\}$
Decomposition matrix
Decomposition of virtual characters
$\left.\begin{array}{c|cccccc|l} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & & w\end{array}\right]\left[b \mathrm{R} \Gamma_{c}(\mathbf{X}(w))\right]$

$$
\text { and } 2 \leq \alpha \leq(q-1) / 2
$$

(if $\ell \neq 5$)

Application to decomposition matrices

$\mathbf{G}=\operatorname{Sp}_{4}(q)$ and $2 \neq \ell \mid q+1$
$W=\langle s, t\rangle$ Weyl group of type B_{2}
Principal ℓ-block $b=\left\{1, \mathrm{St}, \chi, \chi^{\prime}, \theta_{10}\right.$, non-unip $\}$
Decomposition matrix
Decomposition of virtual characters

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}		w	$\left[b \mathrm{R} \Gamma_{c}(\mathbf{X}(w))\right]$
1	1	\cdot	\cdot	\cdot	\cdot		1	$1+\chi+\chi^{\prime}+\mathrm{St}$
χ	1	1	\cdot	\cdot	\cdot		s	$1+\chi^{\prime}-\chi-\mathrm{St}$
χ^{\prime}	1	\cdot	1	\cdot	\cdot		t	$1+\chi-\chi^{\prime}-\mathrm{St}$
θ_{10}	\cdot	\cdot	\cdot	1	\cdot		$s t$	$1+\theta_{10}+\mathrm{St}$
St	1	1	1	α	1			

$$
\text { and } 2 \leq \alpha \leq(q-1) / 2
$$

(if $\ell \neq 5$)

Application to decomposition matrices

$\mathbf{G}=\operatorname{Sp}_{4}(q)$ and $2 \neq \ell \mid q+1$
$W=\langle s, t\rangle$ Weyl group of type B_{2}
Principal ℓ-block $b=\left\{1, \mathrm{St}, \chi, \chi^{\prime}, \theta_{10}\right.$, non-unip $\}$
Decomposition matrix
Decomposition of virtual characters

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}		w	$\left[b \mathrm{R} \Gamma_{c}(\mathbf{X}(w))\right]$
1	1	\cdot	\cdot	\cdot	\cdot		1	$1+\chi+\chi^{\prime}+\mathrm{St}=\left[P_{1}\right]$
χ	1	1	\cdot	\cdot	\cdot		s	$1+\chi^{\prime}-\chi-\mathrm{St}$
χ^{\prime}	1	\cdot	1	\cdot	\cdot		t	$1+\chi-\chi^{\prime}-\mathrm{St}$
θ_{10}	\cdot	\cdot	\cdot	1	\cdot		$s t$	$1+\theta_{10}+\mathrm{St}$
St	1	1	1	α	1			

$$
\text { and } 2 \leq \alpha \leq(q-1) / 2
$$

(if $\ell \neq 5$)

Application to decomposition matrices

$\mathbf{G}=\operatorname{Sp}_{4}(q)$ and $2 \neq \ell \mid q+1$
$W=\langle s, t\rangle$ Weyl group of type B_{2}
Principal ℓ-block $b=\left\{1, \mathrm{St}, \chi, \chi^{\prime}, \theta_{10}\right.$, non-unip $\}$
Decomposition matrix
Decomposition of virtual characters

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}		w	$\left[b R \Gamma_{c}(\mathbf{X}(w))\right]$
1	1	\cdot	\cdot	\cdot	\cdot		1	$1+\chi+\chi^{\prime}+\mathrm{St}=\left[P_{1}\right]$
χ	1	1	\cdot	\cdot	\cdot		s	$1+\chi^{\prime}-\chi-\mathrm{St}=\left[P_{1}\right]-2\left[P_{2}\right]$
χ^{\prime}	1	\cdot	1	\cdot	\cdot		t	$1+\chi-\chi^{\prime}-\mathrm{St}$
θ_{10}	\cdot	\cdot	\cdot	1	\cdot		$s t$	$1+\theta_{10}+\mathrm{St}$
St	1	1	1	α	1			

$$
\text { and } 2 \leq \alpha \leq(q-1) / 2
$$

(if $\ell \neq 5$)

