Twisted Category Algebras and Quasi-Heredity

Susanne Danz

University of Kaiserslautern

Bad Boll, 25 ${ }^{\text {th }}$ March 2013

TECHNISCHE UNIVERSITÄT
KAISERSLAUTERN

Overview

(1) Quasi-hereditary algebras
(2) Twisted category algebras
(3) Simple $k_{\alpha} \mathcal{C}$-modules
(1) Partial orders
(6) Results
(c) Example(s)

Quasi-hereditary algebras

Consider

- a field k, a finite-dimensional k-algebra A,

Quasi-hereditary algebras

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules $\rightsquigarrow D_{\lambda}$ a simple A-module labelled by $\lambda \in \Lambda, P_{\lambda}$ a projective cover of D_{λ},

Quasi-hereditary algebras

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules $\rightsquigarrow D_{\lambda}$ a simple A-module labelled by $\lambda \in \Lambda, P_{\lambda}$ a projective cover of D_{λ},
- a partial order \leqslant on Λ,

Quasi-hereditary algebras

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules $\rightsquigarrow D_{\lambda}$ a simple A-module labelled by $\lambda \in \Lambda, P_{\lambda}$ a projective cover of D_{λ},
- a partial order \leqslant on Λ,
- $\lambda \in \Lambda \rightsquigarrow \Delta_{\lambda}$ standard module w.r.t. (Λ, \leqslant), i.e., the largest quotient module M of P_{λ} such that $\left[\operatorname{Rad}(M): D_{\mu}\right] \neq 0$ implies $\mu<\lambda$.

Quasi-hereditary algebras

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules $\rightsquigarrow D_{\lambda}$ a simple A-module labelled by $\lambda \in \Lambda, P_{\lambda}$ a projective cover of D_{λ},
- a partial order \leqslant on Λ,
- $\lambda \in \Lambda \rightsquigarrow \Delta_{\lambda}$ standard module w.r.t. (Λ, \leqslant), i.e., the largest quotient module M of P_{λ} such that $\left[\operatorname{Rad}(M): D_{\mu}\right] \neq 0$ implies $\mu<\lambda$.

Definition (Cline-Parshall-Scott 1988)

A is called quasi-hereditary w.r.t (Λ, \leqslant) if every P_{λ} has a filtration

$$
\{0\}=P_{\lambda}^{(0)} \subset P_{\lambda}^{(1)} \subset \cdots \subset P_{\lambda}^{\left(m_{\lambda}\right)}=P_{\lambda}
$$

with

Quasi-hereditary algebras

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules $\rightsquigarrow D_{\lambda}$ a simple A-module labelled by $\lambda \in \Lambda, P_{\lambda}$ a projective cover of D_{λ},
- a partial order \leqslant on Λ,
- $\lambda \in \Lambda \rightsquigarrow \Delta_{\lambda}$ standard module w.r.t. (Λ, \leqslant), i.e., the largest quotient module M of P_{λ} such that $\left[\operatorname{Rad}(M): D_{\mu}\right] \neq 0$ implies $\mu<\lambda$.

Definition (Cline-Parshall-Scott 1988)

A is called quasi-hereditary w.r.t (Λ, \leqslant) if every P_{λ} has a filtration

$$
\{0\}=P_{\lambda}^{(0)} \subset P_{\lambda}^{(1)} \subset \cdots \subset P_{\lambda}^{\left(m_{\lambda}\right)}=P_{\lambda}
$$

with

$$
\text { (i) } P_{\lambda}^{\left(m_{\lambda}\right)} / P_{\lambda}^{\left(m_{\lambda}-1\right)} \cong \Delta_{\lambda} \text {; }
$$

Quasi-hereditary algebras

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules $\rightsquigarrow D_{\lambda}$ a simple A-module labelled by $\lambda \in \Lambda, P_{\lambda}$ a projective cover of D_{λ},
- a partial order \leqslant on Λ,
- $\lambda \in \Lambda \rightsquigarrow \Delta_{\lambda}$ standard module w.r.t. (Λ, \leqslant), i.e., the largest quotient module M of P_{λ} such that $\left[\operatorname{Rad}(M): D_{\mu}\right] \neq 0$ implies $\mu<\lambda$.

Definition (Cline-Parshall-Scott 1988)

A is called quasi-hereditary w.r.t (Λ, \leqslant) if every P_{λ} has a filtration

$$
\{0\}=P_{\lambda}^{(0)} \subset P_{\lambda}^{(1)} \subset \cdots \subset P_{\lambda}^{\left(m_{\lambda}\right)}=P_{\lambda}
$$

with
(i) $P_{\lambda}^{\left(m_{\lambda}\right)} / P_{\lambda}^{\left(m_{\lambda}-1\right)} \cong \Delta_{\lambda}$;
(ii) $1 \leqslant q<m_{\lambda} \Rightarrow P_{\lambda}^{(q)} / P_{\lambda}^{(q-1)} \cong \Delta_{\lambda_{q}}$, for some $\lambda<\lambda_{q}$.

