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Classical Yang–Baxter equation–I

Let g be a simple complex Lie algebra.

Definition (CYBE)

Find meromorphic r : C −→ g⊗ g such that[
r12(x), r23(y)

]
+
[
r12(x), r13(x+ y)

]
+
[
r13(x+ y), r23(y)

]
= 0.

Notation:
r13 : C r−→ g⊗ g

ρ13−→ U ⊗ U ⊗ U

ρ13(u⊗ v) = u⊗ 1⊗ v and U is the universal enveloping algebra of g.

Applications of CYBE:

integrable systems

mathematical physics

representation theory
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Solutions of
[
r12(x), r23(y)

]
+
[
r12(x), r13(x+ y)

]
+
[
r13(x+ y), r23(y)

]
= 0.

Let g = sl(2,C) and h =

(
1 0
0 −1

)
e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
.

1 Rational solution of Yang (1968)

r(z) =
1

z

(1

2
h⊗ h+ e⊗ f + f ⊗ e

)
.

2 Trigonometric solution of Baxter (1971)

r(z) =
1

2
cot(z)h⊗ h+

1

sin(z)
(e⊗ f + f ⊗ e).

3 Elliptic solution of Baxter (1971)

r(z) =
cn(z)

sn(z)
h⊗h+

1 + dn(z)

sn(z)
(e⊗f+f⊗e)+(e⊗e+f⊗f)

1− dn(z)

sn(z)
.
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Classical Yang–Baxter equation–II

Why is it difficult to find a solution of CYBE?[
r12(x), r23(y)

]
+
[
r12(x), r13(x+ y)

]
+
[
r13(x+ y), r23(y)

]
= 0.

If dim(g) = m then r : C −→ g⊗ g is given

by m2 parameters

satisfying ∼ m3 quadratic constraints.

Hence, CYBE is a highly overdetermined system of algebraic equations.

Theorem (Belavin–Drinfeld, 1983)

There are three types of non–degenerate solutions of CYBE:

1 elliptic

2 trigonometric

3 rational

Moreover, all elliptic and trigonometric solutions have been classified.
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Weierstraß family of cubic curves

Let E = V (y2 − 4x3 − g2x− g3), where g2, g3 ∈ C.

••
•

If ∆ = g3
2 + 27g2

2 6= 0 then E is elliptic.

If ∆ = 0 but (g2, g3) 6= 0 then E is nodal.

If (g2, g3) = (0, 0) then E is cuspidal.
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Vector bundles on Weierstraß curves

Theorem (Atiyah)

Let E be an elliptic curve. Then an indecomposable vector bundle on E is
determined by its rang, degree and a point on E (tameness).

Theorem (Atiyah)

Let (n, d) ∈ N× Z, gcd(n, d) = 1.

M
(n,d)
E :=

{
F ∈ VB(E)

∣∣ End(F) = C, rk(F) = n, deg(F) = d
}

Then we have:

det : M
(n,d)
E −→ Picd(E) is a bijection.

Pic0(E) acts transitively on M
(n,d)
E .

Theorem (Bodnarchuk, Burban, Drozd, Greuel)

The last result is also true for the degenerate elliptic curves.
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Geometric approach to CYBE

Fix a Weierstraß curve E and (n, d) ∈ N× Z : gcd(n, d) = 1.

For P ∈ M
(n,d)
E consider the sheaf of Lie algebras A = Ad(P):

0 −→ Ad(P) −→ End(P) −→ O −→ 0.

Observations:

A
∣∣
x
∼= g := sln(C).

A does not depend on the choice of P (Pic0 action is transitive!).

End(P) = C implies that H0(A) = 0 = H1(A).

Let x 6= y ∈ Ereg. We have canonical linear maps:

Evaluation map: H0
(
A(x)

) evy−→ A
∣∣
y

Residue map: H0
(
A(x)

) resx−→ A
∣∣
x

induced by Ω(x)
resx−→ Cx. Here we

use that Ω ∼= O!

