Matrix problems, vector bundles on curves of genus one and the classical Yang–Baxter equation

Igor Burban

University of Cologne, Germany

DFG Schwerpunkttagung Darstellungstheorie 1388, Bad Boll March 28, 2013

Let ${\mathfrak g}$ be a simple complex Lie algebra.

Let \mathfrak{g} be a simple complex Lie algebra.

Definition (CYBE)

Find meromorphic $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ such that

 $\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$

Let \mathfrak{g} be a simple complex Lie algebra.

Definition (CYBE)

Find meromorphic $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ such that

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

Notation:

$$r^{13}:\mathbb{C} \stackrel{r}{\longrightarrow} \mathfrak{g} \otimes \mathfrak{g} \stackrel{\rho_{13}}{\longrightarrow} U \otimes U \otimes U$$

 $\rho_{13}(u \otimes v) = u \otimes 1 \otimes v$ and U is the universal enveloping algebra of \mathfrak{g} .

Let \mathfrak{g} be a simple complex Lie algebra.

Definition (CYBE)

Find meromorphic $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ such that

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

Notation:

$$r^{13}:\mathbb{C} \stackrel{r}{\longrightarrow} \mathfrak{g} \otimes \mathfrak{g} \stackrel{\rho_{13}}{\longrightarrow} U \otimes U \otimes U$$

 $ho_{13}(u\otimes v)=u\otimes 1\otimes v$ and U is the universal enveloping algebra of \mathfrak{g} .

Applications of CYBE:

Let \mathfrak{g} be a simple complex Lie algebra.

Definition (CYBE)

Find meromorphic $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ such that

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

Notation:

$$r^{13}:\mathbb{C} \stackrel{r}{\longrightarrow} \mathfrak{g} \otimes \mathfrak{g} \stackrel{\rho_{13}}{\longrightarrow} U \otimes U \otimes U$$

 $ho_{13}(u\otimes v)=u\otimes 1\otimes v$ and U is the universal enveloping algebra of \mathfrak{g} .

Applications of CYBE:

integrable systems

Let \mathfrak{g} be a simple complex Lie algebra.

Definition (CYBE)

Find meromorphic $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ such that

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

Notation:

$$r^{13}:\mathbb{C} \stackrel{r}{\longrightarrow} \mathfrak{g} \otimes \mathfrak{g} \stackrel{\rho_{13}}{\longrightarrow} U \otimes U \otimes U$$

 $ho_{13}(u\otimes v)=u\otimes 1\otimes v$ and U is the universal enveloping algebra of \mathfrak{g} .

Applications of CYBE:

- integrable systems
- mathematical physics

Let \mathfrak{g} be a simple complex Lie algebra.

Definition (CYBE)

Find meromorphic $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ such that

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

Notation:

$$r^{13}:\mathbb{C} \stackrel{r}{\longrightarrow} \mathfrak{g} \otimes \mathfrak{g} \stackrel{\rho_{13}}{\longrightarrow} U \otimes U \otimes U$$

 $ho_{13}(u\otimes v)=u\otimes 1\otimes v$ and U is the universal enveloping algebra of \mathfrak{g} .

Applications of CYBE:

- integrable systems
- mathematical physics
- representation theory

Igor Burban (Cologne)

Solutions of
$$[r^{12}(x), r^{23}(y)] + [r^{12}(x), r^{13}(x+y)] + [r^{13}(x+y), r^{23}(y)] = 0.$$

Solutions of
$$[r^{12}(x), r^{23}(y)] + [r^{12}(x), r^{13}(x+y)] + [r^{13}(x+y), r^{23}(y)] = 0.$$

Let
$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$$
 and $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Solutions of $[r^{12}(x), r^{23}(y)] + [r^{12}(x), r^{13}(x+y)] + [r^{13}(x+y), r^{23}(y)] = 0.$

Let
$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$$
 and $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Rational solution of Yang (1968)

$$r(z) = \frac{1}{z} \left(\frac{1}{2}h \otimes h + e \otimes f + f \otimes e \right).$$

Solutions of $[r^{12}(x), r^{23}(y)] + [r^{12}(x), r^{13}(x+y)] + [r^{13}(x+y), r^{23}(y)] = 0.$

Let
$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$$
 and $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Rational solution of Yang (1968)

$$r(z) = \frac{1}{z} \Big(\frac{1}{2}h \otimes h + e \otimes f + f \otimes e \Big).$$

Irigonometric solution of Baxter (1971)

$$r(z) = \frac{1}{2}\cot(z)h \otimes h + \frac{1}{\sin(z)}(e \otimes f + f \otimes e).$$

Solutions of $[r^{12}(x), r^{23}(y)] + [r^{12}(x), r^{13}(x+y)] + [r^{13}(x+y), r^{23}(y)] = 0.$

Let
$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$$
 and $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Rational solution of Yang (1968)

$$r(z) = \frac{1}{z} \Big(\frac{1}{2}h \otimes h + e \otimes f + f \otimes e \Big).$$

Irigonometric solution of Baxter (1971)

$$r(z) = \frac{1}{2}\cot(z)h \otimes h + \frac{1}{\sin(z)}(e \otimes f + f \otimes e).$$

Elliptic solution of Baxter (1971)

$$r(z) = \frac{\operatorname{cn}(z)}{\operatorname{sn}(z)} h \otimes h + \frac{1 + \operatorname{dn}(z)}{\operatorname{sn}(z)} (e \otimes f + f \otimes e) + (e \otimes e + f \otimes f) \frac{1 - \operatorname{dn}(z)}{\operatorname{sn}(z)} de = \frac{\operatorname{cn}(z)}{\operatorname{sn}(z)} de =$$

Why is it difficult to find a solution of $\ensuremath{\mathrm{CYBE}}\xspace$

 $\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$

Why is it difficult to find a solution of $\ensuremath{\mathrm{CYBE}}\xspace$

$$\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$$

If $\dim(\mathfrak{g})=m$ then $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ is given

Why is it difficult to find a solution of $\ensuremath{\mathrm{CYBE}}\xspace$

$$\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$$

If $\dim(\mathfrak{g})=m$ then $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ is given

• by m^2 parameters

Why is it difficult to find a solution of $\ensuremath{\mathrm{CYBE}}\xspace$

$$\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$$

If $\dim(\mathfrak{g})=m$ then $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ is given

- by m^2 parameters
- satisfying $\sim m^3$ quadratic constraints.

Why is it difficult to find a solution of CYBE?

$$\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$$

If $\dim(\mathfrak{g})=m$ then $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ is given

- by m^2 parameters
- satisfying $\sim m^3$ quadratic constraints.

Hence, CYBE is a highly overdetermined system of algebraic equations.

Why is it difficult to find a solution of CYBE?

 $\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$

If $\dim(\mathfrak{g})=m$ then $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ is given

- by m^2 parameters
- $\bullet\,$ satisfying $\sim m^3$ quadratic constraints.

Hence, CYBE is a *highly overdetermined* system of algebraic equations.

Theorem (Belavin–Drinfeld, 1983)

There are three types of non-degenerate solutions of CYBE:

Why is it difficult to find a solution of CYBE?

 $\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$

If $\dim(\mathfrak{g})=m$ then $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ is given

- ${\bullet}\ {\rm by}\ m^2$ parameters
- $\bullet\,$ satisfying $\sim m^3$ quadratic constraints.

Hence, CYBE is a *highly overdetermined* system of algebraic equations.

Theorem (Belavin–Drinfeld, 1983)

There are three types of non-degenerate solutions of CYBE:

elliptic

Why is it difficult to find a solution of CYBE?

 $\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$

If $\dim(\mathfrak{g})=m$ then $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ is given

- ${\bullet}\ {\rm by}\ m^2$ parameters
- $\bullet\,$ satisfying $\sim m^3$ quadratic constraints.

Hence, CYBE is a *highly overdetermined* system of algebraic equations.

Theorem (Belavin–Drinfeld, 1983)

There are three types of non-degenerate solutions of CYBE:

elliptic

2 trigonometric

Why is it difficult to find a solution of CYBE?

 $\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$

If $\dim(\mathfrak{g})=m$ then $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ is given

- ullet by m^2 parameters
- $\bullet\,$ satisfying $\sim m^3$ quadratic constraints.

Hence, CYBE is a *highly overdetermined* system of algebraic equations.

Theorem (Belavin–Drinfeld, 1983)

There are three types of non-degenerate solutions of CYBE:

- elliptic
- 2 trigonometric
- In the second state of the second state of

Why is it difficult to find a solution of CYBE?

 $\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$

If $\dim(\mathfrak{g})=m$ then $r:\mathbb{C}\longrightarrow\mathfrak{g}\otimes\mathfrak{g}$ is given

- by m^2 parameters
- $\bullet\,$ satisfying $\sim m^3$ quadratic constraints.

Hence, CYBE is a *highly overdetermined* system of algebraic equations.

Theorem (Belavin–Drinfeld, 1983)

There are three types of non-degenerate solutions of CYBE:

- elliptic
- 2 trigonometric
- rational

Moreover, all elliptic and trigonometric solutions have been classified.

Igor Burban (Cologne)

4 / 26

Let
$$E = V(y^2 - 4x^3 - g_2x - g_3)$$
, where $g_2, g_3 \in \mathbb{C}$.

Let
$$E = V(y^2 - 4x^3 - g_2x - g_3)$$
, where $g_2, g_3 \in \mathbb{C}$.

• If $\Delta = g_2^3 + 27g_2^2 \neq 0$ then E is elliptic.

Let
$$E = V(y^2 - 4x^3 - g_2x - g_3)$$
, where $g_2, g_3 \in \mathbb{C}$.

• If $\Delta = g_2^3 + 27g_2^2 \neq 0$ then E is elliptic.

• If $\Delta = 0$ but $(g_2, g_3) \neq 0$ then E is nodal.