Quasi-hereditary algebras

Let A be quasi-hereditary w.r.t. (Λ, \leqslant).

- Many cohomological properties of A are controlled by (Λ, \leqslant).

Quasi-hereditary algebras

Let A be quasi-hereditary w.r.t. (Λ, \leqslant).

- Many cohomological properties of A are controlled by (Λ, \leqslant). E.g., A has finite global dimension, bounded in terms of lengths of chains in Λ.

Quasi-hereditary algebras

Let A be quasi-hereditary w.r.t. (Λ, \leqslant).

- Many cohomological properties of A are controlled by (Λ, \leqslant). E.g., A has finite global dimension, bounded in terms of lengths of chains in Λ.
- The Cartan matrix of A has determinant 1 .

Quasi-hereditary algebras

Let A be quasi-hereditary w.r.t. (Λ, \leqslant).

- Many cohomological properties of A are controlled by (Λ, \leqslant).
E.g., A has finite global dimension, bounded in terms of lengths of chains in Λ.
- The Cartan matrix of A has determinant 1 .
- $\left\{\left[D_{\lambda}\right] \mid \lambda \in \Lambda\right\},\left\{\left[\Delta_{\lambda}\right] \mid \lambda \in \Lambda\right\},\left\{\left[P_{\lambda}\right] \mid \lambda \in \Lambda\right\}$ are \mathbb{Z}-bases of the Grothendieck group of A.

Quasi-hereditary algebras

Let A be quasi-hereditary w.r.t. (Λ, \leqslant).

- Many cohomological properties of A are controlled by (Λ, \leqslant).
E.g., A has finite global dimension, bounded in terms of lengths of chains in Λ.
- The Cartan matrix of A has determinant 1 .
- $\left\{\left[D_{\lambda}\right] \mid \lambda \in \Lambda\right\},\left\{\left[\Delta_{\lambda}\right] \mid \lambda \in \Lambda\right\},\left\{\left[P_{\lambda}\right] \mid \lambda \in \Lambda\right\}$ are \mathbb{Z}-bases of the Grothendieck group of A.
- If \sqsubseteq is a partial order on Λ refining \leqslant (i.e., $\mu \leqslant \lambda \Rightarrow \mu \sqsubseteq \lambda$) then A is also quasi-hereditary w.r.t. (Λ, \sqsubseteq), with the same standard modules.

Quasi-hereditary algebras

Let A be quasi-hereditary w.r.t. (Λ, \leqslant).

- Many cohomological properties of A are controlled by (Λ, \leqslant).
E.g., A has finite global dimension, bounded in terms of lengths of chains in Λ.
- The Cartan matrix of A has determinant 1 .
- $\left\{\left[D_{\lambda}\right] \mid \lambda \in \Lambda\right\},\left\{\left[\Delta_{\lambda}\right] \mid \lambda \in \Lambda\right\},\left\{\left[P_{\lambda}\right] \mid \lambda \in \Lambda\right\}$ are \mathbb{Z}-bases of the Grothendieck group of A.
- If \sqsubseteq is a partial order on Λ refining \leqslant (i.e., $\mu \leqslant \lambda \Rightarrow \mu \sqsubseteq \lambda$) then A is also quasi-hereditary w.r.t. (Λ, \sqsubseteq), with the same standard modules.
- prominent example of a quasi-hereditary algebra: Schur algebra of the symmetric group, which relates representations of \mathfrak{S}_{n} to representations of GL_{n}

Twisted category algebras

- \mathcal{C} a finite category, i.e., $S:=\operatorname{Mor}(\mathcal{C})$ is a finite set,

Twisted category algebras

- \mathcal{C} a finite category, i.e., $S:=\operatorname{Mor}(\mathcal{C})$ is a finite set, $\alpha \in Z^{2}\left(\mathcal{C}, k^{\times}\right)$

Twisted category algebras

- \mathcal{C} a finite category, i.e., $S:=\operatorname{Mor}(\mathcal{C})$ is a finite set, $\alpha \in Z^{2}\left(\mathcal{C}, k^{\times}\right)$
- The twisted category algebra $A:=k_{\alpha} \mathcal{C}$ has k-basis S and multiplication

Twisted category algebras

- \mathcal{C} a finite category, i.e., $S:=\operatorname{Mor}(\mathcal{C})$ is a finite set, $\alpha \in Z^{2}\left(\mathcal{C}, k^{\times}\right)$
- The twisted category algebra $A:=k_{\alpha} \mathcal{C}$ has k-basis S and multiplication

$$
t \cdot s:= \begin{cases}\alpha(t, s) \cdot t \circ s & \text { if } t \circ s \text { exists } \\ 0 & \text { otherwise }\end{cases}
$$

Twisted category algebras

- \mathcal{C} a finite category, i.e., $S:=\operatorname{Mor}(\mathcal{C})$ is a finite set, $\alpha \in Z^{2}\left(\mathcal{C}, k^{\times}\right)$
- The twisted category algebra $A:=k_{\alpha} \mathcal{C}$ has k-basis S and multiplication

$$
t \cdot s:= \begin{cases}\alpha(t, s) \cdot t \circ s & \text { if } t \circ s \text { exists } \\ 0 & \text { otherwise }\end{cases}
$$

- additional assumption: \mathcal{C} is split, i.e., for each $s \in S$ there is $t \in S$ with $s \circ t \circ s=s$.

