TWO WEEKS OF SILTING TILTING THEORY OF PREPROJECTIVE ALGEBRAS AND COHEN-MACAULAY MODULES 2

Throughout, let Λ be a finite dimensional algebra over a field k.

- **1.** Prove that $\operatorname{tors} \Lambda$ is a complete lattice.
- **2.** Is f-tors Λ always a lattice?
- **3.** Draw the Hasse quiver of $s\tau$ -tilt Λ for the algebra $\Lambda = k[1 \xrightarrow{a} 2 \xrightarrow{b} 3]/(ab)$.
- 4. Prove the following statements.
 - (1) Let $P_1 \xrightarrow{f} P_0 \to X \to 0$ be a minimal projective presentation of $X \in \mathsf{mod} \Lambda$. Then X is τ -rigid if and only if the map $\operatorname{Hom}_{\Lambda}(P_0, X) \xrightarrow{f} \operatorname{Hom}_{\Lambda}(P_1, X)$ is surjective.
 - (2) Each τ -rigid module is rigid (i.e. $\operatorname{Ext}^{1}_{\Lambda}(X, X) = 0$). [Hint: Use (1).]
 - (3) Let I be a 2-sided ideal of Λ . If X is a τ -rigid Λ -module, then X/IX is a τ -rigid (Λ/I) -module. [Hint: Use (1).]
- 5. Prove the following statements.
 - (1) Each faithful τ -rigid module has projective dimension at most one. [Hint: Use 4(1).]
 - (2) If (X, P) is τ -rigid, then X is a partial tilting (Λ/I) -module for the annihilator I of X. In particular, $|X| + |P| \leq |\Lambda|$. [Hint: Use (1) and 4(2)(3).]
 - (3) If $(X, P) \in s\tau$ -tilt Λ , then the simple Λ -modules which do *not* appear in X as composition factors are precisely the simple direct summands of $P/ \operatorname{rad} P$. [Hint: Use (2).]
 - (4) If $(X, P), (X, Q) \in s\tau$ -tilt Λ , then add P = add Q. [Hint: Use (3).]
- **6.** Prove the following statements for $M \in \operatorname{mod} \Lambda$ and $\mathcal{T} \in \operatorname{tors} \Lambda$.
 - (1) Fac M is contravariantly finite subcategory of mod Λ .
 - (2)* Fac M is a covariantly finite subcategory of mod Λ . [Hint: For given $X \in \text{mod } \Lambda$, consider a left (add M)-approximation of a projective cover of X.]
 - (3) \mathcal{T} is functorially finite if and only if there exists $M \in \text{mod }\Lambda$ such that $\mathcal{T} = \text{Fac } M$. [Hint: Use (1)(2).]
- 7. Let X be a τ -rigid Λ -module. Prove the following statements.
 - (1) $\operatorname{Ext}^{1}_{\Lambda}(X, \operatorname{Fac} X) = 0$. [Hint: Use Auslander-Reiten duality.]
 - (2) $\operatorname{Fac} X$ is a torsion class.

8. Let $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \subsetneq \mathcal{T}_3 \subsetneq \cdots$ be a strictly increasing sequence of torsion classes in $\operatorname{\mathsf{mod}} \Lambda$. Prove that $\bigcup_{i>1} \mathcal{T}_i$ is *not* functorially finite.

For silting complexes T and U of Λ , we write $T \ge U$ if $\operatorname{Hom}_{\mathsf{K}^{\mathsf{b}}(\operatorname{proj}\Lambda)}(T, U[i]) = 0$ for all i > 0. (Opposite to David's talk.)

9. Let S and T be silting complexes of Λ such that $S \ge T \ge S[1]$, and let X be an indecomposable direct summand of T. Prove the following statements.

- (1) There exists a triangle $S \to T' \xrightarrow{f} T'' \to S[1]$ such that $T', T'' \in \operatorname{\mathsf{add}} T$ and f is a radical morphism.
- (2) X appears in precisely one of T' and T'' as a direct summand.
- (3) If $X \in \operatorname{\mathsf{add}} T'$ (resp. $X \in \operatorname{\mathsf{add}} T''$), then the left (resp. right) mutation V of T with respect to X satisfies $T > V \ge S[1]$ (resp. $S \ge V > T$).

Recall that we have a bijection 2-silt $\Lambda \simeq s\tau$ -tilt Λ given by $T \mapsto H^0(T)$.

10. Prove that, if the Hasse quiver of $s\tau$ -tilt Λ has a finite connected component, then it is the whole Hasse quiver. [Hint: Use 9(3).]

11*. Let U be a basic 2-term presilting complex of Λ such that $|U| = |\Lambda| - 1$. Prove that there are precisely two basic silting complexes of Λ having U as direct summands. [Hint: Existence: Use Bongartz completion and 9(3). Only two: Use silting reduction.]

12*. Let $T, U \in s\tau$ -tilt Λ . Prove that, there is an arrow between T and U in the Hasse quiver of $s\tau$ -tilt Λ if and only if they are mutation of each other. [Hint: Use 9(3).]

The following stronger version of 9(3) can be used to answer 13.

Theorem A. Let $T \in s\tau$ -tilt Λ and $\mathcal{U} \in tors \Lambda$. If $\mathcal{U} \supseteq Fac T$, then there exists a mutation S of T such that $\mathcal{T} \supseteq Fac S \supseteq Fac T$.

13*. Prove that $\operatorname{tors} \Lambda = \operatorname{f-tors} \Lambda$ holds if and only if Λ is τ -tilting finite (i.e. $\# s\tau$ -tilt $\Lambda < \infty$). [Hint: " \Rightarrow ": Use 8. " \Leftarrow ": Use Theorem A.]

14^{*} Let Π be a preprojective algebra of a Dynkin quiver Q. Prove the following statements.

- (1) $I_w \in s\tau$ -tilt Π for any $w \in W$. [Hint: Define an extended Dynkin quiver Q' by adding a vertex 0 to Q. The preprojective algebra Π' of Q' satisfies $\Pi = \Pi'/(e_0)$, and the 2-sided ideal I'_w of Π' satisfies $I_w = I'_w/(e_0)I'_w$. Apply a version of $\mathbf{4}(3)$ to I'_w .]
- (2) We have a bijection $W \to s\tau$ -tilt $\Pi, w \mapsto I_w$. [Hint: Use **10** for surjectivity.] (3) The bijection in (2) is an anti-isomorphism of posets.

[Hint: The Hasse quiver of a finite poset determines the partial order.]