TWISTED CATEGORY ALGEBRAS AND QUASI-HEREDITY

Susanne Danz

University of Kaiserslautern

Bad Boll, 25th March 2013

Overview

- Quasi-hereditary algebras
- ② Twisted category algebras
- **③** Simple $k_{\alpha}C$ -modules
- Partial orders
- In the second second
- 6 Example(s)

Consider

• a field k, a finite-dimensional k-algebra A,

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules → D_λ a simple A-module labelled by λ ∈ Λ, P_λ a projective cover of D_λ,

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules → D_λ a simple A-module labelled by λ ∈ Λ, P_λ a projective cover of D_λ,
- a partial order \leq on Λ ,

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules → D_λ a simple A-module labelled by λ ∈ Λ, P_λ a projective cover of D_λ,
- a partial order \leqslant on Λ ,
- λ ∈ Λ → Δ_λ standard module w.r.t. (Λ, ≤), i.e., the largest quotient module M of P_λ such that [Rad(M) : D_μ] ≠ 0 implies μ < λ.

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules → D_λ a simple A-module labelled by λ ∈ Λ, P_λ a projective cover of D_λ,
- a partial order \leq on Λ ,
- λ ∈ Λ → Δ_λ standard module w.r.t. (Λ, ≤), i.e., the largest quotient module M of P_λ such that [Rad(M) : D_μ] ≠ 0 implies μ < λ.

Definition (Cline–Parshall–Scott 1988)

A is called **quasi-hereditary** w.r.t (Λ, \leqslant) if every P_{λ} has a filtration

$$\{0\}=P_{\lambda}^{(0)}\subset P_{\lambda}^{(1)}\subset\cdots\subset P_{\lambda}^{(m_{\lambda})}=P_{\lambda}$$

with

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules → D_λ a simple A-module labelled by λ ∈ Λ, P_λ a projective cover of D_λ,
- a partial order \leqslant on Λ ,
- λ ∈ Λ → Δ_λ standard module w.r.t. (Λ, ≤), i.e., the largest quotient module M of P_λ such that [Rad(M) : D_μ] ≠ 0 implies μ < λ.

Definition (Cline–Parshall–Scott 1988)

A is called **quasi-hereditary** w.r.t (Λ, \leqslant) if every P_{λ} has a filtration

$$\{0\}=P_{\lambda}^{(0)}\subset P_{\lambda}^{(1)}\subset\cdots\subset P_{\lambda}^{(m_{\lambda})}=P_{\lambda}$$

with

(i)
$$P_{\lambda}^{(m_{\lambda})}/P_{\lambda}^{(m_{\lambda}-1)} \cong \Delta_{\lambda};$$

Consider

- a field k, a finite-dimensional k-algebra A,
- a finite set Λ parametrizing the isoclasses of simple A-modules → D_λ a simple A-module labelled by λ ∈ Λ, P_λ a projective cover of D_λ,
- a partial order \leqslant on Λ ,
- λ ∈ Λ → Δ_λ standard module w.r.t. (Λ, ≤), i.e., the largest quotient module M of P_λ such that [Rad(M) : D_μ] ≠ 0 implies μ < λ.

Definition (Cline–Parshall–Scott 1988)

A is called **quasi-hereditary** w.r.t (Λ, \leqslant) if every P_{λ} has a filtration

$$\{0\}=P_{\lambda}^{(0)}\subset P_{\lambda}^{(1)}\subset\cdots\subset P_{\lambda}^{(m_{\lambda})}=P_{\lambda}$$

with
(i)
$$P_{\lambda}^{(m_{\lambda})}/P_{\lambda}^{(m_{\lambda}-1)} \cong \Delta_{\lambda};$$

(ii) $1 \leqslant q < m_{\lambda} \Rightarrow P_{\lambda}^{(q)}/P_{\lambda}^{(q-1)} \cong \Delta_{\lambda_{q}},$ for some $\lambda < \lambda_{q}.$

Let A be quasi-hereditary w.r.t. (Λ, \leq) .

