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Notation

Rings are associative with 1.

Homomorphisms preserve 1.

Modules are right modules, unless otherwise stated.

If φ : R→ S is a ring homomorphism and (aij) = A ∈Mm×n(R),

Aφ := (φ(aij)) ∈Mm×n(S).

Γ will be a multiplicative group with identity element e.

Usually, elements of Γ will be denoted by γ, γ′

Usually, elements of Γm will be denoted by α = (α1, . . . , αm).
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Classical problem and commutative case
Let R be a ring.

An epic R-division ring is a ring homomorphism
φ : R→ D

where D is a division ring generated by imφ, or equivalently, φ is
a ring epimorphism.

Two epic R-division rings φ1 : R→ D1, φ2 : R→ D2 are
isomorphic if there exists a ring isomorphism δ : D1 → D2 such
that δφ1 = φ2. D1

δ��R

φ1 77

φ2
''
D2

Can we determine the different epic R-division rings?

If R is commutative, up to isomorphism, the epic R-division rings
are parametrized by the prime ideals of R.

R
π ��

φ // D

R
kerφ

* 

φ

77

� � ι // Q
(

R
kerφ

)∼=
OO
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General situation
In general,

Prime ideals are not enough to differenciate epic R-division rings.
There are domains not embeddable in division rings.

Let φ : R→ D be an epic R-division ring. It induces functions:

{ Finitely presented R-modules} −→ N
M 7−→ dimD(M ⊗R D)

{Matrices over R } −→ N
A 7−→ rank Aφ

P. Malcolmson showed that two epic R-division rings are
isomorphic if and only if they induce the same dimension
function if and only if they induce the same rank function.

We develop a similar theory for group graded rings.
Most of our proofs are natural extensions of the ones by Cohn,
Malcolmson et al.
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Basics on Graded Rings
Let R be a ring. R is Γ-graded if

R =
⊕
γ∈Γ

Rγ where each Rγ is an additive group, and

Rγ ·Rγ′ ⊆ Rγγ′ for all γ, γ′ ∈ Γ.

h(R) =
⋃
γ∈Γ

Rγ=homogeneous elements

Let X = {xi}i∈I be a set with a map X → Γ, xi 7→ γi.

The free ring Z⟨X⟩ is a Γ-graded ring with

Z⟨X⟩γ =

{
Z-linear span of monomials xi1xi2 · · ·xir

such that γi1γi2 · · · γir = γ

A homomorphism of Γ-graded rings

φ : R =
⊕
γ∈Γ

Rγ −→ D =
⊕
γ∈Γ

Dγ

is a ring homomorphism such that φ(Rγ) ⊆ Dγ for all γ ∈ Γ.
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Basics on Graded Rings

Let R be a Γ-graded ring.

R is a Γ-graded division ring if R ̸= {0} and every nonzero
homogeneous element is invertible.

R is a Γ-graded local ring if R ̸= {0} and the ideal m generated
by the noninvertible homogeneous elements is a proper ideal.
Then R/m is a Γ-graded division ring.
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Basics on Graded Modules

Let R be a Γ-graded ring and M be a (right) R-module.

M is a Γ-graded module if
M =

⊕
γ∈Γ

Mγ where each Mγ is an additive group, and

Mγ ·Rγ′ ⊆ Mγγ′ .

A homomorphism of Γ-graded R-modules f : M → N is a
homomorphism of modules such that f(Mγ) ⊆ Nγ for all γ ∈ Γ.

Let M =
⊕
γ∈Γ

Mγ be a Γ-graded R-module.

If θ ∈ Γ, the θ-shift M(θ) of M is the Γ-graded R-module

M(θ) =
⊕
γ∈Γ

M(θ)γ , where M(θ)γ = Mθγ .

R[x] = · · · ⊕ 0⊕ 0⊕ 0⊕ 0⊕R⊕Rx⊕Rx2 ⊕Rx3 ⊕Rx4 ⊕ · · ·

R[x](3) = · · ·⊕0⊕R⊕Rx⊕Rx2⊕Rx3⊕Rx4⊕Rx5⊕Rx6⊕Rx7⊕· · ·
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Graded free modules

Let R =
⊕
γ∈Γ

Rγ be a Γ-graded ring.