Twisted category algebras

- \mathcal{C} a finite category, i.e., $S:=\operatorname{Mor}(\mathcal{C})$ is a finite set, $\alpha \in Z^{2}\left(\mathcal{C}, k^{\times}\right)$
- The twisted category algebra $A:=k_{\alpha} \mathcal{C}$ has k-basis S and multiplication

$$
t \cdot s:= \begin{cases}\alpha(t, s) \cdot t \circ s & \text { if } t \circ s \text { exists } \\ 0 & \text { otherwise }\end{cases}
$$

- additional assumption: \mathcal{C} is split, i.e., for each $s \in S$ there is $t \in S$ with $s \circ t \circ s=s$.

Examples

Examples of twisted split category algebras are:

- Brauer algebras, partition algebras, Temperley-Lieb algebras, and cyclotomic analogues, ...

Twisted category algebras

- \mathcal{C} a finite category, i.e., $S:=\operatorname{Mor}(\mathcal{C})$ is a finite set, $\alpha \in Z^{2}\left(\mathcal{C}, k^{\times}\right)$
- The twisted category algebra $A:=k_{\alpha} \mathcal{C}$ has k-basis S and multiplication

$$
t \cdot s:= \begin{cases}\alpha(t, s) \cdot t \circ s & \text { if } t \circ s \text { exists } \\ 0 & \text { otherwise }\end{cases}
$$

- additional assumption: \mathcal{C} is split, i.e., for each $s \in S$ there is $t \in S$ with $s \circ t \circ s=s$.

Examples

Examples of twisted split category algebras are:

- Brauer algebras, partition algebras, Temperley-Lieb algebras, and cyclotomic analogues, ...
- algebras related to biset functors and double Burnside rings

Aims

- Define a partial order on an indexing set of the isoclasses of simple $k_{\alpha} \mathcal{C}$-modules such that $k_{\alpha} \mathcal{C}$ is quasi-hereditary w.r.t. this partial order, whenever $\operatorname{char}(k)=0$.
- Characterize the corresponding standard modules, and get information about their composition factors.
- Apply this to the previous examples.

This is joint work with Robert Boltje.

Simple $k_{\alpha} \mathcal{C}$-modules

- S_{1}, \ldots, S_{n} equivalence classes w.r.t. the following equivalence relation on $S: \quad s \sim t: \Leftrightarrow S \circ s \circ S=S \circ t \circ S$.

Simple $k_{\alpha} \mathcal{C}$-modules

- S_{1}, \ldots, S_{n} equivalence classes w.r.t. the following equivalence relation on S : $s \sim t: \Leftrightarrow S \circ s \circ S=S \circ t \circ S$.
- $1 \leqslant i \leqslant n \rightsquigarrow S_{i}$ contains some $e_{i}=e_{i} \circ e_{i}$
- $e_{i}^{\prime}:=\alpha\left(e_{i}, e_{i}\right)^{-1} \cdot e_{i}$ is an idempotent in A, but e_{i} is in general not!

Simple $k_{\alpha} \mathcal{C}$-modules

- S_{1}, \ldots, S_{n} equivalence classes w.r.t. the following equivalence relation on S :

$$
s \sim t: \Leftrightarrow S \circ s \circ S=S \circ t \circ S
$$

- $1 \leqslant i \leqslant n \rightsquigarrow S_{i}$ contains some $e_{i}=e_{i} \circ e_{i}$
- $e_{i}^{\prime}:=\alpha\left(e_{i}, e_{i}\right)^{-1} \cdot e_{i}$ is an idempotent in A, but e_{i} is in general not!
- $\Gamma_{e_{i}}:=\left(e_{i} \circ S \circ e_{i}\right)^{\times}$finite group; $J_{e_{i}}:=\left(e_{i} \circ S \circ e_{i}\right) \backslash \Gamma_{e_{i}} \rightsquigarrow$

Simple $k_{\alpha} \mathcal{C}$-modules

- S_{1}, \ldots, S_{n} equivalence classes w.r.t. the following equivalence relation on S :

$$
s \sim t: \Leftrightarrow S \circ s \circ S=S \circ t \circ S
$$

- $1 \leqslant i \leqslant n \rightsquigarrow S_{i}$ contains some $e_{i}=e_{i} \circ e_{i}$
- $e_{i}^{\prime}:=\alpha\left(e_{i}, e_{i}\right)^{-1} \cdot e_{i}$ is an idempotent in A, but e_{i} is in general not!
- $\Gamma_{e_{i}}:=\left(e_{i} \circ S \circ e_{i}\right)^{\times}$finite group; $J_{e_{i}}:=\left(e_{i} \circ S \circ e_{i}\right) \backslash \Gamma_{e_{i}} \rightsquigarrow$

$$
e_{i}^{\prime} A e_{i}^{\prime}=k_{\alpha} \Gamma_{e_{i}} \oplus k J_{e_{i}}
$$

