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Quasi-hereditary algebras

Consider

a field k , a finite-dimensional k-algebra A,

a finite set Λ parametrizing the isoclasses of simple A-modules  Dλ
a simple A-module labelled by λ ∈ Λ, Pλ a projective cover of Dλ,
a partial order 6 on Λ,
λ ∈ Λ ∆λ standard module w.r.t. (Λ,6), i.e., the largest quotient
module M of Pλ such that [Rad(M) : Dµ] 6= 0 implies µ < λ.

Definition (Cline–Parshall–Scott 1988)

A is called quasi-hereditary w.r.t (Λ,6) if every Pλ has a filtration

{0} = P
(0)
λ ⊂ P

(1)
λ ⊂ · · · ⊂ P

(mλ)
λ = Pλ

with
(i) P

(mλ)
λ /P

(mλ−1)
λ

∼= ∆λ;

(ii) 1 6 q < mλ ⇒ P
(q)
λ /P

(q−1)
λ

∼= ∆λq , for some λ < λq.
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Quasi-hereditary algebras

Let A be quasi-hereditary w.r.t. (Λ,6).

Many cohomological properties of A are controlled by (Λ,6).

E.g., A has finite global dimension, bounded in terms of lengths of
chains in Λ.

The Cartan matrix of A has determinant 1.

{[Dλ] | λ ∈ Λ}, {[∆λ] | λ ∈ Λ}, {[Pλ] | λ ∈ Λ} are Z-bases of the
Grothendieck group of A.

If v is a partial order on Λ refining 6 ( i.e., µ 6 λ⇒ µ v λ) then A is
also quasi-hereditary w.r.t. (Λ,v), with the same standard modules.

prominent example of a quasi-hereditary algebra: Schur algebra of the
symmetric group, which relates representations of Sn to
representations of GLn
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Twisted category algebras

C a finite category, i.e., S := Mor(C) is a finite set,

α ∈ Z 2(C, k×)

The twisted category algebra A := kαC has k-basis S and
multiplication

t · s :=

{
α(t, s) · t ◦ s if t ◦ s exists,

0 otherwise.

additional assumption: C is split, i.e., for each s ∈ S there is t ∈ S
with s ◦ t ◦ s = s.

Examples

Examples of twisted split category algebras are:

Brauer algebras, partition algebras, Temperley–Lieb algebras, and
cyclotomic analogues, . . .

algebras related to biset functors and double Burnside rings
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Aims

Define a partial order on an indexing set of the isoclasses of simple
kαC-modules such that kαC is quasi-hereditary w.r.t. this partial
order, whenever char(k) = 0.

Characterize the corresponding standard modules, and get
information about their composition factors.

Apply this to the previous examples.

This is joint work with Robert Boltje.



Simple kαC-modules

S1, . . . ,Sn equivalence classes w.r.t. the following equivalence relation
on S : s ∼ t :⇔ S ◦ s ◦ S = S ◦ t ◦ S .

1 6 i 6 n  Si contains some ei = ei ◦ ei
e ′i := α(ei , ei )

−1 · ei is an idempotent in A, but ei is in general not!

Γei := (ei ◦ S ◦ ei )× finite group; Jei := (ei ◦ S ◦ ei ) r Γei  

e ′iAe
′
i = kαΓei ⊕ kJei

T(i ,1), . . . ,T(i ,li ) representatives of isoclasses of simple kαΓei -modules,
consider these as e ′iAe

′
i -modules via inflation

Theorem (Ganyushkin–Mazorchuk–Steinberg 2009,
Linckelmann–Stolorz 2011)

The A-modules

D(i ,r) := top(Ae ′i ⊗e′i Ae
′
i
T(i ,r)) (i = 1, . . . , n, r = 1, . . . , li )

are representatives of the isoclasses of simple A-modules.
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Partial orders

From now on: char(k) = 0, Λ := {(i , r) | 1 6 i 6 n, 1 6 r 6 li}. We
define two partial orders on Λ:

1 (i , r) < (j , s) :⇔ S ◦ Sj ◦ S ⊆ S ◦ Si ◦ S
 get partial order 6 on Λ

2 Suppose there is a contravariant functor −◦ : C → C that is the
identity on objects and satisfies a number of ‘compatibility
properties’. Set

• (i , r) @ (j , s) :⇔ (i , r) < (j , s) and the kαΓei -module T(i ,r) is related
to the kαΓej -module T(j ,s) via a particular bimodule.