• Many cohomological properties of A are controlled by (Λ, \leq) .

Let A be quasi-hereditary w.r.t. (Λ, \leq) .

Many cohomological properties of A are controlled by (Λ, ≤).
 E.g., A has finite global dimension, bounded in terms of lengths of chains in Λ.

- Many cohomological properties of A are controlled by (Λ, ≤).
 E.g., A has finite global dimension, bounded in terms of lengths of chains in Λ.
- The Cartan matrix of A has determinant 1.

- Many cohomological properties of A are controlled by (Λ, ≤).
 E.g., A has finite global dimension, bounded in terms of lengths of chains in Λ.
- The Cartan matrix of A has determinant 1.
- { $[D_{\lambda}] \mid \lambda \in \Lambda$ }, { $[\Delta_{\lambda}] \mid \lambda \in \Lambda$ }, { $[P_{\lambda}] \mid \lambda \in \Lambda$ } are \mathbb{Z} -bases of the Grothendieck group of A.

- Many cohomological properties of A are controlled by (Λ, ≤).
 E.g., A has finite global dimension, bounded in terms of lengths of chains in Λ.
- The Cartan matrix of A has determinant 1.
- {[D_{λ}] | $\lambda \in \Lambda$ }, {[Δ_{λ}] | $\lambda \in \Lambda$ }, {[P_{λ}] | $\lambda \in \Lambda$ } are \mathbb{Z} -bases of the Grothendieck group of A.
- If ⊑ is a partial order on Λ refining ≤ (i.e., μ ≤ λ ⇒ μ ⊑ λ) then A is also quasi-hereditary w.r.t. (Λ, ⊑), with the same standard modules.

- Many cohomological properties of A are controlled by (Λ, ≤).
 E.g., A has finite global dimension, bounded in terms of lengths of chains in Λ.
- The Cartan matrix of A has determinant 1.
- {[D_{λ}] | $\lambda \in \Lambda$ }, {[Δ_{λ}] | $\lambda \in \Lambda$ }, {[P_{λ}] | $\lambda \in \Lambda$ } are \mathbb{Z} -bases of the Grothendieck group of A.
- If ⊑ is a partial order on Λ refining ≤ (i.e., μ ≤ λ ⇒ μ ⊑ λ) then A is also quasi-hereditary w.r.t. (Λ, ⊑), with the same standard modules.
- prominent example of a quasi-hereditary algebra: Schur algebra of the symmetric group, which relates representations of G_n to representations of GL_n

• \mathcal{C} a finite category, i.e., $S := \operatorname{Mor}(\mathcal{C})$ is a finite set,

• \mathcal{C} a finite category, i.e., $S := \operatorname{Mor}(\mathcal{C})$ is a finite set, $\alpha \in Z^2(\mathcal{C}, k^{\times})$

- \mathcal{C} a finite category, i.e., $S := \operatorname{Mor}(\mathcal{C})$ is a finite set, $\alpha \in Z^2(\mathcal{C}, k^{\times})$
- The twisted category algebra A := k_αC has k-basis S and multiplication

- C a finite category, i.e., S := Mor(C) is a finite set, $\alpha \in Z^2(C, k^{\times})$
- The twisted category algebra A := k_αC has k-basis S and multiplication

$$t \cdot s := \begin{cases} \alpha(t,s) \cdot t \circ s & \text{if } t \circ s \text{ exists,} \\ 0 & \text{otherwise.} \end{cases}$$

- $\mathcal C$ a finite category, i.e., $\mathcal S := \operatorname{Mor}(\mathcal C)$ is a finite set, $lpha \in Z^2(\mathcal C,k^{ imes})$
- The twisted category algebra A := k_αC has k-basis S and multiplication

$$t \cdot s := \begin{cases} \alpha(t, s) \cdot t \circ s & \text{if } t \circ s \text{ exists,} \\ 0 & \text{otherwise.} \end{cases}$$

additional assumption: C is split, i.e., for each s ∈ S there is t ∈ S with s ∘ t ∘ s = s.