Simple $k_{\alpha} \mathcal{C}$-modules

- S_{1}, \ldots, S_{n} equivalence classes w.r.t. the following equivalence relation on S :

$$
s \sim t: \Leftrightarrow S \circ s \circ S=S \circ t \circ S .
$$

- $1 \leqslant i \leqslant n \rightsquigarrow S_{i}$ contains some $e_{i}=e_{i} \circ e_{i}$
- $e_{i}^{\prime}:=\alpha\left(e_{i}, e_{i}\right)^{-1} \cdot e_{i}$ is an idempotent in A, but e_{i} is in general not!
- $\Gamma_{e_{i}}:=\left(e_{i} \circ S \circ e_{i}\right)^{\times}$finite group; $J_{e_{i}}:=\left(e_{i} \circ S \circ e_{i}\right) \backslash \Gamma_{e_{i}} \rightsquigarrow$

$$
e_{i}^{\prime} A e_{i}^{\prime}=k_{\alpha} \Gamma_{e_{i}} \oplus k J_{e_{i}}
$$

- $T_{(i, 1)}, \ldots, T_{\left(i, l_{i}\right)}$ representatives of isoclasses of simple $k_{\alpha} \Gamma_{e_{i}}$-modules, consider these as $e_{i}^{\prime} A e_{i}^{\prime}$-modules via inflation

Simple $k_{\alpha} \mathcal{C}$-modules

- S_{1}, \ldots, S_{n} equivalence classes w.r.t. the following equivalence relation on S :

$$
s \sim t: \Leftrightarrow S \circ s \circ S=S \circ t \circ S .
$$

- $1 \leqslant i \leqslant n \rightsquigarrow S_{i}$ contains some $e_{i}=e_{i} \circ e_{i}$
- $e_{i}^{\prime}:=\alpha\left(e_{i}, e_{i}\right)^{-1} \cdot e_{i}$ is an idempotent in A, but e_{i} is in general not!
- $\Gamma_{e_{i}}:=\left(e_{i} \circ S \circ e_{i}\right)^{\times}$finite group; $J_{e_{i}}:=\left(e_{i} \circ S \circ e_{i}\right) \backslash \Gamma_{e_{i}} \rightsquigarrow$

$$
e_{i}^{\prime} A e_{i}^{\prime}=k_{\alpha} \Gamma_{e_{i}} \oplus k J_{e_{i}}
$$

- $T_{(i, 1)}, \ldots, T_{\left(i, l_{i}\right)}$ representatives of isoclasses of simple $k_{\alpha} \Gamma_{e_{i}}$-modules, consider these as $e_{i}^{\prime} A e_{i}^{\prime}$-modules via inflation

Theorem (Ganyushkin-Mazorchuk-Steinberg 2009, Linckelmann-Stolorz 2011)
The A-modules

$$
D_{(i, r)}:=\operatorname{top}\left(A e_{i}^{\prime} \otimes_{e_{i}^{\prime} A e_{i}^{\prime}} T_{(i, r)}\right) \quad\left(i=1, \ldots, n, r=1, \ldots, l_{i}\right)
$$

are representatives of the isoclasses of simple A-modules.

Partial orders

From now on: $\operatorname{char}(k)=0, \Lambda:=\left\{(i, r) \mid 1 \leqslant i \leqslant n, 1 \leqslant r \leqslant l_{i}\right\}$. We define two partial orders on Λ :

Partial orders

From now on: $\operatorname{char}(k)=0, \Lambda:=\left\{(i, r) \mid 1 \leqslant i \leqslant n, 1 \leqslant r \leqslant l_{i}\right\}$. We define two partial orders on Λ :
(1) $(i, r)<(j, s): \Leftrightarrow S \circ S_{j} \circ S \subseteq S \circ S_{i} \circ S$ \rightsquigarrow get partial order \leqslant on Λ

Partial orders

From now on: $\operatorname{char}(k)=0, \Lambda:=\left\{(i, r) \mid 1 \leqslant i \leqslant n, 1 \leqslant r \leqslant l_{i}\right\}$. We define two partial orders on Λ :
(1) $(i, r)<(j, s): \Leftrightarrow S \circ S_{j} \circ S \subseteq S \circ S_{i} \circ S$ \rightsquigarrow get partial order \leqslant on Λ
(2) Suppose there is a contravariant functor $-{ }^{\circ}: \mathcal{C} \rightarrow \mathcal{C}$ that is the identity on objects and satisfies a number of 'compatibility properties'. Set