If M1, . . . ,Mr are Γ-graded R-modules, then M1 ⊕ · · · ⊕Mr is a
Γ-graded R-module with

(M1 ⊕ · · · ⊕Mr)γ = {(x1, . . . , xr) | xi ∈ (Mi)γ}

M is a graded free R-module if M is a free R-module with a
homogeneous basis.

Finitely generated graded free R-modules are of the form:

Rn(β) = R(β1)⊕R(β2)⊕ · · · ⊕R(βn),

for β = (β1, β2, . . . , βn) ∈ Γn.
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Morphisms between f. g. graded free modules

A matrix (aij) = A ∈Mm×n(R)[α][β] if there are
α = (α1, . . . , αm) ∈ Γm, β = (β1, . . . , βn) ∈ Γn such that

aij ∈ Rαiβ
−1
j

In other words, A defines a morphism of Γ-graded R-modules

R(β1)⊕ · · · ⊕R(βn)
A−→ R(α1)⊕ · · · ⊕R(αm).

Given B ∈Mr×n(R)[λ][β] and C ∈Mm×r(R)[α][λ], we say that
C,B are compatible.
Then CB ∈Mm×n[α][β] defines the composition of
homomorphisms of Γ-graded free R-modules

R(β1)⊕· · ·⊕R(βn)
B−→ R(λ1)⊕· · ·⊕R(λr)

C−→ R(α1)⊕· · ·⊕R(αm)

M(R) =
⋃

n,α,β

Mn(R)[α][β], M•(R) =
⋃

m,n,α,β

Mm×n(R)[α][β].
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Universal localization

Let R be a Γ-graded ring and Σ ⊆M(R).

The universal localization of R at Σ is a pair (RΣ, λ) where
λ : R→ RΣ is a ring homomorphism.
For every A ∈ Σ, Aλ is invertible. (λ is Σ-inverting)
For any other ring homomorphism f : R→ S such that Af is
invertible for all A ∈ Σ, there exists a unique ring homomorphism
F : RΣ → S with f = Fλ.

The universal localization of R at Σ always exists.

Proposition (Kawai, S.)
Let R be a Γ-graded ring and Σ ⊆M(R). The universal localization

λ : R→ RΣ is a homomorphism of Γ-graded rings.
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λ : R→ RΣ is a homomorphism of Γ-graded rings.



Graded epic R-division rings
Theorem (Kawai, S.)
Let R be a Γ-graded ring.

If Σ ⊆M(R) is such that RΣ is a Γ-graded local ring with
maximal graded ideal m, then the natural homomorphism
R→ RΣ/m is a Γ-graded epic R-division ring.

Let φ : R→ K be a Γ-graded epic R-division ring and set

Σ = {A ∈M(R) | Aφ is invert. over D}.

Then RΣ is a Γ-graded local ring with maximal ideal m and there
exists commutative diagram

R
λ //

φ
  

RΣ

Φ

��

π // RΣ/m

Φ̃{{
K

with Φ̃ and isomorphism of Γ-graded rings.
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Graded modules over graded division rings

Let D =
⊕
γ∈Γ

Dγ be a Γ-graded division ring.

Let M =
⊕
γ∈Γ

Mγ be a Γ-graded D-module.

Every Γ-graded D-module M is a Γ-graded free module.

Any two homogeneous bases of M have the same cardinality
= dimD M .

If A ∈Mm×n(D)[α][β], we can define the rank of A:

A = (aij) : D(β1)⊕ · · · ⊕D(βn)→ D(α1)⊕ · · · ⊕D(αm).
a1j
a2j

...
amj

 ∈
(
D(α1)⊕ · · · ⊕D(αm)

)
β−1
j

rank A = dimD of graded submodule gen. by columns of A.
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gr-Sylvester matrix rank functions

Let R be a Γ-graded ring.

A gr-Sylvester matrix rank function for R is a map r : M•(R)→ N with

(MatRF1) r((1)) = 1, where (1) is the identity matrix of size 1× 1.

(MatRF2) r(AB) ≤ min{r(A), r(B)} for compatible matrices A,B ∈M•(R).

(MatRF3) r (A 0
0 B ) = r(A) + r(B) for all A,B ∈M•(R).

(MatRF4) r (A C
0 B ) ≥ r(A)+ r(B) for all A,B,C ∈M•(R) s.t.(A C

0 B ) ∈M•(R).

If φ : R→ D is a homomorphism of Γ-graded rings with D a Γ-graded
division ring then

M•(R)→ N, A 7→ rank(Aφ)

is a gr-Sylvester matrix rank function.
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gr-Sylvester matrix rank functions
Theorem (Kawai, S.)