• The transitive closure P of the relation v is a partial order on Λ,
and 6 refines P.

Remark

The relation v is in general not transitive!
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Results

Theorem (Boltje–D. 2012/13)

Let char(k) = 0.

(a) The k-algebra A = kαC is quasi-hereditary w.r.t. (Λ,6), and the
standard module corresponding to (i , r) is ∆(i ,r) := Ae ′i ⊗e′i Ae

′
i
T(i ,r).

(b) Suppose there is a contravariant functor on C as above. Then A is
also quasi-hereditary w.r.t. (Λ,P), and the standard modules do not
change.

This gives, in particular, a unified proof of the known fact that the
diagram algebras mentioned earlier are quasi-hereditary.

The quasi-heredity of A was independently shown by
Linckelmann–Stolorz (2012).

The partial order 6 is a proper refinement of P.  (b) gives new
information about composition factors of the standard modules ∆(i ,r).
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Example: Brauer algebras

n ∈ N, δ ∈ k×, S the set of Brauer diagrams with 2n nodes

S is a monoid (thus a category with one object) via concatenation:

• • • • • •

• • • • • •

• • • • • •

• • • • • •

Here n := 6.
α : S × S → k×, (s, t) 7→ δ number of cycles in concat. of s and t

−◦ : S → S corresponds to ‘flipping diagrams’
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Example: Brauer algebras

Γei
∼= Sn−2ki , where ki is the number of arcs at the top (and bottom)

of ei

kαΓei
∼= kΓei , for all i

The order 6 on Γ only respects the first component, and we have:

(i , r) < (j , s)⇔ n − 2kj < n − 2ki ⇔ ki < kj .

The order P respects both components, and we have:

(i , r)C (j , s)⇔ ki < kj and

[Ind
Sn−2ki
Sn−2kj

×S2×···×S2
(T(j ,s) ⊗ k ⊗ · · · ⊗ k) : T(i ,r)] 6= 0
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Example: Biset functors

The theory of biset functors provides a means to study many
important representation-theoretic concepts in a unified way, e.g.,

– restriction (e.g., of modules of finite groups to subgroups),
– induction (e.g., of modules of finite groups to overgroups),
– inflation (e.g., of modules from quotient groups), . . .

Idea: consider a category D whose objects are the (isoclasses of)
finite groups, and

HomD(H,G ) := B(G ,H) := {isoclasses of finite (G ,H)-bisets} .

A biset functor is an additive functor D → Z-mod.

Often it suffices to consider finite subcategories D′ of D whose sets of
objects are closed under taking subquotients. Studying biset functors
for D′ is equivalent to studying modules of the ring
B :=

⊕
G ,H∈Ob(D′) B(G ,H).
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Example: Biset functors

B :=
⊕

G ,H∈Ob(D′) B(G ,H) as before

Theorem (Boltje-D. 2012/13)

There is a Q-algebra isomorphism QB ∼= εAε, where A is a twisted split
category algebra over Q, and ε2 = ε ∈ A. Both A and QB are
quasi-hereditary (w.r.t. (Λ,P)).

This strengthens a result of P. Webb (2010).

The isoclasses of simple A-modules are labelled by pairs (G ,S), where
G ∈ Ob(D′) and S is a simple QAut(G )-module.

The partial orders from before are now given by:
• (G ,S) < (H,T )⇔ H is isomorphic to a subquotient of G ;

• (G , S) @ (H,T )⇔ (G ,S) < (H,T ) and T ⊗S∗ is a composition
factor of a certain permutation Q[Aut(H)×Aut(G )]-module.
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