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Notation

@ Rings are associative with 1.

Homomorphisms preserve 1.

Modules are right modules, unless otherwise stated.

@ If o: R — Sis aring homomorphism and (a;;) = A € M,,,xn(R),

AY¥ = (gp(aij)) S Man(S).

" will be a multiplicative group with identity element e.
Usually, elements of T" will be denoted by ~,+’
Usually, elements of I'™ will be denoted by @ = (a1, ..., ).
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Classical problem and commutative case
Let R be aring.
@ An epic R-division ring is a ring homomorphism
p:R—D

where D is a division ring generated by im ¢, or equivalently, ¢ is
a ring epimorphism.

@ Two epic R-division rings ¢1: R — D1, p2: R — D5 are
isomorphic if there exists a ring isomorphism §: D; — D5 such
that 5(,01 = ©23. 9 D,

R J/zs
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Can we determine the different epic R-division rings?

@ If R is commutative, up to isomorphism, the epic R-division rings
are parametrized by the prime ideals of R.

R—% <D

P 7
w}i(/// ,T%

L R
kcrgp(—> Q (kcrap)
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General situation

@ In general,

e Prime ideals are not enough to differenciate epic R-division rings.
e There are domains not embeddable in division rings.

@ Let p: R — D be an epic R-division ring. It induces functions:

{ Finitely presented R-modules} — N
M — dimD(M®R D)

{Matricesover R} — N
A — rank A¥

P. Malcolmson showed that two epic R-division rings are
isomorphic if and only if they induce the same dimension
function if and only if they induce the same rank function.

@ We develop a similar theory for group graded rings.

@ Most of our proofs are natural extensions of the ones by Cohn,
Malcolmson et al.



Basics on Graded Rings
Let R be aring. R is I'-graded if

@ R= @ R, where each R, is an additive group, and
yel

@ R, Ry C Ry, forallvy,~ eT.



Basics on Graded Rings
Let R be aring. R is I'-graded if

@ R= @ R, where each R, is an additive group, and
yel

@ R, Ry C Ry, forallvy,~ eT.

h(R) =J R,=homogeneous elements
yel’



Basics on Graded Rings
Let R be aring. R is I'-graded if

@ R= @ R, where each R, is an additive group, and
yel

@ R, Ry C Ry, forallvy,~ eT.

h(R) =J R,=homogeneous elements
yel’

@ Let X = {z;},cr beasetwithamap X — T, z; — ;.
The free ring Z(X) is a I'-graded ring with

Z-linear span of monomials x;, z;, - - - T;
such that v;, vi, - - 75, =

r

z(x), = {



Basics on Graded Rings
Let R be aring. R is I'-graded if
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@ Let X = {z;},cr beasetwithamap X — T, z; — ;.
The free ring Z(X) is a I'-graded ring with

Z-linear span of monomials x;, z;, - - - T;
such that v;, vi, - - 75, =

r

z(x), = {

@ A homomorphism of I"-graded rings
p:R=EPR, —D=EPD,
~yel ~yerl

is a ring homomorphism such that ¢(R,) € D, forall vy € T.



Basics on Graded Rings

Let R be a I'-graded ring.

@ Ris aI'-graded division ring if R # {0} and every nonzero
homogeneous element is invertible.



Basics on Graded Rings

Let R be a I'-graded ring.

@ Ris aT'-graded division ring if R # {0} and every nonzero
homogeneous element is invertible.

@ Ris aT-graded local ring if R # {0} and the ideal m generated
by the noninvertible homogeneous elements is a proper ideal.

Then R/m is a I'-graded division ring.
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Basics on Graded Modules

Let R be a I'-graded ring and M be a (right) R-module.

@ M is a I'-graded module if
o M = & M, where each M, is an additive group, and

yer

o M’y . R’Y’ - M’Y’Y"
@ A homomorphism of I'-graded R-modules f: M — N is a
homomorphism of modules such that f(M,) C N, forall v € I'.

@ Let M = @ M, be aT-graded R-module.
yel

If 6 € T, the 0-shift M (9) of M is the I'-graded R-module

M(0) = @ M(6),, where M (), = Mp,.

Rlz] = - P0P00 00D RORT D RO R’ d Rat -
R[z](3)=---®0dRORr®R1*OR1*OR1* O RO R25 O Rz @ - - -
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Graded free modules

Let R = @ R, be aT-graded ring.
yel

@ If My,..., M, are I'-graded R-modules, then M1 & --- & M, is a
I'-graded R-module with

(M1 @"'@Mr)y = {(xh...,xr) | x; € (Mz)'y}

@ M is a graded free R-module if M is a free R-module with a
homogeneous basis.

