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Introduction

Let V be an n-dimensional C-vector space and r ≥ 1.
Then we have the following Schur-Weyl dualities

GLn → V⊗r ← CSr
∪ ∩

On Br (n) Brauer algebra
∪ ∩
Sn Pr (n) Partition algebra

Main idea: Use the partition algebra to study the representation
theory of the symmetric group.
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Structure of the talk

1 The partition algebra Pr (n): Definition and first properties.

2 Representation theory of Pr (n) over C.
3 Application to the Kronecker problem.
4 Modular representation theory of Pr (n).
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1. The partition algebra Pr (n)
Definition and first properties

Let k be a field, n ∈ k and r ∈ Z>0.

Pr (n) : k -algebra with basis given by all set partitions of
{1,2, . . . , r ,1′,2′, . . . , r ′}.

{{1,2,4,3′}, {3}, {5,1′,2′}, {4′}, {5′}} ↔

1′ 2′ 3′ 4′ 5′

1 2 3 4 5
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and multiplication given by concatenation and scalar multiplication by
nt where t is the number of connected components consisting of
middle vertices only.

X =

Y = XY = n

Maud De Visscher (City University London) Partition algebra March 2013 5 / 16



and multiplication given by concatenation and scalar multiplication by
nt where t is the number of connected components consisting of
middle vertices only.

X =

Y = XY = n

Maud De Visscher (City University London) Partition algebra March 2013 5 / 16



Assume throughout this talk that n 6= 0. Write Pr = Pr (n).

e = 1
n

. . . e2 = e.

ePr e ∼= Pr−1, Pr/Pr ePr ∼= kSr .

Let L be a simple Pr -module. Then either eL = 0 and so L is a simple
kSr -module, or eL 6= 0 and so eL is a simple Pr−1-module.

Thus if char k = p ≥ 0 we have that the simple Pr -modules are indexed
by p-regular partitions of degree ≤ r .
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Pr is a cellular algebra (as defined by Graham-Lehrer).

Λ≤r = {λ = (λ1, λ2, λ3, . . .), λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0,
∑

i λi ≤ r}.

For each λ ∈ Λ≤r we have a cell module ∆r (λ), obtained by ‘inflating’
the corresponding Specht module.

λ ` r , ∆r (λ) = S(λ) Specht module.
λ ` r − 1, ∆r (λ) = Pr e ⊗Pr−1 S(λ).
. . .

A complete set of non-isomorphic simple Pr -modules is given by

{Lr (λ) := hd ∆r (λ), λ ∈ Λ≤r p-regular}.
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2. Representation theory of Pr (n) over C (P. Martin)

Assume k = C.

Theorem: Pr (n) is semisimple⇔ n /∈ {0,1,2, . . . ,2r − 2}.

We now take n ∈ Z>0.

Definition: Let λ, µ be partitions. We say that (µ, λ) form an n-pair and
we write µ ↪→n λ if µ ⊂ λ and λ/µ consists of a single row of boxes of
which the last (rightmost) one has content n − |µ|.

Example: ((2,1), (4,1)) form a 6-pair (with 6− |µ| = 3).

−1
0 1 ⊂

−1
0 1 2 3
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Pr (n)-blocks = maximal chains of n-pairs in Λ≤r .

λ(0) ↪→n λ
(1) ↪→n λ

(2) ↪→n . . . ↪→n λ
(t)

(where t depends on the block).

Each cell module ∆r (λ(i)) (0 ≤ i ≤ t − 1) has Loewy structure

Lr (λ(i))

Lr (λ(i+1))
.

In the Grothendieck group we have

[Lr (λ(i))] =
t∑

j=i

(−1)j−i [∆r (λ(j)].
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3. Application to the Kronecker problem (C.Bowman, MDV, R.Orellana)

Assume k = C.

Representations of GLn: simple (Weyl) modules V (λ).

V (λ)⊗ V (µ) =
∑
ν

cνλ,µV (ν),

where cνλ,µ are the Littlewood-Richardson coefficients.

Representations of Sr : simple (Specht) modules S(λ).

S(λ)⊗ S(µ) =
∑
ν

gνλ,µS(ν),

where gνλ,µ are the Kronecker coefficients.