Let
$$E = V(y^2 - 4x^3 - g_2x - g_3)$$
, where $g_2, g_3 \in \mathbb{C}$.

• If $\Delta = g_2^3 + 27g_2^2 \neq 0$ then E is elliptic.

- If $\Delta = 0$ but $(g_2, g_3) \neq 0$ then E is nodal.
- If $(g_2, g_3) = (0, 0)$ then *E* is cuspidal.

Theorem (Atiyah)

Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by

Theorem (Atiyah)

Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by its rang,

Theorem (Atiyah)

Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by its rang, degree

Theorem (Atiyah)

Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by its rang, degree and a point on E

Theorem (Atiyah)

Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by its rang, degree and a point on E (tameness).
Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by its rang, degree and a point on E (tameness).

Theorem (Atiyah)

Let $(n,d) \in \mathbb{N} \times \mathbb{Z}$, gcd(n,d) = 1.

Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by its rang, degree and a point on E (tameness).

Theorem (Atiyah)

Let $(n,d) \in \mathbb{N} \times \mathbb{Z}$, gcd(n,d) = 1.

$$\mathsf{M}_E^{(n,d)} := \left\{ \mathcal{F} \in \mathsf{VB}(E) \mid \operatorname{End}(\mathcal{F}) = \mathbb{C}, \operatorname{rk}(\mathcal{F}) = n, \operatorname{deg}(\mathcal{F}) = d \right\}$$

Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by its rang, degree and a point on E (tameness).

Theorem (Atiyah)

Let
$$(n,d) \in \mathbb{N} \times \mathbb{Z}$$
, $gcd(n,d) = 1$.

$$\mathsf{M}_E^{(n,d)} := \left\{ \mathcal{F} \in \mathsf{VB}(E) \mid \operatorname{End}(\mathcal{F}) = \mathbb{C}, \operatorname{rk}(\mathcal{F}) = n, \operatorname{deg}(\mathcal{F}) = d \right\}$$

Then we have:

Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by its rang, degree and a point on E (tameness).

Theorem (Atiyah)

Let
$$(n,d) \in \mathbb{N} \times \mathbb{Z}$$
, $gcd(n,d) = 1$.

$$\mathsf{M}_E^{(n,d)} := \left\{ \mathcal{F} \in \mathsf{VB}(E) \mid \operatorname{End}(\mathcal{F}) = \mathbb{C}, \operatorname{rk}(\mathcal{F}) = n, \operatorname{deg}(\mathcal{F}) = d \right\}$$

Then we have:

• det : $\mathsf{M}_E^{(n,d)} \longrightarrow \mathsf{Pic}^d(E)$ is a bijection.

Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by its rang, degree and a point on E (tameness).

Theorem (Atiyah)

Let
$$(n,d) \in \mathbb{N} \times \mathbb{Z}$$
, $gcd(n,d) = 1$.

$$\mathsf{M}_E^{(n,d)} := \left\{ \mathcal{F} \in \mathsf{VB}(E) \mid \operatorname{End}(\mathcal{F}) = \mathbb{C}, \operatorname{rk}(\mathcal{F}) = n, \operatorname{deg}(\mathcal{F}) = d \right\}$$

Then we have:

- det : $\mathsf{M}_E^{(n,d)} \longrightarrow \mathsf{Pic}^d(E)$ is a bijection.
- $\operatorname{Pic}^{0}(E)$ acts transitively on $\operatorname{M}_{E}^{(n,d)}$.

Let E be an elliptic curve. Then an indecomposable vector bundle on E is determined by its rang, degree and a point on E (tameness).

Theorem (Atiyah)

Let
$$(n,d) \in \mathbb{N} \times \mathbb{Z}$$
, $gcd(n,d) = 1$.

$$\mathsf{M}_E^{(n,d)} := \left\{ \mathcal{F} \in \mathsf{VB}(E) \mid \operatorname{End}(\mathcal{F}) = \mathbb{C}, \operatorname{rk}(\mathcal{F}) = n, \operatorname{deg}(\mathcal{F}) = d \right\}$$

Then we have:

- det : $\mathsf{M}_E^{(n,d)} \longrightarrow \mathsf{Pic}^d(E)$ is a bijection.
- $\operatorname{Pic}^{0}(E)$ acts transitively on $\operatorname{M}_{E}^{(n,d)}$.

Theorem (Bodnarchuk, Burban, Drozd, Greuel)

The last result is also true for the degenerate elliptic curves.

Igor Burban (Cologne)

Fix a Weierstraß curve E and $(n,d)\in\mathbb{N}\times\mathbb{Z}:\gcd(n,d)=1.$

Fix a Weierstraß curve E and $(n,d)\in\mathbb{N}\times\mathbb{Z}:\gcd(n,d)=1.$

For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathcal{Ad}(\mathcal{P})$:

$$0 \longrightarrow \mathcal{Ad}(\mathcal{P}) \longrightarrow \mathcal{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0.$$

Fix a Weierstraß curve E and $(n,d) \in \mathbb{N} \times \mathbb{Z} : \gcd(n,d) = 1$. For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathsf{Ad}(\mathcal{P})$: $0 \longrightarrow \mathsf{Ad}(\mathcal{P}) \longrightarrow \mathsf{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0$.

Observations:

Fix a Weierstraß curve E and $(n,d) \in \mathbb{N} \times \mathbb{Z} : \gcd(n,d) = 1$. For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathsf{Ad}(\mathcal{P})$: $0 \longrightarrow \mathsf{Ad}(\mathcal{P}) \longrightarrow \mathsf{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0$.

Observations:

• $\mathcal{A}|_x \cong \mathfrak{g} := \mathfrak{sl}_n(\mathbb{C}).$

Fix a Weierstraß curve E and $(n,d) \in \mathbb{N} \times \mathbb{Z} : \operatorname{gcd}(n,d) = 1$. For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathsf{Ad}(\mathcal{P})$: $0 \longrightarrow \mathsf{Ad}(\mathcal{P}) \longrightarrow \mathsf{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0$.

Observations:

- $\mathcal{A}|_x \cong \mathfrak{g} := \mathfrak{sl}_n(\mathbb{C}).$
- $\bullet~\mathcal{A}$ does not depend on the choice of $\mathcal P$

Fix a Weierstraß curve E and $(n,d) \in \mathbb{N} \times \mathbb{Z} : \gcd(n,d) = 1$. For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathsf{Ad}(\mathcal{P})$: $0 \longrightarrow \mathsf{Ad}(\mathcal{P}) \longrightarrow \mathsf{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0$.

Observations:

- $\mathcal{A}|_x \cong \mathfrak{g} := \mathfrak{sl}_n(\mathbb{C}).$
- \mathcal{A} does not depend on the choice of \mathcal{P} (Pic⁰ action is transitive!).

Fix a Weierstraß curve E and $(n,d) \in \mathbb{N} \times \mathbb{Z} : \gcd(n,d) = 1$. For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathsf{Ad}(\mathcal{P})$: $0 \longrightarrow \mathsf{Ad}(\mathcal{P}) \longrightarrow \mathsf{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0$.

Observations:

• $\mathcal{A}|_x \cong \mathfrak{g} := \mathfrak{sl}_n(\mathbb{C}).$

• \mathcal{A} does not depend on the choice of \mathcal{P} (Pic⁰ action is transitive!).

• $\operatorname{End}(\mathcal{P}) = \mathbb{C}$ implies that $H^0(\mathcal{A}) = 0 = H^1(\mathcal{A})$.

Fix a Weierstraß curve E and $(n,d) \in \mathbb{N} \times \mathbb{Z} : \gcd(n,d) = 1$. For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathsf{Ad}(\mathcal{P})$: $0 \longrightarrow \mathsf{Ad}(\mathcal{P}) \longrightarrow \mathsf{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0$.

Observations:

• $\mathcal{A}|_x \cong \mathfrak{g} := \mathfrak{sl}_n(\mathbb{C}).$

• \mathcal{A} does not depend on the choice of \mathcal{P} (Pic⁰ action is transitive!).

• $\operatorname{End}(\mathcal{P}) = \mathbb{C}$ implies that $H^0(\mathcal{A}) = 0 = H^1(\mathcal{A})$.

Let $x \neq y \in E_{reg}$. We have canonical linear maps:

Fix a Weierstraß curve E and $(n,d) \in \mathbb{N} \times \mathbb{Z} : \gcd(n,d) = 1$. For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathsf{Ad}(\mathcal{P})$: $0 \longrightarrow \mathsf{Ad}(\mathcal{P}) \longrightarrow \mathsf{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0$.

Observations:

• $\mathcal{A}|_x \cong \mathfrak{g} := \mathfrak{sl}_n(\mathbb{C}).$

• \mathcal{A} does not depend on the choice of \mathcal{P} (Pic⁰ action is transitive!).

• $\operatorname{End}(\mathcal{P}) = \mathbb{C}$ implies that $H^0(\mathcal{A}) = 0 = H^1(\mathcal{A}).$

Let $x \neq y \in E_{reg}$. We have canonical linear maps:

• Evaluation map:
$$H^0(\mathcal{A}(x)) \xrightarrow{\mathsf{ev}_y} \mathcal{A}|_y$$

Fix a Weierstraß curve E and $(n,d) \in \mathbb{N} \times \mathbb{Z} : \gcd(n,d) = 1$. For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathsf{Ad}(\mathcal{P})$: $0 \longrightarrow \mathsf{Ad}(\mathcal{P}) \longrightarrow \mathsf{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0$.

 $0 \longrightarrow \operatorname{Au}(P) \longrightarrow \operatorname{End}(P) \longrightarrow \mathcal{O} \longrightarrow$

Observations:

• $\mathcal{A}|_x \cong \mathfrak{g} := \mathfrak{sl}_n(\mathbb{C}).$

• \mathcal{A} does not depend on the choice of \mathcal{P} (Pic⁰ action is transitive!).