- $\mathcal C$ a finite category, i.e., $\mathcal S := \operatorname{Mor}(\mathcal C)$ is a finite set, $lpha \in Z^2(\mathcal C,k^{ imes})$
- The twisted category algebra A := k_αC has k-basis S and multiplication

$$t \cdot s := \begin{cases} \alpha(t, s) \cdot t \circ s & \text{if } t \circ s \text{ exists,} \\ 0 & \text{otherwise.} \end{cases}$$

additional assumption: C is split, i.e., for each s ∈ S there is t ∈ S with s ∘ t ∘ s = s.

Examples

Examples of twisted split category algebras are:

• Brauer algebras, partition algebras, Temperley–Lieb algebras, and cyclotomic analogues, ...

- $\mathcal C$ a finite category, i.e., $\mathcal S := \operatorname{Mor}(\mathcal C)$ is a finite set, $lpha \in Z^2(\mathcal C,k^{ imes})$
- The twisted category algebra A := k_αC has k-basis S and multiplication

$$t \cdot s := \begin{cases} \alpha(t, s) \cdot t \circ s & \text{if } t \circ s \text{ exists,} \\ 0 & \text{otherwise.} \end{cases}$$

additional assumption: C is split, i.e., for each s ∈ S there is t ∈ S with s ∘ t ∘ s = s.

Examples

Examples of twisted split category algebras are:

- Brauer algebras, partition algebras, Temperley–Lieb algebras, and cyclotomic analogues, . . .
- algebras related to biset functors and double Burnside rings

- Define a partial order on an indexing set of the isoclasses of simple k_αC-modules such that k_αC is quasi-hereditary w.r.t. this partial order, whenever char(k) = 0.
- Characterize the corresponding standard modules, and get information about their composition factors.
- Apply this to the previous examples.

This is joint work with Robert Boltje.

S₁,..., S_n equivalence classes w.r.t. the following equivalence relation on S:
 s ~ t :⇔ S ∘ s ∘ S = S ∘ t ∘ S.

- S₁,..., S_n equivalence classes w.r.t. the following equivalence relation on S:
 s ~ t :⇔ S ∘ s ∘ S = S ∘ t ∘ S.
- $1 \leq i \leq n \rightsquigarrow S_i$ contains some $e_i = e_i \circ e_i$
- $e'_i := \alpha(e_i, e_i)^{-1} \cdot e_i$ is an idempotent in A, but e_i is in general not!

- S₁,..., S_n equivalence classes w.r.t. the following equivalence relation on S:
 s ~ t :⇔ S ∘ s ∘ S = S ∘ t ∘ S.
- $1 \leq i \leq n \rightsquigarrow S_i$ contains some $e_i = e_i \circ e_i$
- $e'_i := \alpha(e_i, e_i)^{-1} \cdot e_i$ is an idempotent in A, but e_i is in general not!
- $\Gamma_{e_i} := (e_i \circ S \circ e_i)^{\times}$ finite group; $J_{e_i} := (e_i \circ S \circ e_i) \smallsetminus \Gamma_{e_i} \rightsquigarrow$

- S₁,..., S_n equivalence classes w.r.t. the following equivalence relation on S:
 s ~ t :⇔ S ∘ s ∘ S = S ∘ t ∘ S.
- $1 \leq i \leq n \rightsquigarrow S_i$ contains some $e_i = e_i \circ e_i$
- $e'_i := \alpha(e_i, e_i)^{-1} \cdot e_i$ is an idempotent in A, but e_i is in general not!
- $\Gamma_{e_i} := (e_i \circ S \circ e_i)^{\times}$ finite group; $J_{e_i} := (e_i \circ S \circ e_i) \smallsetminus \Gamma_{e_i} \rightsquigarrow$

