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Decomposition matrices

Representations of finite groups of Lie type GLn(q), Sp2n(q), . . . , E8(q)

Main goal. Extend geometric methods introduced by Deligne and
Lusztig to the modular setting (representations in positive characteristic)

Less ambitious. Determine decomposition matrices of such groups i.e

◮ given χ an irreducible character of G(q) (in char. 0), find the
composition factors of any reduction of χ in positive characteristic

◮ given a projective indecomposable module PIM (in positive
characteristic), compute the character of this module (in char. 0)
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Inductive approach

M representation

M is cuspidal M is non-cuspidal

geometric construction of M
via Deligne-Lusztig varieties

M “occurs” in an
induced representation

RG
L (N) with N cuspidal
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GF = G(q) is a finite reductive group
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Parabolic induction

G reductive algebraic group over Fp

F : G −→ G Frobenius endomorphism / Fq

GF = G(q) is a finite reductive group

Example. G = GLn(Fp) with F : (ai ,j) 7−→ (aq
i ,j) then G(q) = GLn(q)

Parabolic induction and restriction functors, given L a standard F -stable
Levi subgroup

RG
L : kL(q)-mod −→ kG(q)-mod

∗RG
L : kG(q)-mod −→ kL(q)-mod

Properties of induction/restriction

(i) (RG
L , ∗RG

L ) pair of adjoint functors

(ii) They are exact if char k 6= p, in particular they map projective
modules to projective modules
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Cuspidality

Definition

A kG(q)-module M is cuspidal if ∗RG
L (M) = 0 for all proper standard

F -stable Levi subgroup.

If M is non-cuspidal simple module, take L to be minimal s.t ∗RG
L (M) 6= 0

Then there exists N cuspidal kL(q)-module such that

◮ M is in the head of RG
L (N)

◮ PM is a direct summand of RG
L (PN)

Consequence. it is enough to

◮ know the projective cover of cuspidal simple modules

◮ know how to decompose RG
L (PN) (Howlett-Lehrer, Dipper-Du-James,

Geck-Hiss. . . )
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Geometric construction of the representations

W Weyl group of G

Given w ∈ W , Deligne-Lusztig variety X(w), quasi-projective variety of
dimension ℓ(w) endowed with action of G(q)

Linearisation. ℓ-adic cohomology groups

Hi
c(X(w),Qℓ) and Hi

c(X(w),Fℓ)

give f.d. representations of G(q) over Qℓ or Fℓ (non-zero when
i ∈ {ℓ(w), . . . , 2ℓ(w)} only)

Example. Drinfeld curve X = {(x , y) ∈ F
2
p | xyq − yxq = 1} then H1

c(X)
contains the discrete series of SL2(q) (cuspidal representations)

Problem. How to know where the representations appear?
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Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of G(q). If w is minimal such that ρ occurs
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Middle degree in char. 0

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of G(q). If w is minimal such that ρ occurs
in the cohomology of X(w), then ρ occurs in middle degree only

Proof. X(w) has a smooth compactification X(w), such that
X(w) \ X(w) = Z is a disjoint union of smaller varieties X(v)
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Middle degree in char. 0

Proposition (Deligne-Lusztig)

Let ρ be an ordinary character of G(q). If w is minimal such that ρ occurs
in the cohomology of X(w), then ρ occurs in middle degree only

Proof. X(w) has a smooth compactification X(w), such that
X(w) \ X(w) = Z is a disjoint union of smaller varieties X(v)

0 Hi
c(X(w))ρ

∼

Hi
c(X(w))ρ

∼

0

H
2ℓ(w)−i
c (X(w))∗

ρ

∼

H
2ℓ(w)−i
c (X(w))∗

ρ
∼

Therefore Hi
c(X(w))ρ = 0 for i 6= ℓ(w)
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Same result if working in the good framework

Replace individual cohomology groups by a complex RΓc(X(w),Fℓ)

The terms can be assumed to be projective modules and the character
[RΓc(X(w),Fℓ)] =

∑

(−1)i [Hi
c(X(w),Fℓ)] is a virtual projective character

Proposition (Bonnafé-Rouquier)

Let M be a simple module and w be minimal such that

〈

∑

(−1)i [Hi
c(X(w),Fℓ)], [M]〉 6= 0

Then there exists a representative of RΓc(X(w),Fℓ)