@ Finitely generated graded free R-modules are of the form:
R"(B) = R(B1) @ R(B2) ® - @ R(Bn),
forB = (Bl)ﬂ?a cee 7Bn) erm.



Morphisms between f. g. graded free modules
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® A matrix (a;;) = A € M,,.,(R)[a][3] if there are
a=(a1,...,am) €™, 8= (p1,...,0n) € I such that

a;; € Roéiﬁfl
In other words, A defines a morphism of I'-graded R-modules
R(B1) &+ & R(Ba) = R(a1) @ & Rlam).

@ Given B € M, (R)[N[f] and C € M,,«.(R)[a][\], we say that
C, B are compatible.
Then CB € M,,x,[@][3] defines the composition of
homomorphisms of I'-graded free R-modules

R(B1)@---®R(B,) > R(M)@---@R(\,) —> R(on)@- & R(am)
U

o M(R) = U Mu(R)@F,  Mu(R)
n,a,B
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Universal localization

Let R be a I'-graded ring and ¥ C M(R).

The universal localization of R at 3 is a pair (Rx, A) where
@ \: R — Ry is a ring homomorphism.
@ Forevery A € ¥, A* is invertible. (\ is X-inverting)

@ For any other ring homomorphism f: R — S such that A/ is
invertible for all A € X3, there exists a unique ring homomorphism
F: Ry, — Swith f = FA.

The universal localization of R at ¥ always exists.
Proposition (Kawali, S.)

Let R be aT'-graded ring and ¥ C 9M(R). The universal localization
A: R — Ry is a homomorphism of I'-graded rings.
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Let R be aT'-graded ring.

@ If¥ C M(R) is such that Ry, is a I'-graded local ring with
maximal graded ideal m, then the natural homomorphism
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Graded epic R-division rings

Theorem (Kawai, S.)
Let R be aT'-graded ring.

@ If¥ C M(R) is such that Ry, is a I'-graded local ring with
maximal graded ideal m, then the natural homomorphism
R — Rx/m is aT'-graded epic R-division ring.

@ Lety: R — K be aT-graded epic R-division ring and set
Y ={AeMR) | A? is invert. over D}.

Then Ry, is a I'-graded local ring with maximal ideal m and there
exists commutative diagram

R—2> Ry — ™= Ry/m
\l@/
® £
K

with ® and isomorphism of I"-graded rings.



Graded modules over graded division rings

Let D = @ D, be aI'-graded division ring.
~yel

Let M = @ M, be aT'-graded D-module.
yel

@ Every I'-graded D-module M is a I'-graded free module.



Graded modules over graded division rings

Let D = @ D, be aI'-graded division ring.
~yel

Let M = @ M, be aT'-graded D-module.
yel

@ Every I'-graded D-module M is a I'-graded free module.

@ Any two homogeneous bases of M have the same cardinality
= dimp M.



Graded modules over graded division rings

Let D = @ D, be aI'-graded division ring.
~yel

Let M = @ M, be aT'-graded D-module.
yel

@ Every I'-graded D-module M is a I'-graded free module.

@ Any two homogeneous bases of M have the same cardinality
= dimp M.

o If Ae M,,«,(D)[@][3], we can define the rank of A:

A= (aij): D(B1) ©---© D(Bn) = D(a1) ©--- & D(am).

alj
e (Pl e-a D(am))ﬁj,l
Amj

rank A = dimp of graded submodule gen. by columns of A.
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Let R be a I'-graded ring.

A gr-Sylvester matrix rank function for R is a map r: 9.(R) — N with
(MatRF1) r((1)) = 1, where (1) is the identity matrix of size 1 x 1.
(MatRF2) r(AB) < min{r(A4),r(B)} for compatible matrices A, B € M. (R).
(MatRF3) r (4 %) =r(A)+1(B) for all A, B € Mq(R).
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Let R be a I'-graded ring.

A gr-Sylvester matrix rank function for R is a map r: 9.(R) — N with
)=1(A4) +1r(B) forall A, B € M (R).

)

MatRF2) r(AB) < min{r(A),r(B)} for compatible matrices A, B € M, (R).
)
)

0
B
¢) > r(A)+1(B) forall A, B,C € My (R) st.(4S) € Mu(R).



gr-Sylvester matrix rank functions

Let R be a I'-graded ring.

