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Silting theory in commutative algebra

(Lectures: Jan Št’ov́ıček, Exercise class: Michal Hrbek)
Stuttgart, 30th July – 3rd August 2019

1. First examples of silting modules. Let R be a ring.

(a) Prove that the zero module is a silting module.

(b) Prove that if R = S × T as rings, then S is a silting R-module.

(c) Prove that Q⊕Q/Z is a silting Z-module.

2. Basic geometric examples and properties of commutative rings1. Let I ⊆ C[x1, . . . , xn] be an
ideal and X = V (I) ⊆ Cn the set of zeros of all the polynomials f ∈ I.

(a) (Hilbert’s Nullstellensatz, [3, §§1.7–1.10]) Show that the maximal ideals of C[x1, . . . , xn]/I, the
coordinate ring of X, bijectively correspond to the elements of X via

a = (a1, . . . , an) ∈ X 7→ {f | f(a) = 0}.

(b) If R is a commutative ring, the Krull dimension of R is defined as

dimR = sup{d ≥ 0 | ∃ a chain p0 ⊆ p1 ⊆ · · · ⊆ pd in SpecR}.

Show that if 0 6= f ∈ C[x, y], the Krull dimension of R = C[x, y]/(f) equals one and describe the
poset of prime ideals of R with respect to the inclusion (Hint : [3, §1.6]).

(c) A commutative local noetherian ring (R,m) is called regular [2, §10.3] if the vector space dimension
of m/m2 over the residue field R/m equals the Krull dimension of R.

Show that if R is the localization of C[x1, . . . , xn]/I as above at the maximal ideal ma correspond-
ing to a point a ∈ X, then R is regular if and only if the set X is smooth at a [2, §16.6]. Here,
smooth means that if we fix a set of generators f1, . . . , fm ∈ C[x1, . . . , xn] for I, then the rank of
the Jacobi matrix (

∂fi
∂xj

(a)

)
1≤i≤m,1≤j≤n

(which is a matrix of complex numbers) equals n− dimR. This in fact equivalently says that one
can use the implicit function theorem to analytically express X as a function of dimR parameters
around the point a).

(d) A general commutative noetherian ring is regular if the localization Rm at all maximal ideals is
regular. Show that C[x, y]/(y2 − x(x2 − 1)) is regular and one-dimensional (such rings are called
Dedekind domains), while the ring C[x, y]/(y2 − x2(x+ 1)) is one-dimensional, but not regular.

1This part should mainly serve as a source of concrete examples for the following exercises.
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3. One-dimensional commutative noetherian domains and silting classes and modules over
them.

(a) If R is a one-dimensional commutative noetherian domain and m ⊆ R is a maximal ideal and
0 6= x ∈ m, then we have the following pullback diagram:

R
⊆ // Rm

I
⊆
//

⊆

OO

x ·Rm

⊆

OO

Prove that the ideal I is stalk-wise projective, and therefore projective over R. Moreover, show
that the support of R/I is precisely m.

(b) If Q is the quotient field of R, we obtain a subring S of Q by the following construction.

f : R
⊆→ S = {q ∈ Q | (∃n)(q · In = 0)}

= lim−→(R ⊆ I−1 ⊆ I−2 ⊆ · · · ).

Show that f is the flat ring epimorphism corresponding to the specialization closed subset V = {m}
of Spec(R).

(c) Show that the silting class corresponding to V = {m} is

Gen(S) = {X ∈ Mod-R | Xm = X}

and the corresponding silting module is S ⊕ S/R. The cosilting class and module are dual.

(d) Show that any silting class D is induced by a silting module of the form S ⊕ Coker(λ), where
λ : R→ S is a flat ring epimorphism.

4. Regular commutative noetherian domains and silting classes and modules over them.
Show that a construction similar to the previous exercise works in case that R is a regular domain,
and V = V (p), where p is a prime ideal of height one. Then R is locally a factorial domain (= the
localizations at all prime ideals are unique factorization domains [2, Theorem 19.19]), so p is locally
a principal ideal, so locally projective, so a projective ideal. Then again we have that the flat ring
epimorphism corresponding to V (p) can be constructed as

f : R
⊆→ S = {q ∈ Q | (∃n)(q · pn = 0)}

= lim−→(R ⊆ p−1 ⊆ p−2 ⊆ · · · ),

and S ⊕ S/R is a silting module corresponding to V (p).

5. The Picard group of Dedekind domains. Let R be a commutative ring.

(a) An R-module M is invertible if there is an R-module N such that M ⊗R N ' R.

(b) Show that any invertible R-module is projective and finitely generated.

(c) Show that a finitely generated R-module is projective if and only if it is locally free of rank 1.

(d) Let R be a Dedekind domain. Show that invertible R-modules are, up to isomorphism, precisely
the fractional ideals of R.
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(e) The Picard group is a commutative group consisting of all invertible R-modules, together with
the operation ⊗R and unit R. Show that if R is a Dedekind domain such that the Picard group
contains a non-torsion element2, then there is a universal localization of R which is not a classical
localization.

6. Tilting modules. Let σ : P1 → P0 be a two-term silting complex and let T = Coker(σ) be the
associated silting module.

(a) Let σ′ : P1 → Im(σ) be the corestriction of σ onto its image. Show that

Dσ = Dσ′ ∩Ker Ext 1
R(T,−).

Reminder: If λ : Q1 → Q0 is a map between modules, we define the class of modules Dλ = {M |
HomR(λ,M) is surjective}.

(b) Assume that T is faithful, that is, its annihilator AnnT = {r ∈ R | T · r = 0} is zero. Then T is a
silting module with respect to a monomorphic map between projectives. In particular, pdR T ≤ 1.
(Hint : P1 is a submodule of some module from gen(T ).)

(c) Conclude that a silting module T is faithful if and only if it is a tilting module, that is, if and
only if the condition Gen(T ) = Ker Ext1R(T,−) holds.

(d) Suppose that T is a tilting module. Show that any monomorphic projective presentation of T is
a two-term silting complex.

7. A warning example. For a general V ⊆ SpecR, which is specialization closed and corresponding to a
flat epimorphisms f : R→ S, we cannot always construct the silting module as S⊕S/R. The simplest

such example seems to be R = C[x, y], S = C(x, y), and the natural flat epimorphism f : R
⊆→ S, which

corresponds to the specialization set V = SpecC[x, y] \ {0}.

(a) The projective dimension of S over R equals two [5]3.

(b) Conclude that S ⊕ S/R is not a silting module.

(c) Construct the corresponding silting module (one can use the construction of Fuchs from [4, Ex-
ample 13.4]).
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[4] R. Göbel, J. Trlifaj, Approximations and endomorphism algebras of modules, Volume 1. Approximations,
Second revised and extended edition, De Gruyter, 2012.

[5] I. Kaplansky, The homological dimension of a quotient field, Nagoya Math. J., Volume 27, Part 1 (1966),
139–142.

2Such Dedekind domains do exist! Indeed, Claborn [1] showed that any abelian group can be realized as the Picard group
of a Dedekind domain.

3This is a very non-trivial theorem!
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