The maps resx and evy are isomorphisms (generically).
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Geometric approach to CYBE

A = An,d = Ad(P) is a sheaf of Lie algebras, x ∈ Ereg. Choose an
isomorphism of Lie algebras ξx : A

∣∣
x
−→ g. We get a linear map

g
ξ−1
x−→ A

∣∣
x

res−1
x−→ H0

(
A(x)

) evy−→ A
∣∣
y

ξy−→ g

The Killing form induces: End(g)
'−→ g⊗ g 3 rξ(E,(n,d))(x, y).

Theorem

The tensor rξ(E,(n,d))(x, y) ∈ g⊗ g is a solution of CYBE.

[r12(x1, x2), r13(x1, x3)] + [r13(x1, x3), r23(x2, x3)]+

+[r12(x1, x2), r23(x2, x3)] = 0.

Polishchuk (2001): elliptic curves, some nodal degenerations.
Cherednik (1983): first ideas in this direction.
Burban, Henrich (2012): degenerate elliptic curves, relative setting.
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Idea of the proof-I

Let P ∈ M
(n,d)
E . Consider the triple Massey product

m3 : Hom(P,Cx)⊗ Ext(Cx,P)⊗Hom(P,Cy) −→ Hom(P,Cy).

Serre duality: Hom(F ,G) ∼= Ext(G,F)∗ implies that

Hom(P,Cx)⊗ Ext(Cx,P) ∼= EndC
(
Hom(P,Cx)

)
.

Using Lin(U ⊗ V,W ) ' Lin(U, V ∗ ⊗W ) we see that m3 yields

mx,y : EndC
(
Hom(P,Cx)

)
−→ EndC

(
Hom(P,Cy)

)
which restricts on the linear map

mx,y : sl
(
Hom(P,Cx)

)
−→ pgl

(
Hom(P,Cy)

)
.

Let mx,y ∈ pgl
(
Hom(P, kx)

)
⊗ pgl

(
Hom(P, ky)

)
be the tensor

corresponding to mx,y.
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Idea of the proof–II

Theorem (Polishchuk, Burban–Henrich)

The following diagram of vector spaces

A
∣∣
x

' // sl
(
Hom(P, kx)

)

mx,y

��

H0
(
A(x)

)resx

OO

evy

��
A
∣∣
y

' // pgl
(
Hom(P, ky)

)
is commutative, where A = Ad(P) and CYBE relation[

m12
x1,x2 ,m

13
x1,x3

]
+
[
m12
x1,x2 ,m

23
x2,x3

]
+
[
m12
x1,x2 ,m

13
x1,x3

]
= 0

holds.
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Idea of the proof–III (Polishchuk)

The CYBE relation[
m12
x1,x2 ,m

13
x1,x3

]
+
[
m12
x1,x2 ,m

23
x2,x3

]
+
[
m12
x1,x2 ,m

13
x1,x3

]
= 0

is a consequence of the following two ingredients:

The A∞–constraint in Db
(
Coh(E)

)
:

m3 ◦
(
m3 ⊗ 1⊗ 1 + 1⊗m3 ⊗ 1 + 1⊗ 1⊗m3

)
+ · · · = 0

Existence of a cyclic A∞–structure:〈
m3(a1 ⊗ ω1 ⊗ a2), ω2

〉
= −

〈
a1,m3(ω1 ⊗ a2 ⊗ ω2)

〉
which also implies unitarity: m12

x,y = −m21
y,x.
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Summary

Fix a triple
(
E, (n, d)

)
, where

0 < d < n, gcd(n, d) = 1

E = Eg2,g3 is a Weierstraß cubic curve:

••
•

Then we get a family of solutions

r((g2,g3),(n,d))(x1, x2) ∈ sln(C)⊗ sln(C)

of the classical Yang–Baxter equation.
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Example: solution rξ(E,(n,d)) for (n, d) = (2, 1)

1 E smooth: elliptic solution of Baxter

r(z) =
cn(z)

sn(z)
h⊗h+

1 + dn(z)

sn(z)
(e⊗f+f⊗e)+(e⊗e+f⊗f)

1− dn(z)

sn(z)
.

2 E nodal: Cherednik’s trigonometric solution

r(z) =
1

2
cot(z)h⊗ h+

1

sin(z)
(e⊗ f + f ⊗ e) + sin(z)e⊗ e.