Partial orders

From now on: $\operatorname{char}(k)=0, \Lambda:=\left\{(i, r) \mid 1 \leqslant i \leqslant n, 1 \leqslant r \leqslant l_{i}\right\}$. We define two partial orders on Λ :
(1) $(i, r)<(j, s): \Leftrightarrow S \circ S_{j} \circ S \subseteq S \circ S_{i} \circ S$ \rightsquigarrow get partial order \leqslant on Λ
(2) Suppose there is a contravariant functor $-{ }^{\circ}: \mathcal{C} \rightarrow \mathcal{C}$ that is the identity on objects and satisfies a number of 'compatibility properties'. Set

- $(i, r) \sqsubset(j, s): \Leftrightarrow(i, r)<(j, s)$ and the $k_{\alpha} \Gamma_{e_{i}}$-module $T_{(i, r)}$ is related to the $k_{\alpha} \Gamma_{e_{j}}$-module $T_{(j, s)}$ via a particular bimodule.

Partial orders

From now on: $\operatorname{char}(k)=0, \Lambda:=\left\{(i, r) \mid 1 \leqslant i \leqslant n, 1 \leqslant r \leqslant l_{i}\right\}$. We define two partial orders on Λ :
(1) $(i, r)<(j, s): \Leftrightarrow S \circ S_{j} \circ S \subseteq S \circ S_{i} \circ S$ \rightsquigarrow get partial order \leqslant on Λ
(2) Suppose there is a contravariant functor $-{ }^{\circ}: \mathcal{C} \rightarrow \mathcal{C}$ that is the identity on objects and satisfies a number of 'compatibility properties'. Set

- $(i, r) \sqsubset(j, s): \Leftrightarrow(i, r)<(j, s)$ and the $k_{\alpha} \Gamma_{e_{i}}$-module $T_{(i, r)}$ is related to the $k_{\alpha} \Gamma_{e_{j}}$-module $T_{(j, s)}$ via a particular bimodule.
- The transitive closure \S of the relation \sqsubseteq is a partial order on Λ, and \leqslant refines \leqslant.

Partial orders

From now on: $\operatorname{char}(k)=0, \Lambda:=\left\{(i, r) \mid 1 \leqslant i \leqslant n, 1 \leqslant r \leqslant l_{i}\right\}$. We define two partial orders on Λ :
(1) $(i, r)<(j, s): \Leftrightarrow S \circ S_{j} \circ S \subseteq S \circ S_{i} \circ S$ \rightsquigarrow get partial order \leqslant on Λ
(2) Suppose there is a contravariant functor $-{ }^{\circ}: \mathcal{C} \rightarrow \mathcal{C}$ that is the identity on objects and satisfies a number of 'compatibility properties'. Set

- $(i, r) \sqsubset(j, s): \Leftrightarrow(i, r)<(j, s)$ and the $k_{\alpha} \Gamma_{e_{i}}$-module $T_{(i, r)}$ is related to the $k_{\alpha} \Gamma_{e_{j}}$-module $T_{(j, s)}$ via a particular bimodule.
- The transitive closure \S of the relation \sqsubseteq is a partial order on Λ, and \leqslant refines \leqslant.

Remark

The relation \sqsubseteq is in general not transitive!

Results

Theorem (Boltje-D. 2012/13)
Let $\operatorname{char}(k)=0$.
(a) The k-algebra $A=k_{\alpha} \mathcal{C}$ is quasi-hereditary w.r.t. (Λ, \leqslant), and the standard module corresponding to (i, r) is $\Delta_{(i, r)}:=A e_{i}^{\prime} \otimes_{e_{i}^{\prime} A e_{i}^{\prime}} T_{(i, r)}$.

Results

Theorem (Boltje-D. 2012/13)
Let $\operatorname{char}(k)=0$.
(a) The k-algebra $A=k_{\alpha} \mathcal{C}$ is quasi-hereditary w.r.t. (Λ, \leqslant), and the standard module corresponding to (i, r) is $\Delta_{(i, r)}:=A e_{i}^{\prime} \otimes_{e_{i}^{\prime} A e_{i}^{\prime}} T_{(i, r)}$.
(b) Suppose there is a contravariant functor on \mathcal{C} as above. Then A is also quasi-hereditary w.r.t. (Λ, \sharp), and the standard modules do not change.

Results

Theorem (Boltje-D. 2012/13)
Let $\operatorname{char}(k)=0$.
(a) The k-algebra $A=k_{\alpha} \mathcal{C}$ is quasi-hereditary w.r.t. (Λ, \leqslant), and the standard module corresponding to (i, r) is $\Delta_{(i, r)}:=A e_{i}^{\prime} \otimes_{e_{i}^{\prime} A e_{i}^{\prime}} T_{(i, r)}$.
(b) Suppose there is a contravariant functor on \mathcal{C} as above. Then A is also quasi-hereditary w.r.t. (Λ, \unlhd), and the standard modules do not change.