$$e'_i A e'_i = k_{\alpha} \Gamma_{e_i} \oplus k J_{e_i}$$

- S₁,..., S_n equivalence classes w.r.t. the following equivalence relation on S:
 s ~ t :⇔ S ∘ s ∘ S = S ∘ t ∘ S.
- $1 \leq i \leq n \rightsquigarrow S_i$ contains some $e_i = e_i \circ e_i$
- $e'_i := \alpha(e_i, e_i)^{-1} \cdot e_i$ is an idempotent in A, but e_i is in general not!
- $\Gamma_{e_i} := (e_i \circ S \circ e_i)^{\times}$ finite group; $J_{e_i} := (e_i \circ S \circ e_i) \smallsetminus \Gamma_{e_i} \rightsquigarrow$

$$e'_i A e'_i = k_{\alpha} \Gamma_{e_i} \oplus k J_{e_i}$$

*T*_(i,1),..., *T*_{(i,li}) representatives of isoclasses of simple k_αΓ_{ei}-modules, consider these as e'_iAe'_i-modules via inflation

- S₁,..., S_n equivalence classes w.r.t. the following equivalence relation on S:
 s ~ t :⇔ S ∘ s ∘ S = S ∘ t ∘ S.
- $1 \leq i \leq n \rightsquigarrow S_i$ contains some $e_i = e_i \circ e_i$
- $e'_i := \alpha(e_i, e_i)^{-1} \cdot e_i$ is an idempotent in A, but e_i is in general not!
- $\Gamma_{e_i} := (e_i \circ S \circ e_i)^{\times}$ finite group; $J_{e_i} := (e_i \circ S \circ e_i) \setminus \Gamma_{e_i} \rightsquigarrow$

$$e'_i A e'_i = k_{\alpha} \Gamma_{e_i} \oplus k J_{e_i}$$

• $T_{(i,1)}, \ldots, T_{(i,l_i)}$ representatives of isoclasses of simple $k_{\alpha}\Gamma_{e_i}$ -modules, consider these as $e'_i A e'_i$ -modules via inflation

Theorem (Ganyushkin–Mazorchuk–Steinberg 2009, Linckelmann–Stolorz 2011)

The A-modules

$$D_{(i,r)} := \operatorname{top}(Ae'_i \otimes_{e'_i Ae'_i} T_{(i,r)}) \quad (i = 1, \dots, n, r = 1, \dots, l_i)$$

are representatives of the isoclasses of simple A-modules.

From now on: char(k) = 0, $\Lambda := \{(i, r) \mid 1 \leq i \leq n, 1 \leq r \leq l_i\}$. We define two partial orders on Λ :

From now on: char(k) = 0, $\Lambda := \{(i, r) \mid 1 \leq i \leq n, 1 \leq r \leq l_i\}$. We define two partial orders on Λ :

$$(i, r) < (j, s) :\Leftrightarrow S \circ S_j \circ S \subseteq S \circ S_i \circ S \\ \sim \text{get partial order } \leqslant \text{ on } \Lambda$$

From now on: char(k) = 0, $\Lambda := \{(i, r) \mid 1 \leq i \leq n, 1 \leq r \leq l_i\}$. We define two partial orders on Λ :

$$(i,r) < (j,s) :\Leftrightarrow S \circ S_j \circ S \subseteq S \circ S_i \circ S \\ \sim \text{yet partial order} \leqslant \text{ on } \Lambda$$

② Suppose there is a contravariant functor −° : C → C that is the identity on objects and satisfies a number of 'compatibility properties'. Set

From now on: char(k) = 0, $\Lambda := \{(i, r) \mid 1 \leq i \leq n, 1 \leq r \leq l_i\}$. We define two partial orders on Λ :

$$(i,r) < (j,s) :\Leftrightarrow S \circ S_j \circ S \subseteq S \circ S_i \circ S \\ \sim \text{yet partial order} \leqslant \text{ on } \Lambda$$

② Suppose there is a contravariant functor −° : C → C that is the identity on objects and satisfies a number of 'compatibility properties'. Set

• $(i, r) \sqsubset (j, s) :\Leftrightarrow (i, r) < (j, s)$ and the $k_{\alpha}\Gamma_{e_i}$ -module $T_{(i,r)}$ is related to the $k_{\alpha}\Gamma_{e_i}$ -module $T_{(j,s)}$ via a particular bimodule.