3 E cuspidal: rational solution of Stolin

r(z) =
1

z

(1

2
h⊗ h+ e⊗ f + f ⊗ e

)
+ z(f ⊗ h+ h⊗ f)− z3f ⊗ f.
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Elliptic solutions–I

Let 0 < d < n, gcd(n, d) = 1 and ε = exp
(

2πid
n

)
X =


1 0 . . . 0
0 ε . . . 0
...

...
. . .

...
0 0 . . . εn−1

 Y =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
1 0 . . . 0

 .

Proposition

The sheaf of Lie algebras A = An,d on the torus E = C/〈1, τ〉 has the
following description: A ∼= C× g/ ', where

(z,G) ∼ (z + 1, XGX−1) ∼ (z + τ, Y GY −1).

It is a key fact to carry out computations!

A
∣∣
x

resx←− H0
(
A(x)

) evy−→ A
∣∣
y

and H0
(
A(x)

)
can be expressed in terms of theta–functions.
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Elliptic solutions–II

Theorem (Burban–Henrich, 2012)

We get the following elliptic solution r(E,(n,d)) of CYBE:

r(E,(n,d))(x, y) =
∑

(k,l)∈I

exp
(
−2πid

n
kz
)
σ
( d
n

(
l − kτ

)
, z
)
Z∨k,l ⊗ Zk,l

where

Zk,l = Y kX−l, Z∨k,l = 1
nX

lY −k.

z = y − x

σ(a, z) = 2πi
∑
n∈Z

exp(−2πinz)
1− exp

(
−2πi(a− 2πinτ)

) is the Kronecker

elliptic function.

We get precisely the elliptic r–matrix of Belavin! Another derivation of
this formula based on the elliptic loop algebra A = Γ(E \ {o},A) was
obtained by Reiman and Semenov-Tyan-Shansky (1985).
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Vector bundles on the cuspidal curve

Let E = V (zy2 − x3) ⊂ P2 be a cuspidal cubic curve and P1 ∼= L
ν−→ E

its normalization.

•

EL

• ν //

Theorem (Birkgoff, Grothendieck)

Let F be a vector bundle of rank n on E. Then we have:

ν∗(F) ∼= OL(c1)⊕ · · · ⊕ OL(cn), c1, . . . , cn ∈ Z.

Lemma

Let F be a simple vector bundle on E. Then we have:

ν∗(F) ∼= OL(c)⊕e ⊕OL(c+ 1)⊕d, c ∈ Z, e, d ∈ N.
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Vector bundles and bocses

Definition

For a cuspidal cubic curve E consider the category

S(E) =
{
F ∈ VB(E)

∣∣ ν∗F ∈ add
(
OL ⊕OL(1)

)}
.

Theorem

The category S(E) is exact (extension closed) and equivalent to the
category of representations Rep( ~Q, ∂) of the differential biquiver

a c
2

b

1
u deg(a) = deg(b) = deg(c) = 0,deg(u) = 1

∂(a) = bu, ∂(c) = −ub
∂(u) = 0 = ∂(b)

Representations of differential biquivers alias bocses (bimodule over
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Representations of bocses

( ~Q, ∂) = a c
2

b

1
u

∂(a) = bu, ∂(c) = −ub
∂(u) = 0 = ∂(b)

The category Rep( ~Q, ∂) is defined as follows (Roiter):

A C
knBkm

Ã C̃
kñB̃km̃

Ω1 Ω2
U

(
Ω1 0
U Ω2

)(
A B
× C

)
=

(
Ã B̃

× C̃

)(
Ω1 0
U Ω2

)
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Canonical form

Definition

For any pair (e, d) ∈ N× N such that gcd(e, d) = 1 we recursively define a
matrix J = J(e,d) ∈ Mat(e+d)×(e+d)(k) :

J(1,1) =

(
0 1

× 0

)

J(e,d) =

(
J1 J2

× J3

)
−→



J(e,e+d) =

 0 I 0

× J1 J2

× 0 J3


J(e+d,d) =

 J1 J2 0

0 J3 I

× × 0
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Computation of a canonical form