• $\operatorname{End}(\mathcal{P}) = \mathbb{C}$ implies that $H^0(\mathcal{A}) = 0 = H^1(\mathcal{A}).$

Let $x \neq y \in E_{reg}$. We have canonical linear maps:

• Evaluation map: $H^0(\mathcal{A}(x)) \xrightarrow{\operatorname{ev}_y} \mathcal{A}|_y$

• Residue map: $H^0(\mathcal{A}(x)) \xrightarrow{\operatorname{res}_x} \mathcal{A}|_x$ induced by $\Omega(x) \xrightarrow{\operatorname{res}_x} \mathbb{C}_x$.

Fix a Weierstraß curve E and $(n,d) \in \mathbb{N} \times \mathbb{Z} : \gcd(n,d) = 1$. For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathsf{Ad}(\mathcal{P})$: $0 \longrightarrow \mathsf{Ad}(\mathcal{P}) \longrightarrow \mathsf{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0$.

Observations:

- $\mathcal{A}|_x \cong \mathfrak{g} := \mathfrak{sl}_n(\mathbb{C}).$
- \mathcal{A} does not depend on the choice of \mathcal{P} (Pic⁰ action is transitive!).
- $\operatorname{End}(\mathcal{P}) = \mathbb{C}$ implies that $H^0(\mathcal{A}) = 0 = H^1(\mathcal{A}).$

Let $x \neq y \in E_{reg}$. We have canonical linear maps:

- Evaluation map: $H^0(\mathcal{A}(x)) \xrightarrow{\operatorname{ev}_y} \mathcal{A}|_y$
- Residue map: $H^0(\mathcal{A}(x)) \xrightarrow{\operatorname{res}_x} \mathcal{A}|_x$ induced by $\Omega(x) \xrightarrow{\operatorname{res}_x} \mathbb{C}_x$. Here we use that $\Omega \cong \mathcal{O}!$

Fix a Weierstraß curve E and $(n,d) \in \mathbb{N} \times \mathbb{Z} : \gcd(n,d) = 1$. For $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$ consider the sheaf of Lie algebras $\mathcal{A} = \mathsf{Ad}(\mathcal{P})$: $0 \longrightarrow \mathsf{Ad}(\mathcal{P}) \longrightarrow \mathsf{End}(\mathcal{P}) \longrightarrow \mathcal{O} \longrightarrow 0$.

Observations:

- $\mathcal{A}|_x \cong \mathfrak{g} := \mathfrak{sl}_n(\mathbb{C}).$
- \mathcal{A} does not depend on the choice of \mathcal{P} (Pic⁰ action is transitive!).
- $\operatorname{End}(\mathcal{P}) = \mathbb{C}$ implies that $H^0(\mathcal{A}) = 0 = H^1(\mathcal{A}).$

Let $x \neq y \in E_{reg}$. We have canonical linear maps:

- Evaluation map: $H^0(\mathcal{A}(x)) \xrightarrow{\operatorname{ev}_y} \mathcal{A}|_y$
- Residue map: $H^0(\mathcal{A}(x)) \xrightarrow{\operatorname{res}_x} \mathcal{A}|_x$ induced by $\Omega(x) \xrightarrow{\operatorname{res}_x} \mathbb{C}_x$. Here we use that $\Omega \cong \mathcal{O}!$
- The maps res_x and ev_y are isomorphisms (generically).

 $\mathcal{A} = \mathcal{A}_{n,d} = \mathcal{A} d(\mathcal{P})$ is a sheaf of Lie algebras,

 $\mathcal{A} = \mathcal{A}_{n,d} = \mathcal{A}d(\mathcal{P})$ is a sheaf of Lie algebras, $x \in E_{reg}$.

 $\mathcal{A} = \mathcal{A}_{n,d} = \mathsf{Ad}(\mathcal{P})$ is a sheaf of Lie algebras, $x \in E_{reg}$. Choose an isomorphism of Lie algebras $\xi_x : \mathcal{A}|_x \longrightarrow \mathfrak{g}$.

 $\mathcal{A} = \mathcal{A}_{n,d} = \mathsf{Ad}(\mathcal{P})$ is a sheaf of Lie algebras, $x \in E_{reg}$. Choose an isomorphism of Lie algebras $\xi_x : \mathcal{A}|_x \longrightarrow \mathfrak{g}$. We get a linear map

$$\mathfrak{g} \xrightarrow{\xi_x^{-1}} \mathcal{A}\big|_x \xrightarrow{\operatorname{res}_x^{-1}} H^0\big(\mathcal{A}(x)\big) \xrightarrow{\operatorname{ev}_y} \mathcal{A}\big|_y \xrightarrow{\xi_y} \mathfrak{g}$$

 $\mathcal{A} = \mathcal{A}_{n,d} = \mathsf{Ad}(\mathcal{P})$ is a sheaf of Lie algebras, $x \in E_{reg}$. Choose an isomorphism of Lie algebras $\xi_x : \mathcal{A}|_x \longrightarrow \mathfrak{g}$. We get a linear map

$$\mathfrak{g} \xrightarrow{\xi_x^{-1}} \mathcal{A}\big|_x \xrightarrow{\operatorname{res}_x^{-1}} H^0\big(\mathcal{A}(x)\big) \xrightarrow{\operatorname{ev}_y} \mathcal{A}\big|_y \xrightarrow{\xi_y} \mathfrak{g}$$

The Killing form induces: $\operatorname{End}(\mathfrak{g}) \xrightarrow{\simeq} \mathfrak{g} \otimes \mathfrak{g}$

 $\mathcal{A} = \mathcal{A}_{n,d} = \mathsf{Ad}(\mathcal{P})$ is a sheaf of Lie algebras, $x \in E_{reg}$. Choose an isomorphism of Lie algebras $\xi_x : \mathcal{A}|_x \longrightarrow \mathfrak{g}$. We get a linear map

$$\mathfrak{g} \xrightarrow{\xi_x^{-1}} \mathcal{A}\big|_x \xrightarrow{\operatorname{res}_x^{-1}} H^0\big(\mathcal{A}(x)\big) \xrightarrow{\operatorname{ev}_y} \mathcal{A}\big|_y \xrightarrow{\xi_y} \mathfrak{g}$$

The Killing form induces: $\operatorname{End}(\mathfrak{g}) \xrightarrow{\simeq} \mathfrak{g} \otimes \mathfrak{g} \ni r_{(E,(n,d))}^{\xi}(x,y).$

 $\mathcal{A} = \mathcal{A}_{n,d} = \mathsf{Ad}(\mathcal{P})$ is a sheaf of Lie algebras, $x \in E_{reg}$. Choose an isomorphism of Lie algebras $\xi_x : \mathcal{A}|_x \longrightarrow \mathfrak{g}$. We get a linear map

$$\mathfrak{g} \xrightarrow{\xi_x^{-1}} \mathcal{A}\big|_x \xrightarrow{\operatorname{res}_x^{-1}} H^0\big(\mathcal{A}(x)\big) \xrightarrow{\operatorname{ev}_y} \mathcal{A}\big|_y \xrightarrow{\xi_y} \mathfrak{g}$$

The Killing form induces: $\operatorname{End}(\mathfrak{g}) \xrightarrow{\simeq} \mathfrak{g} \otimes \mathfrak{g} \ni r_{(E,(n,d))}^{\xi}(x,y).$

Theorem

The tensor
$$r_{(E,(n,d))}^{\xi}(x,y) \in \mathfrak{g} \otimes \mathfrak{g}$$
 is a solution of CYBE.

$$[r^{12}(x_1,x_2),r^{13}(x_1,x_3)] + [r^{13}(x_1,x_3),r^{23}(x_2,x_3)] + [r^{12}(x_1,x_2),r^{23}(x_2,x_3)] = 0.$$

 $\mathcal{A} = \mathcal{A}_{n,d} = \mathsf{Ad}(\mathcal{P})$ is a sheaf of Lie algebras, $x \in E_{reg}$. Choose an isomorphism of Lie algebras $\xi_x : \mathcal{A}|_x \longrightarrow \mathfrak{g}$. We get a linear map

$$\mathfrak{g} \xrightarrow{\xi_x^{-1}} \mathcal{A}\big|_x \xrightarrow{\operatorname{res}_x^{-1}} H^0\big(\mathcal{A}(x)\big) \xrightarrow{\operatorname{ev}_y} \mathcal{A}\big|_y \xrightarrow{\xi_y} \mathfrak{g}$$

The Killing form induces: $\operatorname{End}(\mathfrak{g}) \xrightarrow{\simeq} \mathfrak{g} \otimes \mathfrak{g} \ni r_{(E,(n,d))}^{\xi}(x,y).$

Theorem

The tensor
$$r_{(E,(n,d))}^{\xi}(x,y) \in \mathfrak{g} \otimes \mathfrak{g}$$
 is a solution of CYBE.

$$[r^{12}(x_1,x_2),r^{13}(x_1,x_3)] + [r^{13}(x_1,x_3),r^{23}(x_2,x_3)] + [r^{12}(x_1,x_2),r^{23}(x_2,x_3)] = 0.$$

• Polishchuk (2001): elliptic curves, some nodal degenerations.