From now on: char(k) = 0, $\Lambda := \{(i, r) \mid 1 \leq i \leq n, 1 \leq r \leq l_i\}$. We define two partial orders on Λ :

$$\ \, \bullet \ \, (i,r) < (j,s) :\Leftrightarrow S \circ S_j \circ S \subseteq S \circ S_i \circ S \\ \sim \to \text{ get partial order } \leqslant \text{ on } \Lambda$$

② Suppose there is a contravariant functor −° : C → C that is the identity on objects and satisfies a number of 'compatibility properties'. Set

• $(i, r) \sqsubset (j, s) :\Leftrightarrow (i, r) < (j, s)$ and the $k_{\alpha}\Gamma_{e_i}$ -module $T_{(i,r)}$ is related to the $k_{\alpha}\Gamma_{e_i}$ -module $T_{(j,s)}$ via a particular bimodule.

• The transitive closure \triangleleft of the relation \sqsubseteq is a partial order on Λ , and \leqslant refines \triangleleft .

From now on: char(k) = 0, $\Lambda := \{(i, r) \mid 1 \leq i \leq n, 1 \leq r \leq l_i\}$. We define two partial orders on Λ :

$$\ \, \bullet \ \, (i,r) < (j,s) :\Leftrightarrow S \circ S_j \circ S \subseteq S \circ S_i \circ S \\ \sim \to \text{ get partial order } \leqslant \text{ on } \Lambda$$

- ② Suppose there is a contravariant functor −° : C → C that is the identity on objects and satisfies a number of 'compatibility properties'. Set
 - $(i, r) \sqsubset (j, s) :\Leftrightarrow (i, r) < (j, s)$ and the $k_{\alpha}\Gamma_{e_i}$ -module $T_{(i,r)}$ is related to the $k_{\alpha}\Gamma_{e_i}$ -module $T_{(j,s)}$ via a particular bimodule.
 - The transitive closure \triangleleft of the relation \sqsubseteq is a partial order on $\Lambda,$ and \leqslant refines $\triangleleft.$

Remark

The relation \sqsubseteq is in general not transitive!

Results

Theorem (Boltje-D. 2012/13)

Let char(k) = 0.

(a) The k-algebra $A = k_{\alpha}C$ is quasi-hereditary w.r.t. (Λ, \leq) , and the standard module corresponding to (i, r) is $\Delta_{(i,r)} := Ae'_i \otimes_{e'_i Ae'_i} T_{(i,r)}$.

Theorem (Boltje-D. 2012/13)

- (a) The k-algebra $A = k_{\alpha}C$ is quasi-hereditary w.r.t. (Λ, \leq) , and the standard module corresponding to (i, r) is $\Delta_{(i,r)} := Ae'_i \otimes_{e'_i Ae'_i} T_{(i,r)}$.
- **(b)** Suppose there is a contravariant functor on C as above. Then A is also quasi-hereditary w.r.t. (Λ, \triangleleft) , and the standard modules do not change.

Theorem (Boltje-D. 2012/13)

- (a) The k-algebra $A = k_{\alpha}C$ is quasi-hereditary w.r.t. (Λ, \leq) , and the standard module corresponding to (i, r) is $\Delta_{(i,r)} := Ae'_i \otimes_{e'_iAe'_i} T_{(i,r)}$.
- **(b)** Suppose there is a contravariant functor on C as above. Then A is also quasi-hereditary w.r.t. (Λ, \triangleleft) , and the standard modules do not change.
 - This gives, in particular, a unified proof of the known fact that the diagram algebras mentioned earlier are quasi-hereditary.