- This gives, in particular, a unified proof of the known fact that the diagram algebras mentioned earlier are quasi-hereditary.

Results

Theorem (Boltje-D. 2012/13)
Let $\operatorname{char}(k)=0$.
(a) The k-algebra $A=k_{\alpha} \mathcal{C}$ is quasi-hereditary w.r.t. (Λ, \leqslant), and the standard module corresponding to (i, r) is $\Delta_{(i, r)}:=A e_{i}^{\prime} \otimes_{e_{i}^{\prime} A e_{i}^{\prime}} T_{(i, r)}$.
(b) Suppose there is a contravariant functor on \mathcal{C} as above. Then A is also quasi-hereditary w.r.t. (Λ, \lessgtr), and the standard modules do not change.

- This gives, in particular, a unified proof of the known fact that the diagram algebras mentioned earlier are quasi-hereditary.
- The quasi-heredity of A was independently shown by Linckelmann-Stolorz (2012).

Results

Theorem (Boltje-D. 2012/13)

Let $\operatorname{char}(k)=0$.
(a) The k-algebra $A=k_{\alpha} \mathcal{C}$ is quasi-hereditary w.r.t. (Λ, \leqslant), and the standard module corresponding to (i, r) is $\Delta_{(i, r)}:=A e_{i}^{\prime} \otimes_{e_{i}^{\prime} A e_{i}^{\prime}} T_{(i, r)}$.
(b) Suppose there is a contravariant functor on \mathcal{C} as above. Then A is also quasi-hereditary w.r.t. (Λ, \sharp), and the standard modules do not change.

- This gives, in particular, a unified proof of the known fact that the diagram algebras mentioned earlier are quasi-hereditary.
- The quasi-heredity of A was independently shown by Linckelmann-Stolorz (2012).
- The partial order \leqslant is a proper refinement of \geqq. \rightsquigarrow (b) gives new information about composition factors of the standard modules $\Delta_{(i, r)}$.

Example: Brauer algebras

- $n \in \mathbb{N}, \delta \in k^{\times}, S$ the set of Brauer diagrams with $2 n$ nodes
- S is a monoid (thus a category with one object) via concatenation:

Example: Brauer algebras

- $n \in \mathbb{N}, \delta \in k^{\times}, S$ the set of Brauer diagrams with $2 n$ nodes
- S is a monoid (thus a category with one object) via concatenation:

Here $n:=6$.

Example: Brauer algebras

- $n \in \mathbb{N}, \delta \in k^{\times}, S$ the set of Brauer diagrams with $2 n$ nodes
- S is a monoid (thus a category with one object) via concatenation:

Here $n:=6$.

Example: Brauer algebras

- $n \in \mathbb{N}, \delta \in k^{\times}, S$ the set of Brauer diagrams with $2 n$ nodes
- S is a monoid (thus a category with one object) via concatenation:

Here $n:=6$.

Example: Brauer algebras

- $n \in \mathbb{N}, \delta \in k^{\times}, S$ the set of Brauer diagrams with $2 n$ nodes
- S is a monoid (thus a category with one object) via concatenation:

Here $n:=6$.

- $\alpha: S \times S \rightarrow k^{\times},(s, t) \mapsto \delta^{\text {number of cycles in concat. of } s \text { and } t}$

Example: Brauer algebras

- $n \in \mathbb{N}, \delta \in k^{\times}, S$ the set of Brauer diagrams with $2 n$ nodes
- S is a monoid (thus a category with one object) via concatenation:

Here $n:=6$.

- $\alpha: S \times S \rightarrow k^{\times},(s, t) \mapsto \delta^{\text {number of cycles in concat. of } s \text { and } t}$
- - ${ }^{\circ}: S \rightarrow S$ corresponds to 'flipping diagrams'

Example: Brauer algebras

- idempotents in S (e.g., $n:=6$): $e_{1}, e_{2}, e_{3}, e_{4}$

Example: Brauer algebras

- idempotents in S (e.g., $n:=6$): $e_{1}, e_{2}, e_{3}, e_{4}$

Example: Brauer algebras

- idempotents in S (e.g., $n:=6$): $e_{1}, e_{2}, e_{3}, e_{4}$

Example: Brauer algebras

- idempotents in S (e.g., $n:=6$): $e_{1}, e_{2}, e_{3}, e_{4}$

Example: Brauer algebras

- idempotents in S (e.g., $n:=6$): $e_{1}, e_{2}, e_{3}, e_{4}$

- elements in $\Gamma_{e_{i}}$ (e.g., $n:=6$ and $i=3$):

Example: Brauer algebras

- idempotents in S (e.g., $n:=6$): $e_{1}, e_{2}, e_{3}, e_{4}$

- elements in $\Gamma_{e_{i}}$ (e.g., $n:=6$ and $i=3$):