 $\mathcal{A} = \mathcal{A}_{n,d} = \mathsf{Ad}(\mathcal{P})$ is a sheaf of Lie algebras, $x \in E_{reg}$. Choose an isomorphism of Lie algebras $\xi_x : \mathcal{A}|_x \longrightarrow \mathfrak{g}$. We get a linear map

$$\mathfrak{g} \xrightarrow{\xi_x^{-1}} \mathcal{A}\big|_x \xrightarrow{\operatorname{res}_x^{-1}} H^0\big(\mathcal{A}(x)\big) \xrightarrow{\operatorname{ev}_y} \mathcal{A}\big|_y \xrightarrow{\xi_y} \mathfrak{g}$$

The Killing form induces: $\operatorname{End}(\mathfrak{g}) \xrightarrow{\simeq} \mathfrak{g} \otimes \mathfrak{g} \ni r_{(E,(n,d))}^{\xi}(x,y).$

Theorem

The tensor
$$r_{(E,(n,d))}^{\xi}(x,y) \in \mathfrak{g} \otimes \mathfrak{g}$$
 is a solution of CYBE.

$$[r^{12}(x_1,x_2),r^{13}(x_1,x_3)] + [r^{13}(x_1,x_3),r^{23}(x_2,x_3)] + [r^{12}(x_1,x_2),r^{23}(x_2,x_3)] = 0.$$

Polishchuk (2001): elliptic curves, some nodal degenerations.
Cherednik (1983): first ideas in this direction.

 $\mathcal{A} = \mathcal{A}_{n,d} = \mathsf{Ad}(\mathcal{P})$ is a sheaf of Lie algebras, $x \in E_{reg}$. Choose an isomorphism of Lie algebras $\xi_x : \mathcal{A}|_x \longrightarrow \mathfrak{g}$. We get a linear map

$$\mathfrak{g} \xrightarrow{\xi_x^{-1}} \mathcal{A}\big|_x \xrightarrow{\operatorname{res}_x^{-1}} H^0\big(\mathcal{A}(x)\big) \xrightarrow{\operatorname{ev}_y} \mathcal{A}\big|_y \xrightarrow{\xi_y} \mathfrak{g}$$

The Killing form induces: $\operatorname{End}(\mathfrak{g}) \xrightarrow{\simeq} \mathfrak{g} \otimes \mathfrak{g} \ni r_{(E,(n,d))}^{\xi}(x,y).$

Theorem

The tensor
$$r_{(E,(n,d))}^{\xi}(x,y) \in \mathfrak{g} \otimes \mathfrak{g}$$
 is a solution of CYBE.

$$[r^{12}(x_1,x_2), r^{13}(x_1,x_3)] + [r^{13}(x_1,x_3), r^{23}(x_2,x_3)] + [r^{12}(x_1,x_2), r^{23}(x_2,x_3)] = 0.$$

- Polishchuk (2001): elliptic curves, some nodal degenerations.
- Cherednik (1983): first ideas in this direction.
- Burban, Henrich (2012): degenerate elliptic curves, relative setting.

Igor Burban (Cologne)

Let $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$.

Let $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$. Consider the triple Massey product

 $\mathsf{m}_3: \operatorname{Hom}(\mathcal{P}, \mathbb{C}_x) \otimes \operatorname{Ext}(\mathbb{C}_x, \mathcal{P}) \otimes \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y) \longrightarrow \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y).$

Let $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$. Consider the triple Massey product

 $\mathsf{m}_3: \operatorname{Hom}(\mathcal{P}, \mathbb{C}_x) \otimes \operatorname{Ext}(\mathbb{C}_x, \mathcal{P}) \otimes \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y) \longrightarrow \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y).$

Serre duality: $\operatorname{Hom}(\mathcal{F},\mathcal{G})\cong\operatorname{Ext}(\mathcal{G},\mathcal{F})^*$ implies that

Let $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$. Consider the triple Massey product

 $\mathsf{m}_3: \operatorname{Hom}(\mathcal{P}, \mathbb{C}_x) \otimes \operatorname{Ext}(\mathbb{C}_x, \mathcal{P}) \otimes \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y) \longrightarrow \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y).$

Serre duality: ${\rm Hom}(\mathcal{F},\mathcal{G})\cong {\rm Ext}(\mathcal{G},\mathcal{F})^*$ implies that

 $\operatorname{Hom}(\mathcal{P}, \mathbb{C}_x) \otimes \operatorname{Ext}(\mathbb{C}_x, \mathcal{P}) \cong \operatorname{End}_{\mathbb{C}}(\operatorname{Hom}(\mathcal{P}, \mathbb{C}_x)).$

Let $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$. Consider the triple Massey product

 $\mathsf{m}_3: \operatorname{Hom}(\mathcal{P}, \mathbb{C}_x) \otimes \operatorname{Ext}(\mathbb{C}_x, \mathcal{P}) \otimes \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y) \longrightarrow \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y).$

Serre duality: ${\rm Hom}(\mathcal{F},\mathcal{G})\cong {\rm Ext}(\mathcal{G},\mathcal{F})^*$ implies that

 $\operatorname{Hom}(\mathcal{P},\mathbb{C}_x)\otimes\operatorname{Ext}(\mathbb{C}_x,\mathcal{P})\cong\operatorname{End}_{\mathbb{C}}(\operatorname{Hom}(\mathcal{P},\mathbb{C}_x)).$

Using $Lin(U \otimes V, W) \simeq Lin(U, V^* \otimes W)$ we see that m₃ yields

 $\mathsf{m}_{x,y}:\mathsf{End}_{\mathbb{C}}\big(\mathrm{Hom}(\mathcal{P},\mathbb{C}_x)\big)\longrightarrow\mathsf{End}_{\mathbb{C}}\big(\mathrm{Hom}(\mathcal{P},\mathbb{C}_y)\big)$
Idea of the proof-I

Let $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$. Consider the triple Massey product

 $\mathsf{m}_3: \operatorname{Hom}(\mathcal{P}, \mathbb{C}_x) \otimes \operatorname{Ext}(\mathbb{C}_x, \mathcal{P}) \otimes \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y) \longrightarrow \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y).$

Serre duality: $\operatorname{Hom}(\mathcal{F},\mathcal{G})\cong\operatorname{Ext}(\mathcal{G},\mathcal{F})^*$ implies that

 $\operatorname{Hom}(\mathcal{P},\mathbb{C}_x)\otimes\operatorname{Ext}(\mathbb{C}_x,\mathcal{P})\cong\operatorname{End}_{\mathbb{C}}(\operatorname{Hom}(\mathcal{P},\mathbb{C}_x)).$

Using $Lin(U \otimes V, W) \simeq Lin(U, V^* \otimes W)$ we see that m₃ yields

$$\mathsf{m}_{x,y}:\mathsf{End}_{\mathbb{C}}\big(\mathrm{Hom}(\mathcal{P},\mathbb{C}_x)\big)\longrightarrow\mathsf{End}_{\mathbb{C}}\big(\mathrm{Hom}(\mathcal{P},\mathbb{C}_y)\big)$$

which restricts on the linear map

$$\overline{\mathsf{m}}_{x,y}:\mathfrak{sl}\big(\mathrm{Hom}(\mathcal{P},\mathbb{C}_x)\big)\longrightarrow\mathfrak{pgl}\big(\mathrm{Hom}(\mathcal{P},\mathbb{C}_y)\big).$$

Idea of the proof-I

Let $\mathcal{P} \in \mathsf{M}_E^{(n,d)}$. Consider the triple Massey product

 $\mathsf{m}_3: \operatorname{Hom}(\mathcal{P}, \mathbb{C}_x) \otimes \operatorname{Ext}(\mathbb{C}_x, \mathcal{P}) \otimes \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y) \longrightarrow \operatorname{Hom}(\mathcal{P}, \mathbb{C}_y).$

Serre duality: ${\rm Hom}(\mathcal{F},\mathcal{G})\cong {\rm Ext}(\mathcal{G},\mathcal{F})^*$ implies that

 $\operatorname{Hom}(\mathcal{P},\mathbb{C}_x)\otimes\operatorname{Ext}(\mathbb{C}_x,\mathcal{P})\cong\operatorname{End}_{\mathbb{C}}(\operatorname{Hom}(\mathcal{P},\mathbb{C}_x)).$

Using $Lin(U \otimes V, W) \simeq Lin(U, V^* \otimes W)$ we see that m₃ yields

$$\mathsf{m}_{x,y}:\mathsf{End}_{\mathbb{C}}\big(\mathrm{Hom}(\mathcal{P},\mathbb{C}_x)\big)\longrightarrow\mathsf{End}_{\mathbb{C}}\big(\mathrm{Hom}(\mathcal{P},\mathbb{C}_y)\big)$$

which restricts on the linear map

$$\overline{\mathsf{m}}_{x,y}:\mathfrak{sl}\big(\mathrm{Hom}(\mathcal{P},\mathbb{C}_x)\big)\longrightarrow\mathfrak{pgl}\big(\mathrm{Hom}(\mathcal{P},\mathbb{C}_y)\big).$$

Let $\mathsf{m}_{x,y} \in \mathfrak{pgl}(\operatorname{Hom}(\mathcal{P},\mathsf{k}_x)) \otimes \mathfrak{pgl}(\operatorname{Hom}(\mathcal{P},\mathsf{k}_y))$ be the tensor corresponding to $\overline{\mathsf{m}}_{x,y}$.

Igor Burban (Cologne)

Idea of the proof-II

Idea of the proof-II

Theorem (Polishchuk, Burban–Henrich)

The following diagram of vector spaces

is commutative, where $\mathcal{A} = \mathcal{Ad}(\mathcal{P})$

Idea of the proof-II

Theorem (Polishchuk, Burban–Henrich)

The following diagram of vector spaces

is commutative, where $\mathcal{A}=\textit{Ad}(\mathcal{P})$ and CYBE relation

$$\left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{1},x_{3}}^{13}\right] + \left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{2},x_{3}}^{23}\right] + \left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{1},x_{3}}^{13}\right] = 0$$

holds.