Theorem (Boltje–D. 2012/13)

- (a) The k-algebra $A = k_{\alpha}C$ is quasi-hereditary w.r.t. (Λ, \leq) , and the standard module corresponding to (i, r) is $\Delta_{(i,r)} := Ae'_i \otimes_{e'_iAe'_i} T_{(i,r)}$.
- **(b)** Suppose there is a contravariant functor on C as above. Then A is also quasi-hereditary w.r.t. (Λ, \triangleleft) , and the standard modules do not change.
 - This gives, in particular, a unified proof of the known fact that the diagram algebras mentioned earlier are quasi-hereditary.
 - The quasi-heredity of A was independently shown by Linckelmann–Stolorz (2012).

Theorem (Boltje–D. 2012/13)

- (a) The k-algebra $A = k_{\alpha}C$ is quasi-hereditary w.r.t. (Λ, \leq) , and the standard module corresponding to (i, r) is $\Delta_{(i,r)} := Ae'_i \otimes_{e'_iAe'_i} T_{(i,r)}$.
- **(b)** Suppose there is a contravariant functor on C as above. Then A is also quasi-hereditary w.r.t. (Λ, \triangleleft) , and the standard modules do not change.
 - This gives, in particular, a unified proof of the known fact that the diagram algebras mentioned earlier are quasi-hereditary.
 - The quasi-heredity of A was independently shown by Linckelmann–Stolorz (2012).
 - The partial order ≤ is a proper refinement of ≤. → (b) gives new information about composition factors of the standard modules Δ_(i,r).

- $n \in \mathbb{N}$, $\delta \in k^{\times}$, S the set of Brauer diagrams with 2n nodes
- S is a monoid (thus a category with one object) via concatenation:

- $n \in \mathbb{N}$, $\delta \in k^{\times}$, S the set of Brauer diagrams with 2n nodes
- S is a monoid (thus a category with one object) via concatenation:

Here n := 6.

- $n \in \mathbb{N}$, $\delta \in k^{\times}$, S the set of Brauer diagrams with 2n nodes
- S is a monoid (thus a category with one object) via concatenation:

Here n := 6.

- $n \in \mathbb{N}$, $\delta \in k^{\times}$, S the set of Brauer diagrams with 2n nodes
- S is a monoid (thus a category with one object) via concatenation:

Here n := 6.

- $n \in \mathbb{N}$, $\delta \in k^{\times}$, S the set of Brauer diagrams with 2n nodes
- S is a monoid (thus a category with one object) via concatenation:

Here n := 6. • $\alpha : S \times S \to k^{\times}$, $(s, t) \mapsto \delta$ number of cycles in concat. of s and t

- $n \in \mathbb{N}$, $\delta \in k^{\times}$, S the set of Brauer diagrams with 2n nodes
- S is a monoid (thus a category with one object) via concatenation:

Here n := 6.

• $\alpha: S \times S \rightarrow k^{\times}, \ (s,t) \mapsto \delta$ number of cycles in concat. of s and t

• $-^\circ: S \to S$ corresponds to 'flipping diagrams'

• idempotents in S (e.g., n := 6): e_1, e_2, e_3, e_4

• idempotents in S (e.g., n := 6): e_1, e_2, e_3, e_4

• elements in Γ_{e_i} (e.g., n := 6 and i = 3):

- $\Gamma_{e_i} \cong \mathfrak{S}_{n-2k_i}$, where k_i is the number of arcs at the top (and bottom) of e_i
- $k_{\alpha}\Gamma_{e_i} \cong k\Gamma_{e_i}$, for all *i*

- Γ_{ei} ≃ 𝔅_{n-2ki}, where k_i is the number of arcs at the top (and bottom) of e_i
- $k_{\alpha}\Gamma_{e_i} \cong k\Gamma_{e_i}$, for all *i*
- The order \leq on Γ only respects the first component, and we have:

$$(i,r) < (j,s) \Leftrightarrow n-2k_j < n-2k_i \Leftrightarrow k_i < k_j$$
.

- Γ_{ei} ≃ 𝔅_{n-2ki}, where k_i is the number of arcs at the top (and bottom) of e_i
- $k_{\alpha}\Gamma_{e_i} \cong k\Gamma_{e_i}$, for all *i*
- The order \leq on Γ only respects the first component, and we have:

$$(i,r) < (j,s) \Leftrightarrow n-2k_j < n-2k_i \Leftrightarrow k_i < k_j$$
.