Let R be a Γ-graded ring. There is an anti-isomorphism of partially
ordered sets{

Γ-graded epic R-division rings
φ : R→ K

}
−→

{
gr-Sylvester matrix rank

functions for R

}
φ : R→ K 7−→ rφ

φr : R→ RΣr
/m ←− [ r

defined as follows.

If (K,φ) is a Γ-graded epic R-division ring, then

rφ(A) = rank(Aφ).

Conversely, given a gr-Sylvester matrix rank function
r : M•(R)→ N, then set

Σr = {A ∈M(R) : r(A) = size of A}.

Then RΣr
is a Γ-graded local ring with maximal graded ideal m.
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Tensor product of graded modules
Let R be a Γ-graded ring.

Let M be a Γ-graded R-module and N be a Γ-graded left R-module.

M ⊗R N =
⊕
γ∈Γ

(M ⊗R N)γ is a Γ-graded abelian group with

(M ⊗R N)γ =

{∑
i

mi ⊗ ni | mi ∈Mγi
, ni ∈ Nγ′

i
, γiγ

′
i = γ

}

If R→ D is a homomorphism of Γ-graded rings, then M ⊗R D is
a Γ-graded D-module.
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gr-Sylvester module rank functions
Let R be a Γ-graded ring.

A gr-Sylvester module rank function for R is a function d on the class
of finitely presented Γ-graded R-modules with values on N such that

(ModRF1) d(R) = 1, where R is considered as a Γ-graded R-module

(ModRF2) d(M1 ⊕M2) = d(M1) + d(M2).

(ModRF3) For any exact sequence M1 →M2 →M3 → 0 of graded
homomorphisms d(M3) ≤ d(M2) ≤ d(M1) + d(M3).

(ModRF4) Let f : Rn(β)→ Rm(α) and f ′ : Rn(β′)→ Rm(α′) be
homomorphisms of Γ-graded R-modules. If F(f) = F(f ′), then
d(coker f) = d(coker f ′), where F denotes the forgetful functor
from the category of finitely presented Γ-graded R-modules to
the category of finitely presented R-modules.

If φ : R→ D is a homomorphism of Γ-graded rings with D a Γ-graded
division ring then M 7→ dimD(M ⊗R D)

is a gr-Sylvester module rank function.
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gr-Sylvester module rank functions

Theorem (Kawai, S.)
Let R be a Γ-graded ring. There is an anti-isomorphism of partially
ordered sets{

gr-Sylvester matrix rank
functions for R

}
−→

{
gr-Sylvester module rank

functions for R

}
r 7−→ dr

rd ←− [ d

defined as follows.

If r is a gr-Sylvester matrix rank function for R and M is a finitely
presented Γ-graded R-module with presentation
Rn(β)

A→ Rm(α)→M → 0, where A ∈Mm×n(R)[α][β], then

dr(M) = m− r(A).

Conversely, let d be a gr-Sylvester module rank function for R. If
A ∈Mm×n(R)[α][β], we consider A : Rn(β)→ Rm(α) and define

r(A) = m− d

(
Rm(α)

A(Rn(β))

)
.
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Let k be a field and k⟨x, y⟩ the free k-algebra on two letters

Is there a classification of the universal localizations of
k⟨x, y⟩?
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The free field
The universal localization of k⟨x, y⟩ at the set Φ of full (square)
matrices is a division ring, called the free field (P. M. Cohn).

Let F be the free group on two letters x, y

F is an orderable group:

There exists a total (linear) order in F such that, for all u, v, z ∈ F ,

u < v =⇒ uz < vz and zu < zv.

Group k-algebra k[F ]

k[F ] =

{
f =

∑
g∈F

agg
∣∣∣ ag ∈ k, | supp f | < ∞

}
Malcev-Neumann series ring: Fix < in F as before. Then

k((F ;<)) =

{
f =

∑
g∈F

agg
∣∣∣ ag ∈ k, supp f is well-ordered

}
k((F ;<)) is a division ring (Malcev, Neumann)

k(F ), the division subring of k((F ;<)) generated by k[F ] is the
free field (J. Lewin)
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Graded division rings inside k(F )

Let H be a torsion-free group generated by two elements a, b.
Let φ : F → H, x 7→ a, y 7→ b be a group homomorphism.