0 −→ Qℓ(w) −→ Qℓ(w)+1 −→ · · · −→ Q2ℓ(w) −→ 0

such that each Qi is a finitely generated projective module and PM is a
direct summand of Qi for i = ℓ(w) only
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Application to decomposition matrices

G = Sp4(q) and 2 6= ℓ|q + 1

W = 〈s, t〉 Weyl group of type B2

Principal ℓ-block b = {1, St, χ, χ′, θ10, non-unip}

Decomposition matrix

P1 P2 P3 P4 P5

1 1 · · · ·
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Application to decomposition matrices

G = Sp4(q) and 2 6= ℓ|q + 1

W = 〈s, t〉 Weyl group of type B2

Principal ℓ-block b = {1, St, χ, χ′, θ10, non-unip}
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1 1 · · · ·
χ 1 1 · · ·
χ′ 1 · 1 · ·
θ10 · · · 1 ·
St 1 1 1 α 1

and 2 ≤ α ≤ (q − 1)/2
(if ℓ 6= 5)

Decomposition of virtual characters

w [bRΓc(X(w))]

1 1 + χ + χ′ + St
s 1 + χ′ − χ − St
t 1 + χ − χ′ − St
st 1 + θ10 + St

O. Dudas (CNRS) Finding PIM’s March 2013 9 / 9



Application to decomposition matrices

G = Sp4(q) and 2 6= ℓ|q + 1

W = 〈s, t〉 Weyl group of type B2

Principal ℓ-block b = {1, St, χ, χ′, θ10, non-unip}

Decomposition matrix

P1 P2 P3 P4 P5

1 1 · · · ·
χ 1 1 · · ·
χ′ 1 · 1 · ·
θ10 · · · 1 ·
St 1 1 1 α 1

and 2 ≤ α ≤ (q − 1)/2
(if ℓ 6= 5)

Decomposition of virtual characters

w [bRΓc(X(w))]

1 1 + χ + χ′ + St = [P1]
s 1 + χ′ − χ − St
t 1 + χ − χ′ − St
st 1 + θ10 + St

O. Dudas (CNRS) Finding PIM’s March 2013 9 / 9
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Application to decomposition matrices

G = Sp4(q) and 2 6= ℓ|q + 1

W = 〈s, t〉 Weyl group of type B2

Principal ℓ-block b = {1, St, χ, χ′, θ10, non-unip}
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1 1 · · · ·
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St 1 1 1 α 1
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Application to decomposition matrices

G = Sp4(q) and 2 6= ℓ|q + 1

W = 〈s, t〉 Weyl group of type B2

Principal ℓ-block b = {1, St, χ, χ′, θ10, non-unip}

Decomposition matrix

P1 P2 P3 P4 P5

1 1 · · · ·
χ 1 1 · · ·
χ′ 1 · 1 · ·
θ10 · · · 1 ·
St 1 1 1 α 1

and 2 ≤ α ≤ (q − 1)/2
(if ℓ 6= 5)

Decomposition of virtual characters

w [bRΓc(X(w))]

1 1 + χ + χ′ + St = [P1]
s 1 + χ′ − χ − St = [P1] − 2[P2]
t 1 + χ − χ′ − St = [P1] − 2[P3]
st 1 + θ10 + St =?
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Application to decomposition matrices

G = Sp4(q) and 2 6= ℓ|q + 1

W = 〈s, t〉 Weyl group of type B2

Principal ℓ-block b = {1, St, χ, χ′, θ10, non-unip}

Decomposition matrix

P1 P2 P3 P4 P5

1 1 · · · ·
χ 1 1 · · ·
χ′ 1 · 1 · ·
θ10 · · · 1 ·
St 1 1 1 α 1

and 2 ≤ α ≤ (q − 1)/2
(if ℓ 6= 5)

Decomposition of virtual characters

w [bRΓc(X(w))]

1 1 + χ + χ′ + St = [P1]
s 1 + χ′ − χ − St = [P1] − 2[P2]
t 1 + χ − χ′ − St = [P1] − 2[P3]
st 1 + θ10 + St =?

α ≤ 2 therefore α = 2
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