Igor Burban (Cologne)

Idea of the proof-III (Polishchuk)

$$\left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{1},x_{3}}^{13}\right] + \left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{2},x_{3}}^{23}\right] + \left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{1},x_{3}}^{13}\right] = 0$$

is a consequence of the following two ingredients:

$$\left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{1},x_{3}}^{13}\right] + \left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{2},x_{3}}^{23}\right] + \left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{1},x_{3}}^{13}\right] = 0$$

is a consequence of the following two ingredients:

• The A_{∞} -constraint in $D^{b}(\operatorname{Coh}(E))$:

$$\mathsf{m}_3 \circ (\mathsf{m}_3 \otimes \mathbb{1} \otimes \mathbb{1} + \mathbb{1} \otimes \mathsf{m}_3 \otimes \mathbb{1} + \mathbb{1} \otimes \mathbb{1} \otimes \mathsf{m}_3) + \dots = 0$$

$$\left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{1},x_{3}}^{13}\right] + \left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{2},x_{3}}^{23}\right] + \left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{1},x_{3}}^{13}\right] = 0$$

is a consequence of the following two ingredients:

• The A_{∞} -constraint in $D^{b}(\operatorname{Coh}(E))$:

 $\mathsf{m}_3 \circ \big(\mathsf{m}_3 \otimes \mathbb{1} \otimes \mathbb{1} + \mathbb{1} \otimes \mathsf{m}_3 \otimes \mathbb{1} + \mathbb{1} \otimes \mathbb{1} \otimes \mathsf{m}_3 \big) + \dots = 0$

• Existence of a cyclic A_{∞} -structure:

$$\left\langle \mathsf{m}_{3}(a_{1}\otimes\omega_{1}\otimes a_{2}),\omega_{2}
ight
angle =-\left\langle a_{1},\mathsf{m}_{3}(\omega_{1}\otimes a_{2}\otimes\omega_{2})
ight
angle$$

$$\left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{1},x_{3}}^{13}\right] + \left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{2},x_{3}}^{23}\right] + \left[\mathsf{m}_{x_{1},x_{2}}^{12},\mathsf{m}_{x_{1},x_{3}}^{13}\right] = 0$$

is a consequence of the following two ingredients:

• The A_{∞} -constraint in $D^{b}(\operatorname{Coh}(E))$:

 $\mathsf{m}_3 \circ \big(\mathsf{m}_3 \otimes \mathbb{1} \otimes \mathbb{1} + \mathbb{1} \otimes \mathsf{m}_3 \otimes \mathbb{1} + \mathbb{1} \otimes \mathbb{1} \otimes \mathsf{m}_3 \big) + \dots = 0$

• Existence of a cyclic A_{∞} -structure:

$$\langle \mathsf{m}_3(a_1\otimes\omega_1\otimes a_2),\omega_2\rangle = -\langle a_1,\mathsf{m}_3(\omega_1\otimes a_2\otimes\omega_2)\rangle$$

which also implies unitarity: $m_{x,y}^{12} = -m_{y,x}^{21}$.

Fix a triple (E, (n, d)), where

Fix a triple (E, (n, d)), where • 0 < d < n, gcd(n, d) = 1

Fix a triple (E, (n, d)), where

- $\bullet \ 0 < d < n \text{, } \gcd(n,d) = 1$
- $E = E_{g_2,g_3}$ is a Weierstraß cubic curve:

Fix a triple (E, (n, d)), where

- $\bullet \ 0 < d < n \text{, } \gcd(n,d) = 1$
- $E = E_{g_2,g_3}$ is a Weierstraß cubic curve:

Fix a triple (E, (n, d)), where

- $\bullet \ 0 < d < n \text{, } \gcd(n,d) = 1$
- $E = E_{g_2,g_3}$ is a Weierstraß cubic curve:

Then we get a family of solutions

$$r_{((g_2,g_3),(n,d))}(x_1,x_2) \in \mathfrak{sl}_n(\mathbb{C}) \otimes \mathfrak{sl}_n(\mathbb{C})$$

of the classical Yang-Baxter equation.

Example: solution $r^{\xi}_{(E,(n,d))}$ for (n,d) = (2,1)

Example: solution $r_{(E,(n,d))}^{\xi}$ for (n,d) = (2,1)

() E smooth: elliptic solution of Baxter

$$r(z) = \frac{\operatorname{cn}(z)}{\operatorname{sn}(z)} h \otimes h + \frac{1 + \operatorname{dn}(z)}{\operatorname{sn}(z)} (e \otimes f + f \otimes e) + (e \otimes e + f \otimes f) \frac{1 - \operatorname{dn}(z)}{\operatorname{sn}(z)}.$$

Example: solution $r_{(E,(n,d))}^{\xi}$ for (n,d) = (2,1)

1 E smooth: elliptic solution of Baxter

$$r(z) = \frac{\operatorname{cn}(z)}{\operatorname{sn}(z)}h \otimes h + \frac{1 + \operatorname{dn}(z)}{\operatorname{sn}(z)}(e \otimes f + f \otimes e) + (e \otimes e + f \otimes f)\frac{1 - \operatorname{dn}(z)}{\operatorname{sn}(z)}$$

O E nodal: Cherednik's trigonometric solution

$$r(z) = \frac{1}{2}\cot(z)h \otimes h + \frac{1}{\sin(z)}(e \otimes f + f \otimes e) + \sin(z)e \otimes e.$$

Example: solution $r_{(E,(n,d))}^{\xi}$ for (n,d) = (2,1)

1 E smooth: elliptic solution of Baxter

$$r(z) = \frac{\operatorname{cn}(z)}{\operatorname{sn}(z)}h \otimes h + \frac{1 + \operatorname{dn}(z)}{\operatorname{sn}(z)}(e \otimes f + f \otimes e) + (e \otimes e + f \otimes f)\frac{1 - \operatorname{dn}(z)}{\operatorname{sn}(z)}$$

O E nodal: Cherednik's trigonometric solution

$$r(z) = \frac{1}{2}\cot(z)h \otimes h + \frac{1}{\sin(z)}(e \otimes f + f \otimes e) + \sin(z)e \otimes e.$$

 \bigcirc E cuspidal: rational solution of Stolin

$$r(z) = \frac{1}{z} \left(\frac{1}{2}h \otimes h + e \otimes f + f \otimes e \right) + z(f \otimes h + h \otimes f) - z^3 f \otimes f.$$

Igor Burban (Cologne)

Let
$$0 < d < n$$
, $gcd(n, d) = 1$ and $\varepsilon = exp(\frac{2\pi i d}{n})$

L

et
$$0 < d < n$$
, $gcd(n, d) = 1$ and $\varepsilon = exp\left(\frac{2\pi i d}{n}\right)$

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \varepsilon & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \varepsilon^{n-1} \end{pmatrix} \quad Y = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}.$$

et
$$0 < d < n$$
, $gcd(n, d) = 1$ and $\varepsilon = exp\left(\frac{2\pi i d}{n}\right)$

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \varepsilon & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \varepsilon^{n-1} \end{pmatrix} \quad Y = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

Proposition

L

The sheaf of Lie algebras $\mathcal{A} = \mathcal{A}_{n,d}$ on the torus $E = \mathbb{C}/\langle 1, \tau \rangle$ has the following description:

Let
$$0 < d < n$$
, $gcd(n, d) = 1$ and $\varepsilon = exp\left(\frac{2\pi i d}{n}\right)$

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \varepsilon & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \varepsilon^{n-1} \end{pmatrix} \quad Y = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

Proposition

L

The sheaf of Lie algebras $\mathcal{A} = \mathcal{A}_{n,d}$ on the torus $E = \mathbb{C}/\langle 1, \tau \rangle$ has the following description: $\mathcal{A} \cong \mathbb{C} \times \mathfrak{g}/\simeq$, where

$$(z,G) \sim (z+1, XGX^{-1}) \sim (z+\tau, YGY^{-1}).$$

Let
$$0 < d < n$$
, $gcd(n, d) = 1$ and $\varepsilon = exp\left(\frac{2\pi i d}{n}\right)$

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \varepsilon & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \varepsilon^{n-1} \end{pmatrix} \quad Y = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

Proposition

I

The sheaf of Lie algebras $\mathcal{A} = \mathcal{A}_{n,d}$ on the torus $E = \mathbb{C}/\langle 1, \tau \rangle$ has the following description: $\mathcal{A} \cong \mathbb{C} \times \mathfrak{g}/\simeq$, where

$$(z,G) \sim (z+1, XGX^{-1}) \sim (z+\tau, YGY^{-1}).$$

It is a key fact to carry out computations!

Let
$$0 < d < n$$
, $gcd(n, d) = 1$ and $\varepsilon = exp\left(\frac{2\pi i d}{n}\right)$

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \varepsilon & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \varepsilon^{n-1} \end{pmatrix} \quad Y = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

Proposition

I

The sheaf of Lie algebras $\mathcal{A} = \mathcal{A}_{n,d}$ on the torus $E = \mathbb{C}/\langle 1, \tau \rangle$ has the following description: $\mathcal{A} \cong \mathbb{C} \times \mathfrak{g}/\simeq$, where

$$(z,G) \sim (z+1, XGX^{-1}) \sim (z+\tau, YGY^{-1}).$$

It is a key fact to carry out computations!

$$\mathcal{A}\big|_x \stackrel{\mathsf{res}_x}{\leftarrow} H^0\big(\mathcal{A}(x)\big) \stackrel{\mathsf{ev}_y}{\longrightarrow} \mathcal{A}\big|_y$$

Let
$$0 < d < n$$
, $gcd(n,d) = 1$ and $\varepsilon = exp\left(\frac{2\pi i d}{n}\right)$
$$X = \begin{pmatrix} 1 & 0 & \dots & 0\\ 0 & \varepsilon & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \varepsilon^{n-1} \end{pmatrix} \quad Y = \begin{pmatrix} 0 & 1 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & 1\\ 1 & 0 & \dots & 0 \end{pmatrix}$$

Proposition

I

The sheaf of Lie algebras $\mathcal{A} = \mathcal{A}_{n,d}$ on the torus $E = \mathbb{C}/\langle 1, \tau \rangle$ has the following description: $\mathcal{A} \cong \mathbb{C} \times \mathfrak{g}/\simeq$, where

$$(z,G) \sim (z+1, XGX^{-1}) \sim (z+\tau, YGY^{-1}).$$

It is a key fact to carry out computations!

$$\mathcal{A}\big|_x \stackrel{\mathsf{res}_x}{\leftarrow} H^0\big(\mathcal{A}(x)\big) \stackrel{\mathsf{ev}_y}{\longrightarrow} \mathcal{A}\big|_y$$

and $H^0(\mathcal{A}(x))$ can be expressed in terms of theta-functions.