A gr-Sylvester matrix rank function for R is a map r: 9.(R) — N with

)

MatRF2) r(AB) < min{r(A),r(B)} for compatible matrices A, B € M, (R).
) 9)=r(A) +r(B) forall A, B € Mq(R).

) G)>1(A)+r(B)forall A, B,C € Me(R) s.t.(4G) € Me(R).
If p: R — D is a homomorphism of I"-graded rings with D a I'-graded
division ring then

Me(R) - N, A+ rank(A¥)

is a gr-Sylvester matrix rank function.
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Theorem (Kawai, S.)
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ordered sets
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defined as follows.
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defined as follows.
@ If (K, ) is al'-graded epic R-division ring, then
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gr-Sylvester matrix rank functions
Theorem (Kawai, S.)

Let R be aT'-graded ring. There is an anti-isomorphism of partially
ordered sets

I'-graded epic R-division rings . gr-Sylvester matrix rank
p:R— K Sunctions for R
p:R—->K +— T
¢r: R— Ry /m  — r

defined as follows.
@ If (K, ) is al'-graded epic R-division ring, then

r,(A) = rank(A%).

@ Conversely, given a gr-Sylvester matrix rank function
r: Me(R) — N, then set

Y, ={AeMR): r(A) = size of A}.

Then Ry, is aI'-graded local ring with maximal graded ideal m.
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Let R be a I'-graded ring.
Let M be a I'-graded R-module and N be a I'-graded left R-module.

@ M®r N = @ (M®gN), is al-graded abelian group with
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Tensor product of graded modules

Let R be a I'-graded ring.
Let M be a I'-graded R-module and N be a I'-graded left R-module.

@ M®r N = @ (M®gN), is al-graded abelian group with
~el’

(M®RN)7: {Zml®nl|ml cM,,, n EN'Y;’ %%’»zv}

K3

@ If R — D is a homomorphism of I'-graded rings, then M ®g D is
a I'-graded D-module.
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Let R be a I'-graded ring.

A gr-Sylvester module rank function for R is a function d on the class
of finitely presented I'-graded R-modules with values on N such that

(ModRF1) d(R) =1, where R is considered as a I'-graded R-module
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gr-Sylvester module rank functions
Let R be a I'-graded ring.

A gr-Sylvester module rank function for R is a function d on the class
of finitely presented I'-graded R-modules with values on N such that

(ModRF1) d(R) =1, where R is considered as a I'-graded R-module
(MOdRFZ) d(M1 ©® MQ) = d(Ml) + d(MQ)

(ModRF3) For any exact sequence M; — M, — M3 — 0 of graded
homomorphisms d(M3) < d(Mz) < d(My) + d(Ms).

(ModRF4) Let f: R*(3) — R™(a) and f': R"(3') — R™ (/) be
homomorphisms of I'-graded R-modules. If F(f) = F(f’), then
d(coker f) = d(coker f’), where F denotes the forgetful functor
from the category of finitely presented I'-graded R-modules to
the category of finitely presented R-modules.

If p: R — D is a homomorphism of I"-graded rings with D a I"-graded
division ring then M — dimp(M ®r D)

is a gr-Sylvester module rank function.
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Theorem (Kawai, S.)

Let R be aI'-graded ring. There is an anti-isomorphism of partially
ordered sets

{ gr-Sylvester matrix rank } . { gr-Sylvester module rank }

functions for R functions for R
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defined as follows.



gr-Sylvester module rank functions

Theorem (Kawai, S.)

Let R be aI'-graded ring. There is an anti-isomorphism of partially
ordered sets

gr-Sylvester matrix rank . gr-Sylvester module rank
functions for R functions for R

r — d,
rq <— d
defined as follows.

@ Ifr is a gr-Sylvester matrix rank function for R and M is a finitely
presented T'-graded R-module with presentation

R"(B) & R™(@) — M — 0, where A € M (R)[@[B], then
d:(M) = m — 1(A).



gr-Sylvester module rank functions

Theorem (Kawai, S.)

Let R be aI'-graded ring. There is an anti-isomorphism of partially
ordered sets

{ gr-Sylvester matrix rank } . { gr-Sylvester module rank }

functions for R functions for R
r — d,
rq <— d
defined as follows.
@ Ifr is a gr-Sylvester matrix rank function for R and M is a finitely

presented T'-graded R-module with presentation

R"(B) & R™(@) — M — 0, where A € M (R)[@[B], then
d,(M) =m —r(A).

