Two weeks of silting

Silting and cosilting in triangulated categories

(Lectures: Lidia Angeleri Hügel, Exercise class: Jorge Vitória) Stuttgart, 30th July - 3rd August 2019

- (1) Generators. Let X be an object in $K^b(\operatorname{Proj}(R))$. Consider the following statements.
 - (a) The smallest thick subcategory of D(R) containing Add(X) is $K^{b}(Proj(R))$.
 - (b) The smallest triangulated subcategory of D(R) containing Add(X) is $K^b(Proj(R))$.
 - (c) If $\operatorname{Hom}_{\mathcal{T}}(X, Y[k]) = 0$ for all $k \in \mathbb{Z}$, then Y = 0.

(d) The smallest coproduct-closed triangulated subcategory of D(R) containing X is D(R). Prove that (a) \Leftrightarrow (b) \Rightarrow (c) \Leftrightarrow (d). What about (c) \Rightarrow (b)?¹

- (2) Silting and cosilting complexes. Let T be a silting complex in the derived category $\mathsf{D}(R)$ and let $H_T^0 : \mathsf{D}(R) \longrightarrow \mathcal{H}_T$ be the cohomological functor associated to the corresponding silting t-structure and denote by P_T the object $H_T^0(T)$.
 - (a) Show that the functor $\operatorname{Hom}_{\mathsf{D}(R)}(P_T, H^0_T(-))$ is naturally equivalent to $\operatorname{Hom}_{\mathsf{D}(R)}(T, -)$. Conclude that, in particular, $\operatorname{End}_{\mathsf{D}(R)}(T) \cong \operatorname{End}_{\mathsf{D}(R)}(H^0_T(T))$.
 - (b) Show that P_T is a projective generator in the heart \mathcal{H}_T .
 - (c) Prove that if T is equivalent to a compact silting complex with endomorphism ring S, then the heart \mathcal{H}_T is equivalent to the module category $\mathsf{Mod}(S)$.
- (3) Purity and definability. Let T be a compactly generated triangulated category.
 (a) Show that, for any family of objects (X_i)_{i∈I} in T, the canonical map

$$\coprod_{i\in I} X_i \to \prod_{i\in I} X_i$$

is a pure monomorphism;

- (b) Let E be a pure-injective object of \mathcal{T} . Show that $^{\perp}E := \text{Ker}(\text{Hom}_{\mathcal{T}}(-, E))$ is definable if and only if it is product-closed;
- (c) Let P be a pure-projective object of \mathcal{T} . Show that $P^{\perp} := \mathsf{Ker}(\mathsf{Hom}_{\mathcal{T}}(P, -))$ is definable.
- (d) Let \mathcal{T} be the derived category of a ring R and C a bounded cosilting complex in D(R). Show that the following subcategory is definable

$$^{\perp_{\mathbb{Z}}}C := \bigcap_{n \in \mathbb{Z}} \operatorname{Ker}(\operatorname{Hom}_{\mathcal{T}}(-, C[n])).$$

¹It holds if X is compact; more generally, this is not clear to us!

(4) Interactions with ring epimorphisms

- (a) Let R be a ring.
 - (i) Let \mathcal{U} be a set of finitely presented modules of projective dimension at most one. Show that the perpendicular category

$$\mathcal{U}^{\perp} := \bigcap_{U \in \mathcal{U}} \operatorname{Ker}(\operatorname{Hom}_R(U, -)) \cap \operatorname{Ker}(\operatorname{Ext}^1_R(U, -))$$

is bireflective (i.e. closed under kernels, cokernels, products, coproducts) and extension-closed. Conclude that \mathcal{U}^{\perp} is the essential image of the restriction of scalars functor associated to pseudoflat² ring epimorphism of R.

- (ii) Let $f: R \longrightarrow S$ be a pseudoflat ring epimorphism such that S has projective dimension at most one as an R-module. Let σ_0 be a projective resolution of S as an R-module, consider the induced map $\overline{f}: R \longrightarrow \sigma_0$ in D(R), and let σ_1 denote its cone. Show that $\sigma_0 \oplus \sigma_1$ is a silting complex. Conclude that $S \oplus \mathsf{Coker}(f)$ is a silting module.
- (b) Let A denote the path algebra over a field \mathbb{K} of the Kronecker quiver:

•====

- (i) Determine the perpendicular category U^{\perp} where U is an indecomposable preprojective module or an indecomposable preinjective module.
- (ii) Determine all finite dimensional silting modules over the Kronecker algebra.
- (iii) Show that Mod(A) admits infinite strictly increasing chains of subcategories which are bireflective and extension-closed.

²A ring epimorphism $f: R \longrightarrow S$ is called pseudoflat if $\mathsf{Tor}_1^R(S, S) = 0$ or, equivalently, if for any two S-modules M and N, $\mathsf{Ext}_S^1(M, N) \cong \mathsf{Ext}_R^1(M, N)$