φ induces an H-gradation of k[F ]:

k[F ] =
⊕
h∈H

k[F ]h, k[F ]h =

{∑
w∈F

aww ∈ k[F ]
∣∣∣ φ(w) = h

}

Also H-graded division rings inside k(F ):

Dφ(H) =
⊕
h∈H

Dφ(H)h, Dφ(H)h =

{∑
w∈F

aww ∈ k(F )
∣∣∣ φ(w) = h

}

If H1 ≇ H2, then kerφ1 ̸= kerφ2. Let 1 < w ∈ kerφ1 \ kerφ2.
1− w is homogeneous of degree e and invertible in Dφ1

(H1),
but 1− w is not homogeneous and not invertible in Dφ2

(H2).
Thereareuncountablymanynonisomorphic torsion-free groupsH
Thus uncountably many Dφ(H) inside K(H) which are not
R-isomorphic.
If kerφ1 ⊆ kerφ2, then Dφ1

(H1) ⊆ Dφ2
(H2).
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Each Dφ(H) is a universal localization
A ∈M(R) is nonfull if there exist compatible homogeneous matrices

R(β1)⊕ · · · ⊕R(βn)
A //

B
++

R(α1)⊕ · · · ⊕R(αn)

R(λ1)⊕ · · · ⊕R(λn−1)

C 33

Let H and φ : F → H be as before and consider the induced
gradation on k⟨x, y⟩.

Consider ϑ : k⟨x, y⟩ ↪→ Dφ(H)

Reutenauer’s method:
Let A ∈MH(k⟨x, y⟩) such that Aϑ is not invertible.

Aϑ : Dφ(H)(σ)→ Dφ(H)(τ), is not injective

Then there exist an identity matrix and P,Q ∈ GL(k⟨x, y⟩) such
that P (A I )Q has one row of zeros. Thus (A I ) is not gr-full.

It implies that A ∈MH(k⟨x, y⟩) becomes invertible in Dφ(H) if
and only if A is gr-full.

Then Dφ(H) = k⟨x, y⟩ΦH
, the universal localization of k⟨x, y⟩ at

ΦH , the set of gr-full matrices.
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Thank you!



gr-prime spectrum
Let R =

⊕
γ∈Γ

Rγ be a Γ-graded ring. Let Ω be normal subgroup of Γ.

R can be regarded as a Γ/Ω-graded ring as follows

R =
⊕

∆∈Γ/Ω

R∆, where R∆ =
⊕
γ∈∆

Rγ .

If M =
⊕
γ∈Γ

Mγ is a Γ-graded R-module, it can be regarded as a

Γ/Ω-graded R-module: M =
⊕

∆∈Γ/Ω

M∆, where M∆ =
⊕
γ∈∆

Mγ

Since MΓ(R) ⊆MΓ/Ω(R), we obtain by restriction{
Γ/Ω-gr-prime matrix

ideals of R

}
−→

{
Γ-gr-prime matrix

ideals of R

}
, P 7→ P ∩MΓ(R).{

Γ/Ω-gr-Sylvester matrix
rank functions for R

}
−→

{
Γ-gr-Sylvester matrix
rank functions for R

}
, rΓ/Ω 7→ rΓ .{

Γ/Ω-gr-Sylvester module
rank functions for R

}
−→

{
Γ-gr-Sylvester module
rank functions for R

}
, dΓ/Ω 7→ dΓ .
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gr-prime spectrum

Theorem (Kawai, S.)
Let R be a Γ-graded ring. The following assertions hold true.

If there exists a normal subgroup Ω of Γ such that there does not
exist a Γ/Ω-graded epic R-division ring (of fractions), then there
does not exist an epic R-division ring (of fractions).

Let (KP′ , φP′), (KQ′ , φQ′) be epic R-division rings, such that
there exists a specialization from (KP′ , φP′) to (KQ′ , φQ′). Then
there exists a gr-specialization between the corresponding
Γ-graded epic R-division rings.

If Spec(R)→ SpecΓ(R), Q′ 7→ Q′ ∩MΓ(R), is surjective, the
existence of a universal R-division ring, implies the existence of a
universal Γ-graded epic R-division ring.

If for each Γ-graded epic R-division ring there exist ring
homomorphisms to division rings, then Spec(R)→ SpecΓ(R),
Q 7→ Q ∩MΓ(R), is surjective.


