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Quasi-hereditary algebras

Consider

@ a field k, a finite-dimensional k-algebra A,
@ a finite set A parametrizing the isoclasses of simple A-modules ~» Dy

a simple A-module labelled by A € A, Py a projective cover of Dy,
@ a partial order < on A,

@ A\ € A~ A, standard module w.r.t. (A, <), i.e., the largest quotient
module M of Py such that [Rad(M) : D,] # 0 implies pu < .

Definition (Cline—Parshall-Scott 1988)
A is called quasi-hereditary w.r.t (A, <) if every Py has a filtration
{01 =P cpMc...cplm —p

with
(i) Pim)pm—l o A
(i 1<g<m = P/(\q)/P/(\q_l) > Ay, for some A < Aq.
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Quasi-hereditary algebras

Let A be quasi-hereditary w.r.t. (A, <).

Many cohomological properties of A are controlled by (A, <).
E.g., A has finite global dimension, bounded in terms of lengths of
chains in A.

The Cartan matrix of A has determinant 1.

{[DA] | A € A} {JAN] | A € A}, {[Py] | A € A} are Z-bases of the
Grothendieck group of A.

If C is a partial order on A refining < (i.e., u < A= pC \) then Alis
also quasi-hereditary w.r.t. (A, C), with the same standard modules.
prominent example of a quasi-hereditary algebra: Schur algebra of the
symmetric group, which relates representations of G, to
representations of GL,
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Twisted category algebras

e C a finite category, i.e., S := Mor(C) is a finite set, a € Z%(C, k*)
@ The twisted category algebra A := k,C has k-basis S and
multiplication

. {a(t, s)-tos if tos exists,
5=

otherwise.

@ additional assumption: C is split, i.e., for each s € S thereist € S
with sotos =s.

Examples
Examples of twisted split category algebras are:

@ Brauer algebras, partition algebras, Temperley—Lieb algebras, and
cyclotomic analogues, ...

@ algebras related to biset functors and double Burnside rings




Aims

@ Define a partial order on an indexing set of the isoclasses of simple
koC-modules such that k,C is quasi-hereditary w.r.t. this partial
order, whenever char(k) = 0.

@ Characterize the corresponding standard modules, and get
information about their composition factors.

@ Apply this to the previous examples.

This is joint work with Robert Boltje.
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Simple k,C-modules

@ 51,...,5, equivalence classes w.r.t. the following equivalence relation
on S: s~t:eSosoS=So0toS.
@ 1< i< n~ §; contains some ¢; = ¢; o ¢;

el = a(ej, ;)1 - e is an idempotent in A, but ¢ is in general not!

o .. :=(ejoSoe) finite group; Jo, := (€0 Soe)\Tg ~
elAel = kalTe @ ke,

T(i)s- -+ T representatives of isoclasses of simple k,I'e,-modules,
consider these as e/ Ael-modules via inflation

Theorem (Ganyushkin—Mazorchuk—Steinberg 2009,
Linckelmann—Stolorz 2011)

The A-modules
D(,'J) = top(Ae,{ ®ei/Ael{ T(,'J)) (i=1,....,n,r=1,....1)

are representatives of the isoclasses of simple A-modules.
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Partial orders

From now on: char(k) =0, A:={(i,r) |1 <i<n 1< r< i} We
define two partial orders on A:
Q (i,r)<(j,s) = S50505CS50S5;05
~~ get partial order < on A

© Suppose there is a contravariant functor —° : C — C that is the
identity on objects and satisfies a number of ‘compatibility
properties’. Set
e(i,r)C (J,s) ¢ (i,r) < (j,s) and the k,Ie-module T; . is related
to the karej—module T(jjs) via a particular bimodule.
e The transitive closure < of the relation C is a partial order on A,
and < refines <.

Remark
The relation C is in general not transitive!
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Results

Theorem (Boltje-D. 2012/13)

Let char(k) = 0.

(@) The k-algebra A = k,C is quasi-hereditary w.r.t. (A, <), and the
standard module corresponding to (i, r) is A ) := Aej ®elael T(in)-

(b) Suppose there is a contravariant functor on C as above. Then A is

also quasi-hereditary w.r.t. (N, <), and the standard modules do not
change.

@ This gives, in particular, a unified proof of the known fact that the
diagram algebras mentioned earlier are quasi-hereditary.

@ The quasi-heredity of A was independently shown by
Linckelmann—Stolorz (2012).

@ The partial order < is a proper refinement of <. ~~ (b) gives new

information about composition factors of the standard modules A(; ;).
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@ neN, 0 € k*, S the set of Brauer diagrams with 2n nodes
@ S is a monoid (thus a category with one object) via concatenation:

e e e o o o
%%&oooooo

™
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Example: Brauer algebras

@ neN, 0 € k*, S the set of Brauer diagrams with 2n nodes
@ S is a monoid (thus a category with one object) via concatenation:

[ ] [ ] [ ] [ ] [ ] [ ]
1 1 1 1 1 L=
[ ] [ ] [ ] [ ] [ ] [
N 7~
[ ] [ ] [ ] [ ] [ ] [ ]
N
[ ] [ ] [ ] [ ] [ ] [ ]
Here n:= 6.

e a:SxS— kX, (S, t) — number of cycles in concat. of s and t

@ —°:S — S corresponds to ‘flipping diagrams’
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Example: Brauer algebras

o g, = S,_2, Where k; is the number of arcs at the top (and bottom)
of ¢

@ kole = klg,, for all i
@ The order < on I only respects the first component, and we have:

(i,l’) < (j,s)@n—ij< n—2k < ki < kj.
@ The order < respects both components, and we have:
(i,r)<(j,s) & ki < kj and

Grak.
[Indg 2 (Tis)@k®@---®@k): Tjnl #0

n—2kj><62><"‘><62
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@ The theory of biset functors provides a means to study many
important representation-theoretic concepts in a unified way, e.g.,

— restriction (e.g., of modules of finite groups to subgroups),
— induction (e.g., of modules of finite groups to overgroups),
— inflation (e.g., of modules from quotient groups), ...

@ |dea: consider a category D whose objects are the (isoclasses of)
finite groups, and

Homyp(H, G) := B(G, H) := {isoclasses of finite (G, H)-bisets} .

@ A biset functor is an additive functor D — Z-mod.
@ Often it suffices to consider finite subcategories D’ of D whose sets of

objects are closed under taking subquotients. Studying biset functors
for D' is equivalent to studying modules of the ring

B = @¢, neonp) B(G. H).
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Example: Biset functors

B := @ ¢ neovp) B(G, H) as before

Theorem (Boltje-D. 2012/13)

There is a Q-algebra isomorphism QB == c¢Ac, where A is a twisted split
category algebra over Q, and > = ¢ € A. Both A and QB are
quasi-hereditary (w.r.t. (A, <)).

@ This strengthens a result of P. Webb (2010).
@ The isoclasses of simple A-modules are labelled by pairs (G, S), where
G € Ob(D’) and S is a simple QAut(G)-module.
@ The partial orders from before are now given by:
e (G,S) < (H, T) < H is isomorphic to a subquotient of G;
e (G,S)C (H, T)< (G,S)<(H,T)and T®S* is a composition
factor of a certain permutation Q[Aut(H) x Aut(G)]-module.