@ Conversely, let d be a gr-Sylvester module rank function for R. If

A € My, «(R)[@][8], we consider A: R"(8) — R™(a) and define
R™ (@)

f<A>—md(A<Rnw>>>~
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Let k£ be a field and k(x, y) the free k-algebra on two letters

Is there a classification of the universal localizations of
k(x,y)?
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The free field

The universal localization of k(z, y) at the set ® of full (square)
matrices is a division ring, called the free field (P. M. Cohn).

@ Let F be the free group on two letters z,y
@ F'is an orderable group:
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The free field
The universal localization of k(x, y) at the set ® of full (square)
matrices is a division ring, called the free field (P. M. Cohn).

@ Let F be the free group on two letters z,y
@ F'is an orderable group:
There exists a total (linear) order in F' such that, for all u,v, z € F,
u<v = uz<wvz and zu < 2v.
@ Group k-algebra k[F]

k[F] = {f— > agg

geF

@ Malcev-Neumann series ring: Fix < in F' as before. Then

ag € k, [supp f| < 00}

k(F;<)) = {f = Z agg ‘ ag € k, supp f is well-ordered }

geF

k((F;<))is adivisionring  (Malcev, Neumann)

@ k(F), the division subring of k((F'; <)) generated by k[F] is the
free field  (J. Lewin)
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Graded division rings inside k(F')

@ Let H be a torsion-free group generated by two elements a, b.
Letyp: FF— H, x — a, y — b be a group homomorphism.

@ ¢ induces an H-gradation of k[F1:
Fl= @ k[Fln, kFl = {Z aw € K[F] ] o(w) = h}
heH weF

@ Also H-graded division rings inside k(F):

H) =@ D.(H)w, D h_{Zawwek ’w h}

heH weF

@ If Hy 2 Ho, then ker ¢ # ker ¢o. Let 1 < w € ker g \ ker .
1 — w is homogeneous of degree e and invertible in D, (H1),
but 1 — w is not homogeneous and not invertible in D, (H>).

@ Thereare uncountably many nonisomorphictorsion-free groups H
Thus uncountably many D, (H) inside K (H) which are not
R-isomorphic.

If ker 1 C ker o, then Dy, (H1) € Dy, (H>).
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A € 9M(R) is nonfull if there exist compatible homogeneous matrices

R(B1) &+ & R(Bn) : > R(01) & & R(an)
Y PEa
R(M)@ - ®R(An-1)

Let H and ¢: F — H be as before and consider the induced
gradation on k({x,y).

Consider ¥: k(z,y) — D,(H)
@ Reutenauer’s method:
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A?: D,(H) (&) — Dy(H)(7), is not injective
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A € 9M(R) is nonfull if there exist compatible homogeneous matrices

R(B1) &+ & R(Bn) : > R(01) & & R(an)
Y PEa
R(M)@ - ®R(An-1)

Let H and ¢: F — H be as before and consider the induced
gradation on k({x,y).

Consider ¥: k(z,y) — D,(H)
@ Reutenauer’s method:
Let A € MM (k(x,y)) such that A? is not invertible.
A?: D,(H) (&) — Dy(H)(7), is not injective

Then there exist an identity matrix and P, Q € GL(k(x,y)) such
that P (4 ;) @ has one row of zeros. Thus (4 ;) is not gr-full.

@ Itimplies that A € M (k(z,y)) becomes invertible in D, (H) if
and only if A is gr-full.

@ Then D, (H) = k{z,y)s,, the universal localization of k(z,y) at
d g, the set of gr-full matrices.



Thank you!
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@ R can be regarded as a I'/Q2-graded ring as follows
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o If M = @ M, is aT-graded R-module, it can be regarded as a
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gr-prime spectrum

Theorem (Kawai, S.)
Let R be aT'-graded ring. The following assertions hold true.

@ [f there exists a normal subgroup ) of " such that there does not
exist aT'/Q)-graded epic R-division ring (of fractions), then there
does not exist an epic R-division ring (of fractions).

@ Let(Kp,pp), (Ko, po) be epic R-division rings, such that
there exists a specialization from (Kp:, pp/) to (Ko, o). Then
there exists a gr-specialization between the corresponding
I'-graded epic R-division rings.

@ IfSpec(R) — Specr(R), Q' — Q' NMY(R), is surjective, the
existence of a universal R-division ring, implies the existence of a
universal I'-graded epic R-division ring.

@ If for each I'-graded epic R-division ring there exist ring
homomorphisms to division rings, then Spec(R) — Specp(R),
9+ QNMLI(R), is surjective.