Example: Brauer algebras

- $\Gamma_{e_{i}} \cong \mathfrak{S}_{n-2 k_{i}}$, where k_{i} is the number of arcs at the top (and bottom) of e_{i}
- $k_{\alpha} \Gamma_{e_{i}} \cong k \Gamma_{e_{i}}$, for all i

Example: Brauer algebras

- $\Gamma_{e_{i}} \cong \mathfrak{S}_{n-2 k_{i}}$, where k_{i} is the number of arcs at the top (and bottom) of e_{i}
- $k_{\alpha} \Gamma_{e_{i}} \cong k \Gamma_{e_{i}}$, for all i
- The order \leqslant on Γ only respects the first component, and we have:

$$
(i, r)<(j, s) \Leftrightarrow n-2 k_{j}<n-2 k_{i} \Leftrightarrow k_{i}<k_{j} .
$$

Example: Brauer algebras

- $\Gamma_{e_{i}} \cong \mathfrak{S}_{n-2 k_{i}}$, where k_{i} is the number of arcs at the top (and bottom) of e_{i}
- $k_{\alpha} \Gamma_{e_{i}} \cong k \Gamma_{e_{i}}$, for all i
- The order \leqslant on Γ only respects the first component, and we have:

$$
(i, r)<(j, s) \Leftrightarrow n-2 k_{j}<n-2 k_{i} \Leftrightarrow k_{i}<k_{j} .
$$

- The order \leqslant respects both components, and we have:

$$
(i, r) \triangleleft(j, s) \Leftrightarrow k_{i}<k_{j} \text { and }
$$

$$
\left[\operatorname{Ind}_{\mathfrak{S}_{n-2 k_{j}} \times \mathfrak{S}_{2} \times \cdots \times \mathfrak{S}_{2}}^{\mathfrak{S}_{n-2 k_{i}}}\left(T_{(j, s)} \otimes k \otimes \cdots \otimes k\right): T_{(i, r)}\right] \neq 0
$$

Example: Biset functors

- The theory of biset functors provides a means to study many important representation-theoretic concepts in a unified way, e.g.,

Example: Biset functors

- The theory of biset functors provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
- restriction (e.g., of modules of finite groups to subgroups),

Example: Biset functors

- The theory of biset functors provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
- restriction (e.g., of modules of finite groups to subgroups),
- induction (e.g., of modules of finite groups to overgroups),

Example: Biset functors

- The theory of biset functors provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
- restriction (e.g., of modules of finite groups to subgroups),
- induction (e.g., of modules of finite groups to overgroups),
- inflation (e.g., of modules from quotient groups), ...

Example: Biset functors

- The theory of biset functors provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
- restriction (e.g., of modules of finite groups to subgroups),
- induction (e.g., of modules of finite groups to overgroups),
- inflation (e.g., of modules from quotient groups), ...
- Idea: consider a category \mathcal{D} whose objects are the (isoclasses of) finite groups, and
$\operatorname{Hom}_{\mathcal{D}}(H, G):=B(G, H):=\{$ isoclasses of finite (G, H)-bisets $\}$.

Example: Biset functors

- The theory of biset functors provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
- restriction (e.g., of modules of finite groups to subgroups),
- induction (e.g., of modules of finite groups to overgroups),
- inflation (e.g., of modules from quotient groups), ...
- Idea: consider a category \mathcal{D} whose objects are the (isoclasses of) finite groups, and

$$
\operatorname{Hom}_{\mathcal{D}}(H, G):=B(G, H):=\{\text { isoclasses of finite }(G, H) \text {-bisets }\} .
$$

- A biset functor is an additive functor $\mathcal{D} \rightarrow \mathbb{Z}$-mod.

Example: Biset functors

- The theory of biset functors provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
- restriction (e.g., of modules of finite groups to subgroups),
- induction (e.g., of modules of finite groups to overgroups),
- inflation (e.g., of modules from quotient groups), ...
- Idea: consider a category \mathcal{D} whose objects are the (isoclasses of) finite groups, and
$\operatorname{Hom}_{\mathcal{D}}(H, G):=B(G, H):=\{$ isoclasses of finite (G, H)-bisets $\}$.
- A biset functor is an additive functor $\mathcal{D} \rightarrow \mathbb{Z}$-mod.
- Often it suffices to consider finite subcategories \mathcal{D}^{\prime} of \mathcal{D} whose sets of objects are closed under taking subquotients.

Example: Biset functors

- The theory of biset functors provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
- restriction (e.g., of modules of finite groups to subgroups),
- induction (e.g., of modules of finite groups to overgroups),
- inflation (e.g., of modules from quotient groups), ...
- Idea: consider a category \mathcal{D} whose objects are the (isoclasses of) finite groups, and

$$
\operatorname{Hom}_{\mathcal{D}}(H, G):=B(G, H):=\{\text { isoclasses of finite }(G, H) \text {-bisets }\} .
$$

- A biset functor is an additive functor $\mathcal{D} \rightarrow \mathbb{Z}$-mod.
- Often it suffices to consider finite subcategories \mathcal{D}^{\prime} of \mathcal{D} whose sets of objects are closed under taking subquotients. Studying biset functors for \mathcal{D}^{\prime} is equivalent to studying modules of the ring
$B:=\bigoplus_{G, H \in \operatorname{Ob}\left(\mathcal{D}^{\prime}\right)} B(G, H)$.