Igor Burban (Cologne)

Theorem (Burban-Henrich, 2012)

We get the following elliptic solution $r_{(E,(n,d))}$ of CYBE:

Theorem (Burban-Henrich, 2012)

We get the following elliptic solution $r_{(E,(n,d))}$ of *CYBE*:

$$r_{(E,(n,d))}(x,y) = \sum_{(k,l)\in I} \exp\left(-\frac{2\pi i d}{n} kz\right) \sigma\left(\frac{d}{n} (l-k\tau), z\right) Z_{k,l}^{\vee} \otimes Z_{k,l}$$

Theorem (Burban-Henrich, 2012)

We get the following elliptic solution $r_{(E,(n,d))}$ of *CYBE*:

$$r_{(E,(n,d))}(x,y) = \sum_{(k,l)\in I} \exp\left(-\frac{2\pi i d}{n} kz\right) \sigma\left(\frac{d}{n} (l-k\tau), z\right) Z_{k,l}^{\vee} \otimes Z_{k,l}$$

where

•
$$Z_{k,l} = Y^k X^{-l}$$
, $Z_{k,l}^{\vee} = \frac{1}{n} X^l Y^{-k}$.

Theorem (Burban-Henrich, 2012)

We get the following elliptic solution $r_{(E,(n,d))}$ of CYBE:

$$r_{(E,(n,d))}(x,y) = \sum_{(k,l)\in I} \exp\left(-\frac{2\pi i d}{n} kz\right) \sigma\left(\frac{d}{n}(l-k\tau), z\right) Z_{k,l}^{\vee} \otimes Z_{k,l}$$

where

•
$$Z_{k,l} = Y^k X^{-l}, \ Z_{k,l}^{\vee} = \frac{1}{n} X^l Y^{-k}.$$

• $z = y - x$

Theorem (Burban-Henrich, 2012)

We get the following elliptic solution $r_{(E,(n,d))}$ of *CYBE*:

$$r_{(E,(n,d))}(x,y) = \sum_{(k,l)\in I} \exp\left(-\frac{2\pi i d}{n} kz\right) \sigma\left(\frac{d}{n} (l-k\tau), z\right) Z_{k,l}^{\vee} \otimes Z_{k,l}$$

where

•
$$Z_{k,l} = Y^k X^{-l}, Z_{k,l}^{\vee} = \frac{1}{n} X^l Y^{-k}.$$

• $z = y - x$
• $\sigma(a, z) = 2\pi i \sum_{n \in \mathbb{Z}} \frac{\exp(-2\pi i n z)}{1 - \exp(-2\pi i (a - 2\pi i n \tau))}$ is the Kronecker elliptic function.

Theorem (Burban-Henrich, 2012)

We get the following elliptic solution $r_{(E,(n,d))}$ of *CYBE*:

$$r_{(E,(n,d))}(x,y) = \sum_{(k,l)\in I} \exp\left(-\frac{2\pi i d}{n} kz\right) \sigma\left(\frac{d}{n} (l-k\tau), z\right) Z_{k,l}^{\vee} \otimes Z_{k,l}$$

where

•
$$Z_{k,l} = Y^k X^{-l}$$
, $Z_{k,l}^{\vee} = \frac{1}{n} X^l Y^{-k}$.
• $z = y - x$
• $\sigma(a, z) = 2\pi i \sum_{n \in \mathbb{Z}} \frac{\exp(-2\pi i n z)}{1 - \exp(-2\pi i (a - 2\pi i n \tau))}$ is the Kronecker elliptic function.

We get precisely the elliptic r-matrix of Belavin!

Theorem (Burban-Henrich, 2012)

We get the following elliptic solution $r_{(E,(n,d))}$ of *CYBE*:

$$r_{(E,(n,d))}(x,y) = \sum_{(k,l)\in I} \exp\left(-\frac{2\pi i d}{n} kz\right) \sigma\left(\frac{d}{n} (l-k\tau), z\right) Z_{k,l}^{\vee} \otimes Z_{k,l}$$

where

•
$$Z_{k,l} = Y^k X^{-l}, \ Z_{k,l}^{\vee} = \frac{1}{n} X^l Y^{-k}.$$

• $z = y - x$
• $\sigma(a, z) = 2\pi i \sum_{n \in \mathbb{Z}} \frac{\exp(-2\pi i n z)}{1 - \exp(-2\pi i (a - 2\pi i n \tau))}$ is the Kronecker elliptic function.

We get precisely the elliptic *r*-matrix of Belavin! Another derivation of this formula based on the elliptic loop algebra $A = \Gamma(E \setminus \{o\}, A)$ was obtained by Reiman and Semenov-Tyan-Shansky (1985).

Igor Burban (Cologne)

Bocses, vector bundles and CYBE
Let $E=V(zy^2-x^3)\subset \mathbb{P}^2$ be a cuspidal cubic curve and

Let $E = V(zy^2 - x^3) \subset \mathbb{P}^2$ be a cuspidal cubic curve and $\mathbb{P}^1 \cong L \xrightarrow{\nu} E$ its normalization.

Let $E = V(zy^2 - x^3) \subset \mathbb{P}^2$ be a cuspidal cubic curve and $\mathbb{P}^1 \cong L \xrightarrow{\nu} E$ its normalization.

Let $E = V(zy^2 - x^3) \subset \mathbb{P}^2$ be a cuspidal cubic curve and $\mathbb{P}^1 \cong L \xrightarrow{\nu} E$ its normalization.

Let $E = V(zy^2 - x^3) \subset \mathbb{P}^2$ be a cuspidal cubic curve and $\mathbb{P}^1 \cong L \xrightarrow{\nu} E$ its normalization.

Theorem (Birkgoff, Grothendieck)

Let \mathcal{F} be a vector bundle of rank n on E.

Let $E = V(zy^2 - x^3) \subset \mathbb{P}^2$ be a cuspidal cubic curve and $\mathbb{P}^1 \cong L \xrightarrow{\nu} E$ its normalization.

Theorem (Birkgoff, Grothendieck)

Let \mathcal{F} be a vector bundle of rank n on E. Then we have:

$$\nu^*(\mathcal{F}) \cong \mathcal{O}_L(c_1) \oplus \cdots \oplus \mathcal{O}_L(c_n), \quad c_1, \ldots, c_n \in \mathbb{Z}.$$

Let $E = V(zy^2 - x^3) \subset \mathbb{P}^2$ be a cuspidal cubic curve and $\mathbb{P}^1 \cong L \xrightarrow{\nu} E$ its normalization.

Theorem (Birkgoff, Grothendieck)

Let \mathcal{F} be a vector bundle of rank n on E. Then we have:

$$\nu^*(\mathcal{F}) \cong \mathcal{O}_L(c_1) \oplus \cdots \oplus \mathcal{O}_L(c_n), \quad c_1, \ldots, c_n \in \mathbb{Z}.$$

Lemma

Let \mathcal{F} be a simple vector bundle on E.

Let $E = V(zy^2 - x^3) \subset \mathbb{P}^2$ be a cuspidal cubic curve and $\mathbb{P}^1 \cong L \xrightarrow{\nu} E$ its normalization.

Theorem (Birkgoff, Grothendieck)

Let \mathcal{F} be a vector bundle of rank n on E. Then we have:

$$\nu^*(\mathcal{F}) \cong \mathcal{O}_L(c_1) \oplus \cdots \oplus \mathcal{O}_L(c_n), \quad c_1, \ldots, c_n \in \mathbb{Z}.$$

Lemma

Let \mathcal{F} be a simple vector bundle on E. Then we have:

$$\nu^*(\mathcal{F}) \cong \mathcal{O}_L(c)^{\oplus e} \oplus \mathcal{O}_L(c+1)^{\oplus d}, \quad c \in \mathbb{Z}, \ e, d \in \mathbb{N}.$$

Igor Burban (Cologne)

Bocses, vector bundles and CYBE

16 / 26

For a cuspidal cubic curve ${\cal E}$ consider the category

$$\mathsf{S}(E) = \Big\{ \mathcal{F} \in \mathsf{VB}(E) \, \big| \, \nu^* \mathcal{F} \in \mathsf{add}\big(\mathcal{O}_L \oplus \mathcal{O}_L(1)\big) \Big\}.$$

For a cuspidal cubic curve E consider the category

$$\mathsf{S}(E) = \Big\{ \mathcal{F} \in \mathsf{VB}(E) \, \big| \, \nu^* \mathcal{F} \in \mathsf{add}\big(\mathcal{O}_L \oplus \mathcal{O}_L(1)\big) \Big\}.$$

Theorem

The category S(E) is exact (extension closed)

For a cuspidal cubic curve E consider the category

$$\mathsf{S}(E) = \Big\{ \mathcal{F} \in \mathsf{VB}(E) \, \big| \, \nu^* \mathcal{F} \in \mathsf{add}\big(\mathcal{O}_L \oplus \mathcal{O}_L(1)\big) \Big\}.$$

Theorem

The category S(E) is exact (extension closed) and equivalent to the category of representations $\text{Rep}(\vec{Q}, \partial)$ of the differential biquiver

For a cuspidal cubic curve E consider the category

$$\mathsf{S}(E) = \Big\{ \mathcal{F} \in \mathsf{VB}(E) \, \big| \, \nu^* \mathcal{F} \in \mathsf{add}\big(\mathcal{O}_L \oplus \mathcal{O}_L(1)\big) \Big\}.$$

Theorem

The category S(E) is exact (extension closed) and equivalent to the category of representations $\text{Rep}(\vec{Q}, \partial)$ of the differential biquiver

$$a \underbrace{\bigcirc 0}^{1} \underbrace{\bigcirc u}_{b} \underbrace{\bigcirc 0}^{2} c \qquad \frac{\deg(a) = \deg(b) = \deg(c) = 0, \deg(u) = 1}{\partial(a) = bu, \partial(c) = -ub}$$
$$\frac{\partial(u) = 0 = \partial(b)}{\partial(u) = 0 = \partial(b)}$$

For a cuspidal cubic curve E consider the category

$$\mathsf{S}(E) = \Big\{ \mathcal{F} \in \mathsf{VB}(E) \, \big| \, \nu^* \mathcal{F} \in \mathsf{add}\big(\mathcal{O}_L \oplus \mathcal{O}_L(1)\big) \Big\}.$$

Theorem

The category S(E) is exact (extension closed) and equivalent to the category of representations $\text{Rep}(\vec{Q}, \partial)$ of the differential biquiver

Representations of *differential biquivers* alias *bocses* (bimodule over category with coalgebra structure) resp. *bimodule problems* have been introduced in 70-th by Drozd, Kleiner, Ovsienko and Roiter.