Application to decomposition matrices

$\mathbf{G}=\operatorname{Sp}_{4}(q)$ and $2 \neq \ell \mid q+1$
$W=\langle s, t\rangle$ Weyl group of type B_{2}
Principal ℓ-block $b=\left\{1, \mathrm{St}, \chi, \chi^{\prime}, \theta_{10}\right.$, non-unip $\}$
Decomposition matrix
Decomposition of virtual characters

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}		w	$\left[b \mathrm{R} \Gamma_{c}(\mathbf{X}(w))\right]$
1	1	\cdot	\cdot	\cdot	\cdot		1	$1+\chi+\chi^{\prime}+\mathrm{St}=\left[P_{1}\right]$
χ	1	1	\cdot	\cdot	\cdot		s	$1+\chi^{\prime}-\chi-\mathrm{St}=\left[P_{1}\right]-2\left[P_{2}\right]$
χ^{\prime}	1	\cdot	1	\cdot	\cdot		t	$1+\chi-\chi^{\prime}-\mathrm{St}=\left[P_{1}\right]-2\left[P_{3}\right]$
θ_{10}	\cdot	\cdot	\cdot	1	\cdot		$s t$	$1+\theta_{10}+\mathrm{St}$
St	1	1	1	α	1			

and $2 \leq \alpha \leq(q-1) / 2$
(if $\ell \neq 5$)

Application to decomposition matrices

$\mathbf{G}=\operatorname{Sp}_{4}(q)$ and $2 \neq \ell \mid q+1$
$W=\langle s, t\rangle$ Weyl group of type B_{2}
Principal ℓ-block $b=\left\{1, \mathrm{St}, \chi, \chi^{\prime}, \theta_{10}\right.$, non-unip $\}$
Decomposition matrix
Decomposition of virtual characters

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}		w	$\left[b \mathrm{R} \Gamma_{c}(\mathbf{X}(w))\right]$
1	1	\cdot	\cdot	\cdot	\cdot		1	$1+\chi+\chi^{\prime}+\mathrm{St}=\left[P_{1}\right]$
χ	1	1	\cdot	\cdot	\cdot		s	$1+\chi^{\prime}-\chi-\mathrm{St}=\left[P_{1}\right]-2\left[P_{2}\right]$
χ^{\prime}	1	\cdot	1	\cdot	\cdot		t	$1+\chi-\chi^{\prime}-\mathrm{St}=\left[P_{1}\right]-2\left[P_{3}\right]$
θ_{10}	\cdot	\cdot	\cdot	1	\cdot		$s t$	$1+\theta_{10}+\mathrm{St}=?$
St	1	1	1	α	1			

and $2 \leq \alpha \leq(q-1) / 2$
(if $\ell \neq 5$)

Application to decomposition matrices

$\mathbf{G}=\operatorname{Sp}_{4}(q)$ and $2 \neq \ell \mid q+1$
$W=\langle s, t\rangle$ Weyl group of type B_{2}
Principal ℓ-block $b=\left\{1, \mathrm{St}, \chi, \chi^{\prime}, \theta_{10}\right.$, non-unip $\}$

Decomposition matrix

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
1	1	\cdot	\cdot	\cdot	\cdot
χ	1	1	\cdot	\cdot	\cdot
χ^{\prime}	1	\cdot	1	\cdot	\cdot
θ_{10}	\cdot	\cdot	\cdot	1	\cdot
St	1	1	1	α	1

and $2 \leq \alpha \leq(q-1) / 2$

w	$\left[b \mathrm{R} \Gamma_{c}(\mathbf{X}(w))\right]$
1	$1+\chi+\chi^{\prime}+\mathrm{St}=\left[P_{1}\right]$
s	$1+\chi^{\prime}-\chi-\mathrm{St}=\left[P_{1}\right]-2\left[P_{2}\right]$
t	$1+\chi-\chi^{\prime}-\mathrm{St}=\left[P_{1}\right]-2\left[P_{3}\right]$
$s t$	$1+\theta_{10}+\mathrm{St}=?$

s $1+\chi^{\prime}-\chi-\mathrm{St}=\left[P_{1}\right]-2\left[P_{2}\right]$
$t 1+\chi-\chi^{\prime}-\mathrm{St}=\left[P_{1}\right]-2\left[P_{3}\right]$
st $1+\theta_{10}+\mathrm{St}=$?
$\alpha \leq 2$ therefore $\alpha=2$
Decomposition of virtual characters