• The order *≤* respects both components, and we have:

$$(i, r) \lhd (j, s) \Leftrightarrow k_i < k_j \text{ and}$$

 $[\operatorname{Ind}_{\mathfrak{S}_{n-2k_j} \times \mathfrak{S}_2 \times \cdots \times \mathfrak{S}_2}^{\mathfrak{S}_{n-2k_j}} (T_{(j,s)} \otimes k \otimes \cdots \otimes k) : T_{(i,r)}] \neq 0$

• The theory of **biset functors** provides a means to study many important representation-theoretic concepts in a unified way, e.g.,

• The theory of **biset functors** provides a means to study many important representation-theoretic concepts in a unified way, e.g.,

- restriction (e.g., of modules of finite groups to subgroups),

- The theory of **biset functors** provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
 - restriction (e.g., of modules of finite groups to subgroups),
 - induction (e.g., of modules of finite groups to overgroups),

- The theory of **biset functors** provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
 - restriction (e.g., of modules of finite groups to subgroups),
 - induction (e.g., of modules of finite groups to overgroups),
 - inflation (e.g., of modules from quotient groups), ...

- The theory of **biset functors** provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
 - restriction (e.g., of modules of finite groups to subgroups),
 - induction (e.g., of modules of finite groups to overgroups),
 - inflation (e.g., of modules from quotient groups), ...
- \bullet Idea: consider a category ${\cal D}$ whose objects are the (isoclasses of) finite groups, and

 $\operatorname{Hom}_{\mathcal{D}}(H,G) := B(G,H) := \{ \text{isoclasses of finite } (G,H) \text{-bisets} \}.$

- The theory of **biset functors** provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
 - restriction (e.g., of modules of finite groups to subgroups),
 - induction (e.g., of modules of finite groups to overgroups),
 - inflation (e.g., of modules from quotient groups), ...
- \bullet Idea: consider a category ${\cal D}$ whose objects are the (isoclasses of) finite groups, and

 $\operatorname{Hom}_{\mathcal{D}}(H,G) := B(G,H) := \{ \text{isoclasses of finite } (G,H) \text{-bisets} \}.$

• A biset functor is an additive functor $\mathcal{D} \to \mathbb{Z}$ -mod.

- The theory of **biset functors** provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
 - restriction (e.g., of modules of finite groups to subgroups),
 - induction (e.g., of modules of finite groups to overgroups),
 - inflation (e.g., of modules from quotient groups), ...
- \bullet Idea: consider a category ${\cal D}$ whose objects are the (isoclasses of) finite groups, and

 $\operatorname{Hom}_{\mathcal{D}}(H,G) := B(G,H) := \{ \text{isoclasses of finite } (G,H) \text{-bisets} \}.$

- A biset functor is an additive functor $\mathcal{D} \to \mathbb{Z}$ -mod.
- Often it suffices to consider finite subcategories D' of D whose sets of objects are closed under taking subquotients.

- The theory of **biset functors** provides a means to study many important representation-theoretic concepts in a unified way, e.g.,
 - restriction (e.g., of modules of finite groups to subgroups),
 - induction (e.g., of modules of finite groups to overgroups),
 - inflation (e.g., of modules from quotient groups), ...
- \bullet Idea: consider a category ${\cal D}$ whose objects are the (isoclasses of) finite groups, and

 $\operatorname{Hom}_{\mathcal{D}}(H,G) := B(G,H) := \{ \text{isoclasses of finite } (G,H) \text{-bisets} \}.$

- A biset functor is an additive functor $\mathcal{D} \to \mathbb{Z}$ -mod.
- Often it suffices to consider finite subcategories D' of D whose sets of objects are closed under taking subquotients. Studying biset functors for D' is equivalent to studying modules of the ring
 B := ⊕_{G,H∈Ob(D')} B(G, H).