Example: Biset functors

$$
B:=\bigoplus_{G, H \in \operatorname{Ob}\left(\mathcal{D}^{\prime}\right)} B(G, H) \text { as before }
$$

Example: Biset functors

$B:=\bigoplus_{G, H \in \operatorname{Ob}\left(\mathcal{D}^{\prime}\right)} B(G, H)$ as before
Theorem (Boltje-D. 2012/13)
There is a \mathbb{Q}-algebra isomorphism $\mathbb{Q} B \cong \varepsilon A \varepsilon$, where A is a twisted split category algebra over \mathbb{Q}, and $\varepsilon^{2}=\varepsilon \in A$. Both A and $\mathbb{Q} B$ are quasi-hereditary (w.r.t. (\wedge, \Downarrow)).

Example: Biset functors

$B:=\bigoplus_{G, H \in \operatorname{Ob}\left(\mathcal{D}^{\prime}\right)} B(G, H)$ as before
Theorem (Boltje-D. 2012/13)
There is a \mathbb{Q}-algebra isomorphism $\mathbb{Q} B \cong \varepsilon A \varepsilon$, where A is a twisted split category algebra over \mathbb{Q}, and $\varepsilon^{2}=\varepsilon \in A$. Both A and $\mathbb{Q} B$ are quasi-hereditary (w.r.t. (Λ, \sharp)).

- This strengthens a result of P. Webb (2010).

Example: Biset functors

$B:=\bigoplus_{G, H \in \mathrm{Ob}\left(\mathcal{D}^{\prime}\right)} B(G, H)$ as before
Theorem (Boltje-D. 2012/13)
There is a \mathbb{Q}-algebra isomorphism $\mathbb{Q} B \cong \varepsilon A \varepsilon$, where A is a twisted split category algebra over \mathbb{Q}, and $\varepsilon^{2}=\varepsilon \in A$. Both A and $\mathbb{Q} B$ are quasi-hereditary (w.r.t. (\wedge, \Downarrow)).

- This strengthens a result of P. Webb (2010).
- The isoclasses of simple A-modules are labelled by pairs (G, S), where $G \in \operatorname{Ob}\left(\mathcal{D}^{\prime}\right)$ and S is a simple $\mathbb{Q} \operatorname{Aut}(G)$-module.
- The partial orders from before are now given by:

Example: Biset functors

$B:=\bigoplus_{G, H \in \operatorname{Ob}\left(\mathcal{D}^{\prime}\right)} B(G, H)$ as before
Theorem (Boltje-D. 2012/13)
There is a \mathbb{Q}-algebra isomorphism $\mathbb{Q} B \cong \varepsilon A \varepsilon$, where A is a twisted split category algebra over \mathbb{Q}, and $\varepsilon^{2}=\varepsilon \in A$. Both A and $\mathbb{Q} B$ are quasi-hereditary (w.r.t. (Λ, \sharp)).

- This strengthens a result of P. Webb (2010).
- The isoclasses of simple A-modules are labelled by pairs (G, S), where $G \in \operatorname{Ob}\left(\mathcal{D}^{\prime}\right)$ and S is a simple \mathbb{Q} Aut (G)-module.
- The partial orders from before are now given by:
- $(G, S)<(H, T) \Leftrightarrow H$ is isomorphic to a subquotient of G;

Example: Biset functors

$B:=\bigoplus_{G, H \in \operatorname{Ob}\left(\mathcal{D}^{\prime}\right)} B(G, H)$ as before
Theorem (Boltje-D. 2012/13)
There is a \mathbb{Q}-algebra isomorphism $\mathbb{Q} B \cong \varepsilon A \varepsilon$, where A is a twisted split category algebra over \mathbb{Q}, and $\varepsilon^{2}=\varepsilon \in A$. Both A and $\mathbb{Q} B$ are quasi-hereditary (w.r.t. (Λ, \sharp)).

- This strengthens a result of P. Webb (2010).
- The isoclasses of simple A-modules are labelled by pairs (G, S), where $G \in \operatorname{Ob}\left(\mathcal{D}^{\prime}\right)$ and S is a simple $\mathbb{Q} \operatorname{Aut}(G)$-module.
- The partial orders from before are now given by:
- $(G, S)<(H, T) \Leftrightarrow H$ is isomorphic to a subquotient of G;
- $(G, S) \sqsubset(H, T) \Leftrightarrow(G, S)<(H, T)$ and $T \otimes S^{*}$ is a composition factor of a certain permutation $\mathbb{Q}[\operatorname{Aut}(H) \times \operatorname{Aut}(G)]$-module.