Igor Burban (Cologne)

Bocses, vector bundles and CYBE

$$(\vec{Q},\partial) = a \bigcap_{b}^{1} \overbrace{b}^{2} c$$

$$\begin{aligned} \partial(a) &= bu, \partial(c) = -ub \\ \partial(u) &= 0 = \partial(b) \end{aligned}$$

$$(\vec{Q}, \partial) = a \bigcap_{b}^{1} \overbrace_{b}^{u} \stackrel{2}{\longrightarrow} c \qquad \frac{\partial(a) = bu, \partial(c) = -ub}{\partial(u) = 0 = \partial(b)}$$

$$(\vec{Q}, \partial) = a \bigcap_{b}^{u} \overbrace_{b}^{2} c \qquad \begin{array}{c} \partial(a) = bu, \partial(c) = -ub \\ \partial(u) = 0 = \partial(b) \end{array}$$

$$(\vec{Q}, \partial) = a \bigcap_{b}^{u} \overbrace_{b}^{u} c \qquad \begin{array}{c} \partial(a) = bu, \partial(c) = -ub \\ \partial(u) = 0 = \partial(b) \end{array}$$

$$(\vec{Q}, \partial) = a \bigcap_{b}^{1} \overbrace{b}^{u} c \qquad \frac{\partial(a)}{\partial(u)} = \frac{\partial(a)}$$

 $\partial(a) = bu, \partial(c) = -ub$ $\partial(u) = 0 = \partial(b)$

$$(\vec{Q}, \partial) = a \bigcap_{b}^{u} \overbrace_{b}^{u} c \qquad \begin{array}{c} \partial(a) = bu, \partial(c) = \\ \partial(u) = 0 = \partial(b) \end{array}$$

The category $\operatorname{Rep}(\vec{Q}, \partial)$ is defined as follows (Roiter):

-ub

$$(\vec{Q}, \partial) = a \bigcap_{b}^{u} \overbrace_{b}^{u} c \qquad \begin{array}{c} \partial(a) = bu, \partial(c) = \\ \partial(u) = 0 = \partial(b) \end{array}$$

The category $\operatorname{Rep}(\vec{Q}, \partial)$ is defined as follows (Roiter):

-ub

$$(\vec{Q}, \partial) = a \bigcap_{b}^{1} \overbrace_{b}^{u} \stackrel{2}{\longrightarrow} c \qquad \frac{\partial(a) = bu, \partial(c) = -ub}{\partial(u) = 0 = \partial(b)}$$

Definition

For any pair $(e,d) \in \mathbb{N} \times \mathbb{N}$ such that gcd(e,d) = 1 we recursively define a matrix $J = J_{(e,d)} \in Mat_{(e+d) \times (e+d)}(k)$:

Definition

For any pair $(e,d) \in \mathbb{N} \times \mathbb{N}$ such that gcd(e,d) = 1 we recursively define a matrix $J = J_{(e,d)} \in Mat_{(e+d) \times (e+d)}(k)$:

$$J_{(1,1)} = \left(\begin{array}{c|c} 0 & 1\\ \hline \times & 0 \end{array}\right)$$

Definition

For any pair $(e,d) \in \mathbb{N} \times \mathbb{N}$ such that gcd(e,d) = 1 we recursively define a matrix $J = J_{(e,d)} \in Mat_{(e+d) \times (e+d)}(k)$:

$$J_{(1,1)} = \left(\begin{array}{c|c} 0 & 1\\ \hline \times & 0 \end{array}\right)$$

$$J_{(e,d)} = \left(\begin{array}{c|c} J_1 & J_2 \\ \hline \times & J_3 \end{array}\right) \longrightarrow$$

Igor Burban (Cologne)

Bocses, vector bundles and CYBE

Definition

For any pair $(e,d) \in \mathbb{N} \times \mathbb{N}$ such that gcd(e,d) = 1 we recursively define a matrix $J = J_{(e,d)} \in Mat_{(e+d) \times (e+d)}(k)$:

$$J_{(1,1)} = \left(\begin{array}{c|c} 0 & 1\\ \hline \times & 0 \end{array}\right)$$

$$J_{(e,d)} = \left(\begin{array}{c|c} J_1 & J_2 \\ \hline \times & J_3 \end{array}\right) \longrightarrow \begin{cases} J_{(e,e+d)} = \left(\begin{array}{c|c} 0 & I & 0 \\ \hline \times & J_1 & J_2 \\ \hline \times & 0 & J_3 \end{array}\right) \\ \end{array}$$

Definition

For any pair $(e,d) \in \mathbb{N} \times \mathbb{N}$ such that gcd(e,d) = 1 we recursively define a matrix $J = J_{(e,d)} \in Mat_{(e+d) \times (e+d)}(k)$:

$$J_{(1,1)} = \left(\begin{array}{c|c} 0 & 1\\ \hline \times & 0 \end{array}\right)$$

$$J_{(e,d)} = \begin{pmatrix} J_1 & J_2 \\ \hline \times & J_3 \end{pmatrix} \longrightarrow \begin{cases} J_{(e,e+d)} = \begin{pmatrix} 0 & I & 0 \\ \hline \times & J_1 & J_2 \\ \hline \times & 0 & J_3 \end{pmatrix} \\ J_{(e+d,d)} = \begin{pmatrix} J_1 & J_2 & 0 \\ 0 & J_3 & I \\ \hline \hline \times & \times & 0 \end{pmatrix} \end{cases}$$

Classification of simple objects

$$(\vec{Q},\partial) = a \bigcap_{b}^{1} \overbrace{b}^{u} c$$

$$\begin{array}{l} \partial(a)=bu, \partial(c)=-ub\\ \partial(u)=0=\partial(b) \end{array}$$

Classification of simple objects

$$(\vec{Q},\partial) = a \bigcap_{b}^{1} \overbrace{b}^{2} c$$

$$\begin{array}{l} \partial(a)=bu, \partial(c)=-ub\\ \partial(u)=0=\partial(b) \end{array}$$

Theorem (Bodnarchuk–Drozd)

Let
$$\operatorname{Rep}(\vec{Q}, \partial) \ni X = \left(\begin{array}{c|c} A & B \\ \hline \times & C \end{array}\right)$$
 be such that $\operatorname{End}(X) = \mathsf{k}$.
Classification of simple objects

$$(\vec{Q},\partial) = a \bigcap_{b}^{u} \overbrace_{b}^{2} c \qquad \frac{\partial(a)}{\partial(u)} c =$$

$$\begin{array}{l} \partial(a)=bu, \partial(c)=-ub\\ \partial(u)=0=\partial(b) \end{array}$$

Theorem (Bodnarchuk–Drozd)

Let
$$\operatorname{Rep}(\vec{Q}, \partial) \ni X = \left(\frac{A \mid B}{\times \mid C}\right)$$
 be such that $\operatorname{End}(X) = k$. Then for $\underline{\dim}(X) = (e, d)$ holds: $\operatorname{gcd}(e, d) = 1$

Classification of simple objects

$$(\vec{Q},\partial) = a \bigcap_{b}^{1} \overbrace_{b}^{2} \circ c \qquad \begin{array}{c} \partial(a) = bu, \partial(c) = \\ \partial(u) = 0 = \partial(b) \end{array}$$

Theorem (Bodnarchuk–Drozd)

Let $\operatorname{Rep}(\vec{Q}, \partial) \ni X = \left(\frac{A \mid B}{\times \mid C}\right)$ be such that $\operatorname{End}(X) = k$. Then for $\underline{\dim}(X) = (e, d)$ holds: $\operatorname{gcd}(e, d) = 1$ and there exists $\lambda \in k$ such that

$$X \simeq \lambda I + J_{(e,d)} = \left(\begin{array}{c|c} \lambda I + J_1 & J_2 \\ \hline \times & \lambda I + J_3 \end{array} \right).$$

Other way around, any such object is Schurian.

-ub

Classification of simple objects

$$(\vec{Q}, \partial) = a \bigcap_{b}^{1} \overbrace{b}^{2} c \qquad \frac{\partial(a) = bu, \partial(c) = bu, \partial(c$$

Theorem (Bodnarchuk–Drozd)

Let $\operatorname{Rep}(\vec{Q}, \partial) \ni X = \left(\frac{A \mid B}{\times \mid C}\right)$ be such that $\operatorname{End}(X) = k$. Then for $\underline{\dim}(X) = (e, d)$ holds: $\operatorname{gcd}(e, d) = 1$ and there exists $\lambda \in k$ such that

$$X \simeq \lambda I + J_{(e,d)} = \left(\begin{array}{c|c} \lambda I + J_1 & J_2 \\ \hline \times & \lambda I + J_3 \end{array} \right)$$

Other way around, any such object is Schurian. In terms of the equivalence of categories

$$\mathsf{Rep}(\vec{Q},\partial) \longrightarrow \mathsf{S}(E) := \left\{ \mathcal{F} \in \mathsf{VB}(E) \, \big| \, \nu^* \mathcal{F} \in \mathsf{add} \big(\mathcal{O}_L \oplus \mathcal{O}_L(1) \big) \right\}$$

it describes all simple vector bundles on $E = V(zy^2 - x^3)$.