Combinatorial description of gνλ,µ?
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Back to Schur-Weyl duality: As a (Sn,Pr (n))-bimodule we have

V⊗r
n =

∑
S(λ)⊗ Lr (λ>1)

where the sum is over all λ = (λ1, λ2, λ3, . . .) partitions of n with
λ>1 = (λ2, λ3, . . .) ∈ Λ≤r .

Theorem: Let λ, µ, ν ` n with λ>1 ` r and µ>1 ` s then we have

gνλ,µ =

{
[Lr+s(ν>1)↓Pr⊗Ps : Lr (λ>1)⊗ Ls(µ>1)] if ν>1 ∈ Λ≤r+s
0 otherwise

=

{ ∑t
i=0(−1)i [∆r+s(η(i))↓Pr⊗Ps : Lr (λ>1)⊗ Ls(µ>1)] if ν>1 ∈ Λ≤r+s

0 otherwise

where ν>1 = η(0) ↪→n η
(1) ↪→n η

(2) ↪→n . . . ↪→n η
(t) is the Pr (n)-block

containing ν>1.
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Consequences:

Murnaghan’s stability property:
As we increase the length of the first row of the partitions we have

gνλ,µ → gν>1
λ>1,µ>1

reduced Kronecker coefficients

Example

S(12)⊗ S(12) = S(2)

S(2,1)⊗ S(2,1) = S(3)⊕ S(2,1)⊕ S(13)

S(3,1)⊗ S(3,1) = S(4)⊕ S(3,1)⊕ S(2,12)⊕ S(22)

Then for all n ≥ 4 we have

S(n−1,1)⊗S(n−1,1) = S(n)⊕S(n−1,1)⊕S(n−2,12)⊕S(n−2,2).
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Murnaghan’s stability property follows directly from the fact that
Pr (n) is semisimple for large n.

Representation theoretic interpretation of reduced Kronecker
coefficients as composition factors of restriction of cell modules for
partitions algebra to Young subalgebras.
Recover bounds for this stability (Brion).
Closed positive formula for gνλ,µ when one of the labelling partition
is either a 2-part or a hook partition (as a sum of products of LR
coefficients). This improves on work by Ballantine-Orellana (2-part
case) and Blasiak (hook case).

Note: All proofs are very elementary.
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4. Modular Representation theory of Pr (n) (C.Bowman, MDV, O.King)

Blocks in characteristic zero - revisited.

Λ≤r → Rr+1 : λ = (λ1, λ2, . . . , λr ) 7→ λ̂ = (−|λ|, λ1, λ2, . . . , λr )

Let W ∼= Sr+1 be the reflection group on Rr+1 generated by the
reflections si,j (1 ≤ i < j ≤ r + 1) given by

si,j(. . . xi . . . xj . . .) = (. . . xj . . . xi . . .).

Define a shifted action of W on Rr+1 by

w ·n x = w(x + ρn)− ρn,

where ρn = (n,−1,−2, . . . ,−r).
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Theorem: Assume char k = 0. Let λ, µ ∈ Λ≤r . Then λ and µ are in the
same Pr (n)-block if and only if µ̂ ∈W ·n λ̂.

Example: µ = (2,1), λ = (4,1) ∈ Λ≤5 then we have µ ↪→6 λ.

µ̂ = (−3,2,1,0,0,0), λ̂ = (−5,4,1,0,0,0), ρ6 = (6,−1,−2,−3,−4,−5)

µ̂+ ρ6 = (3,1,−1,−3,−4,−5), λ̂+ ρ6 = (1,3,−1,−3,−4,−5)

So we get
µ̂ = s1,2(λ̂+ ρ6)− ρ6.
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Blocks in characteristic p > 0.

Let Wp be the affine reflection group on Rr+1 generated by the affine
reflections si,j,mp (1 ≤ i < j ≤ r + 1, m ∈ Z) given by

si,j,mp(. . . xi . . . xj . . .) = (. . . xj + mp . . . xi −mp . . .).

Theorem: Assume char k = p > 0. Let λ, µ ∈ Λ≤r . Then λ and µ are in
the same Pr (n)-block if and only if µ ∈Wp ·n λ.

The proof uses the representation theory of Pr (n + ip), i ∈ Z in
charactersitic zero, and the blocks of the symmetric group in positive
characteristic.

However, a proof for the ‘limiting’ blocks can be obtained without using
any modular representation theory of the symmetric group. This gives
in particular a new proof of the fact that two partitions in the same
kSr -block have the same p-core.

THANK YOU
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