 $B := \bigoplus_{G,H \in \operatorname{Ob}(\mathcal{D}')} B(G,H)$ as before

 $B := \bigoplus_{G, H \in \operatorname{Ob}(\mathcal{D}')} B(G, H)$ as before

Theorem (Boltje-D. 2012/13)

There is a \mathbb{Q} -algebra isomorphism $\mathbb{Q}B \cong \varepsilon A \varepsilon$, where A is a twisted split category algebra over \mathbb{Q} , and $\varepsilon^2 = \varepsilon \in A$. Both A and $\mathbb{Q}B$ are quasi-hereditary (w.r.t. (Λ, \triangleleft)).

 $B := \bigoplus_{G, H \in \operatorname{Ob}(\mathcal{D}')} B(G, H)$ as before

Theorem (Boltje-D. 2012/13)

There is a \mathbb{Q} -algebra isomorphism $\mathbb{Q}B \cong \varepsilon A \varepsilon$, where A is a twisted split category algebra over \mathbb{Q} , and $\varepsilon^2 = \varepsilon \in A$. Both A and $\mathbb{Q}B$ are quasi-hereditary (w.r.t. (Λ, \triangleleft)).

• This strengthens a result of P. Webb (2010).

 $B := \bigoplus_{G, H \in \operatorname{Ob}(\mathcal{D}')} B(G, H)$ as before

Theorem (Boltje-D. 2012/13)

There is a \mathbb{Q} -algebra isomorphism $\mathbb{Q}B \cong \varepsilon A\varepsilon$, where A is a twisted split category algebra over \mathbb{Q} , and $\varepsilon^2 = \varepsilon \in A$. Both A and $\mathbb{Q}B$ are quasi-hereditary (w.r.t. (Λ, \triangleleft)).

- This strengthens a result of P. Webb (2010).
- The isoclasses of simple A-modules are labelled by pairs (G, S), where G ∈ Ob(D') and S is a simple QAut(G)-module.
- The partial orders from before are now given by:

 $B := \bigoplus_{G, H \in \operatorname{Ob}(\mathcal{D}')} B(G, H)$ as before

Theorem (Boltje-D. 2012/13)

There is a \mathbb{Q} -algebra isomorphism $\mathbb{Q}B \cong \varepsilon A\varepsilon$, where A is a twisted split category algebra over \mathbb{Q} , and $\varepsilon^2 = \varepsilon \in A$. Both A and $\mathbb{Q}B$ are quasi-hereditary (w.r.t. (Λ, \triangleleft)).

- This strengthens a result of P. Webb (2010).
- The isoclasses of simple A-modules are labelled by pairs (G, S), where G ∈ Ob(D') and S is a simple QAut(G)-module.
- The partial orders from before are now given by:
 - $(G,S) < (H,T) \Leftrightarrow H$ is isomorphic to a subquotient of G;

 $B := \bigoplus_{G, H \in \operatorname{Ob}(\mathcal{D}')} B(G, H)$ as before

Theorem (Boltje-D. 2012/13)

There is a \mathbb{Q} -algebra isomorphism $\mathbb{Q}B \cong \varepsilon A \varepsilon$, where A is a twisted split category algebra over \mathbb{Q} , and $\varepsilon^2 = \varepsilon \in A$. Both A and $\mathbb{Q}B$ are quasi-hereditary (w.r.t. (Λ, \triangleleft)).

- This strengthens a result of P. Webb (2010).
- The isoclasses of simple A-modules are labelled by pairs (G, S), where G ∈ Ob(D') and S is a simple QAut(G)-module.
- The partial orders from before are now given by:
 - $(G,S) < (H,T) \Leftrightarrow H$ is isomorphic to a subquotient of G;

• $(G, S) \sqsubset (H, T) \Leftrightarrow (G, S) < (H, T)$ and $T \otimes S^*$ is a composition factor of a certain permutation $\mathbb{Q}[\operatorname{Aut}(H) \times \operatorname{Aut}(G)]$ -module.