Igor Burban (Cologne)

-ub

Theorem (Burban-Henrich)

Let gcd(e, d) = 1, n = e + d and

$$\mathfrak{p} = \mathfrak{p}_e = \left\{ X = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array} \right) \right\} \subset \mathfrak{sl}_n(\mathsf{k})$$

be the e-th parabolic subalgebra of $\mathfrak{sl}_n(k)$ and

Theorem (Burban-Henrich)

Let gcd(e, d) = 1, n = e + d and

$$\mathfrak{p} = \mathfrak{p}_e = \left\{ X = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array} \right) \right\} \subset \mathfrak{sl}_n(\mathsf{k})$$

be the e-th parabolic subalgebra of $\mathfrak{sl}_n(\mathsf{k})$ and

$$J_{(e,d)} = \left(\begin{array}{c|c} J_1 & J_2 \\ \hline \times & J_3 \end{array}\right)$$

be the matrix from above.

Theorem (Burban-Henrich)

Let gcd(e, d) = 1, n = e + d and

$$\mathfrak{p} = \mathfrak{p}_e = \left\{ X = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array} \right) \right\} \subset \mathfrak{sl}_n(\mathsf{k})$$

be the e-th parabolic subalgebra of $\mathfrak{sl}_n(\mathsf{k})$ and

$$J_{(e,d)} = \left(\begin{array}{c|c} J_1 & J_2 \\ \hline \times & J_3 \end{array}\right)$$

be the matrix from above. Then the pairing

$$\mathfrak{p}\times\mathfrak{p}\longrightarrow\mathsf{k},\quad (X,Y)\mapsto\mathsf{tr}\bigl(J^t[X,Y]\bigr)$$

is non-degenerate.

Theorem (Burban-Henrich)

Let gcd(e, d) = 1, n = e + d and

$$\mathfrak{p} = \mathfrak{p}_e = \left\{ X = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array} \right) \right\} \subset \mathfrak{sl}_n(\mathsf{k})$$

be the e-th parabolic subalgebra of $\mathfrak{sl}_n(\mathsf{k})$ and

$$J_{(e,d)} = \left(\begin{array}{c|c} J_1 & J_2 \\ \hline \times & J_3 \end{array}\right)$$

be the matrix from above. Then the pairing

$$\mathfrak{p} \times \mathfrak{p} \longrightarrow \mathsf{k}, \quad (X, Y) \mapsto \mathsf{tr} \left(J^t[X, Y] \right)$$

is non-degenerate. In other words, the Lie algebra $\mathfrak p$ is Frobenius (Ooms, Elashvili).

Igor Burban (Cologne)

Theorem (Stolin)

Rational solutions of CYBE

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

are parameterized by triples (\mathfrak{l},k,ω) consisting of

Theorem (Stolin)

Rational solutions of CYBE

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

are parameterized by triples (\mathfrak{l},k,ω) consisting of

• a Lie subalgebra $\mathfrak{l} \subseteq \mathfrak{g}$,

Theorem (Stolin)

Rational solutions of CYBE

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

are parameterized by triples (\mathfrak{l},k,ω) consisting of

- a Lie subalgebra $\mathfrak{l} \subseteq \mathfrak{g}$,
- an integer k such that $0 \le k \le n$,

Theorem (Stolin)

Rational solutions of CYBE

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

are parameterized by triples (\mathfrak{l},k,ω) consisting of

- a Lie subalgebra $\mathfrak{l} \subseteq \mathfrak{g}$,
- an integer k such that $0 \leq k \leq n$,

• a 2-cocycle
$$\omega : \mathfrak{l} \times \mathfrak{l} \to \mathbb{C}$$
, i.e.

$$\omega([a,b],c) + \omega([b,c],a) + \omega([c,a],b) = 0$$

such that

Theorem (Stolin)

Rational solutions of CYBE

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

are parameterized by triples (\mathfrak{l},k,ω) consisting of

- a Lie subalgebra $\mathfrak{l} \subseteq \mathfrak{g}$,
- an integer k such that $0 \leq k \leq n$,

• a 2-cocycle
$$\omega : \mathfrak{l} \times \mathfrak{l} \to \mathbb{C}$$
, i.e.

$$\omega([a,b],c) + \omega([b,c],a) + \omega([c,a],b) = 0$$

such that

•
$$\mathfrak{l} + \mathfrak{p}_k = \mathfrak{g}$$

Theorem (Stolin)

Rational solutions of CYBE

$$\left[r^{12}(x), r^{23}(y)\right] + \left[r^{12}(x), r^{13}(x+y)\right] + \left[r^{13}(x+y), r^{23}(y)\right] = 0.$$

are parameterized by triples (\mathfrak{l},k,ω) consisting of

- a Lie subalgebra $\mathfrak{l} \subseteq \mathfrak{g}$,
- an integer k such that $0 \leq k \leq n$,

• a 2-cocycle
$$\omega : \mathfrak{l} \times \mathfrak{l} \to \mathbb{C}$$
, i.e.

$$\omega([a,b],c) + \omega([b,c],a) + \omega([c,a],b) = 0$$

such that

ι + p_k = g
ω is non-degenerate on (ι ∩ p_k) × (ι ∩ p_k).

Theorem (Stolin)

Rational solutions of CYBE

 $\left[r^{12}(x),r^{23}(y)\right] + \left[r^{12}(x),r^{13}(x+y)\right] + \left[r^{13}(x+y),r^{23}(y)\right] = 0.$

are parameterized by triples (\mathfrak{l},k,ω) consisting of

- a Lie subalgebra $\mathfrak{l} \subseteq \mathfrak{g}$,
- an integer k such that $0 \leq k \leq n$,

• a 2-cocycle
$$\omega : \mathfrak{l} \times \mathfrak{l} \to \mathbb{C}$$
, i.e.

$$\omega([a,b],c) + \omega([b,c],a) + \omega([c,a],b) = 0$$

such that

ι + p_k = g
ω is non-degenerate on (ι ∩ p_k) × (ι ∩ p_k).

If $H^2(\mathfrak{l}) = 0$ then the choice of ω is redundant.

Cuspidal solutions of CYBE

Cuspidal solutions of CYBE

$$[r^{12}(x_1, x_2), r^{23}(x_2, x_3)] + [r^{12}(x_1, x_2), r^{13}(x_1, x_3)] + [r^{13}(x_1, x_3), r^{23}(x_2, x_3)] = 0.$$

Cuspidal solutions of CYBE

$$[r^{12}(x_1, x_2), r^{23}(x_2, x_3)] + [r^{12}(x_1, x_2), r^{13}(x_1, x_3)] + [r^{13}(x_1, x_3), r^{23}(x_2, x_3)] = 0.$$

Theorem (Burban, Henrich)

Let $E = V(uv^2 - w^3)$ and 0 < d < n be mutually prime. Then we have:

 $r_{(E,(n,d))} = r_{(\mathfrak{sl}_n(\mathbb{C}), n-d, \omega_J)}$

Cuspidal solutions of CYBE

$$[r^{12}(x_1, x_2), r^{23}(x_2, x_3)] + [r^{12}(x_1, x_2), r^{13}(x_1, x_3)] + [r^{13}(x_1, x_3), r^{23}(x_2, x_3)] = 0.$$

Theorem (Burban, Henrich)

Let $E = V(uv^2 - w^3)$ and 0 < d < n be mutually prime. Then we have:

$$r_{(E,(n,d))} = r_{(\mathfrak{sl}_n(\mathbb{C}), n-d, \omega_J)}$$

Corollary

The rational solution $r_{(\mathfrak{sl}_n(\mathbb{C}),n-d)}$ is a degeneration of Belavin's elliptic r-matrix corresponding to the root of unity $\varepsilon = \exp(\frac{2\pi i d}{n})$.

Solution $r_{(E,(n,1))}$ for E cuspidal

Solution $r_{(E,(n,1))}$ for E cuspidal

$$\begin{aligned} r(x_1, x_2) &= \frac{\Omega}{x_2 - x_1} + \\ x_1 \Big[e_{1,2} \otimes \check{h}_1 - \sum_{j=3}^n e_{1,j} \otimes \sum_{k=1}^{n-j+1} e_{j+k-1,k+1} \Big] - x_2 \Big[\check{h}_1 \otimes e_{1,2} - \sum_{j=3}^n \sum_{k=1}^{n-j+1} e_{j+k-1,k+1} \otimes e_{1,j} \Big] \\ &+ \sum_{j=2}^{n-1} e_{1,j} \otimes \sum_{k=1}^{n-j} e_{j+k,k+1} + \sum_{i=2}^{n-1} e_{i,i+1} \otimes \check{h}_i - \sum_{j=2}^{n-1} \sum_{k=1}^{n-j} e_{j+k,k+1} \otimes e_{1,j} - \sum_{i=2}^{n-1} \check{h}_i \otimes e_{i,i+1} + \\ &+ \end{aligned}$$

$$+\sum_{i=2}^{n-2}\sum_{k=2}^{n-i}\sum_{l=1}^{n-i-k+1}e_{i+k+l-1,l+i}\otimes e_{i,i+k}-\sum_{i=2}^{n-2}\sum_{k=2}^{n-i}e_{i,i+k}\otimes\sum_{l=1}^{n-i-k+1}e_{i+k+l-1,l+i}.$$

Thank you for your attention!