Example

Let (e, d) = (2, 3). Then J(2,3) is the following matrix

0 1

0
→

0 1 0

0 0 1

0

→

0 0 1 0 0

0 0 0 1 0

0 1 0

0 0 1

0 0 0
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Classification of simple objects

( ~Q, ∂) = a c
2

b

1
u

∂(a) = bu, ∂(c) = −ub
∂(u) = 0 = ∂(b)

Theorem (Bodnarchuk–Drozd)

Let Rep( ~Q, ∂) 3 X =

(
A B

× C

)
be such that End(X) = k. Then for

dim(X) = (e, d) holds: gcd(e, d) = 1 and there exists λ ∈ k such that

X ' λI + J(e,d) =

(
λI + J1 J2

× λI + J3

)
.

Other way around, any such object is Schurian. In terms of the
equivalence of categories

Rep( ~Q, ∂) −→ S(E) :=
{
F ∈ VB(E)

∣∣ ν∗F ∈ add
(
OL ⊕OL(1)

)}
it describes all simple vector bundles on E = V (zy2 − x3).
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Frobenius Lie algebras

Theorem (Burban–Henrich)

Let gcd(e, d) = 1, n = e+ d and

p = pe =

{
X =

(
A B

0 C

)}
⊂ sln(k)

be the e-th parabolic subalgebra of sln(k) and

J(e,d) =

(
J1 J2

× J3

)
be the matrix from above.Then the pairing

p× p −→ k, (X,Y ) 7→ tr
(
J t[X,Y ]

)
is non-degenerate. In other words, the Lie algebra p is Frobenius (Ooms,
Elashvili).
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Stolin’s theory of rational solutions

Theorem (Stolin)

Rational solutions of CYBE[
r12(x), r23(y)

]
+
[
r12(x), r13(x+ y)

]
+
[
r13(x+ y), r23(y)

]
= 0.

are parameterized by triples (l, k, ω) consisting of

a Lie subalgebra l ⊆ g,

an integer k such that 0 ≤ k ≤ n,

a 2-cocycle ω : l× l→ C, i.e.

ω
(
[a, b] , c

)
+ ω

(
[b, c] , a

)
+ ω

(
[c, a] , b

)
= 0

such that

l + pk = g
ω is non–degenerate on (l ∩ pk)× (l ∩ pk).

If H2(l) = 0 then the choice of ω is redundant.
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Cuspidal solutions of CYBE

[
r12(x1, x2), r23(x2, x3)

]
+
[
r12(x1, x2), r13(x1, x3)

]
+
[
r13(x1, x3), r23(x2, x3)

]
= 0.

Theorem (Burban, Henrich)

Let E = V (uv2 − w3) and 0 < d < n be mutually prime. Then we have:

r(E,(n,d)) = r(sln(C),n−d,ωJ )

Corollary

The rational solution r(sln(C),n−d) is a degeneration of Belavin’s elliptic

r–matrix corresponding to the root of unity ε = exp(2πid
n ).
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Solution r(E,(n,1)) for E cuspidal

r(x1, x2) =
Ω

x2 − x1
+

x1
[
e1,2 ⊗ ȟ1 −

n∑
j=3

e1,j ⊗
n−j+1∑
k=1

ej+k−1,k+1

]
− x2

[
ȟ1 ⊗ e1,2 −

n∑
j=3

n−j+1∑
k=1

ej+k−1,k+1 ⊗ e1,j
]

+

n−1∑
j=2

e1,j ⊗
n−j∑
k=1

ej+k,k+1 +

n−1∑
i=2

ei,i+1 ⊗ ȟi −
n−1∑
j=2

n−j∑
k=1

ej+k,k+1 ⊗ e1,j −
n−1∑
i=2

ȟi ⊗ ei,i+1+

+

+

n−2∑
i=2

n−i∑
k=2

n−i−k+1∑
l=1

ei+k+l−1,l+i ⊗ ei,i+k −
n−2∑
i=2

n−i∑
k=2

ei,i+k ⊗
n−i−k+1∑

l=1

ei+k+l−1,l+i.
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Thank you for your attention!
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