
DELOOPING LEVELS VERSUS FINITISTIC DIMENSIONS

Notation. • Λ = KQ/I a path algebra modulo relations, K an alge-
braically closed field. Identify the vertex set of the quiver Q with a complete
set of primitive idempotents of Λ: e1, . . . , en .

• J = the Jacobson radical of Λ.

• Si = Λei/Jei the simples in Λ-mod.

• P<∞(Λ-mod) (resp., P<∞(Λ-Mod)) is the full subcategory of Λ-mod
(resp., Λ-Mod) having as objects the modules of finite projective dimension.

• l.findimΛ = sup{pdimM | M ∈ P<∞(Λ-mod)}, and

• l.FindimΛ = sup{pdimM | M ∈ P<∞(Λ-Mod)}.
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1. A new homological invariant of Λ: the delooping level

Definition. [Gelinas]

• For M ∈ Λ-mod, the delooping level of M is

dellM := inf{k ∈ N0 | Ωk(M) is a direct summand of Ωk+1(N)⊕ P

for some N ∈ Λ-mod and P proj.}.

• The left delooping level of Λ is

l.dell Λ := sup{dellSi | 1 ≤ i ≤ n}.

Comments. All of the following remarks can be found in Gelinas’s paper,
either ex- or im-plicitly.

(1) For indecomposable M ∈ Λ-mod,

dellM = 0 ⇐⇒ M ⊆ JP or M = P for some projective P .

In particular: If ΛS is simple, then dellS = 0 if and only if S ⊆ soc(ΛΛ).

Indeed, if S ⊆ soc(ΛΛ) is non-projective, then S ⊆ ΛJ , and hence S ∼=
Ω1(Λ(Λ/S)) has delooping level 0.

Conversely, suppose dellS = 0, i.e., S is a direct summand of Ω1(N)⊕P
for some N ∈ Λ-mod and projective P . If S is not projective, then S is
contained in Ω1(N) and hence S ⊆ Jei for some i.

(2) [an old result of Bass re-encountered]

r.FindimΛ = 0 ⇐⇒ Λ(Λ/J) embeds into soc(ΛΛ) ⇐⇒ l.dell Λ = 0.

(3) If gl dimΛ < ∞, then gl dimΛ = l.dell Λ = r.dell Λ.

(4) If Λ = KQ/I is a monomial algebra, then l.dell Λ and r.dell Λ are finite
(different in general).

Indeed, for any M ∈ Λ-Mod and k ≥ 2, Ωk(M) is a direct sum of copies
of cyclic modules isomorphic to Λp for nontrivial paths p in KQ \ I. In
particular, the category Ω2(Λ-Mod) consisting of all second syzygies of Λ-
modules has finite representation type. Hence there exists N ∈ N such that
ΩN (Λ-Mod) = Ωn(Λ-Mod) for all n ≥ N . In particular, every N -th syzygy
is a higher syzygy, whence l.dell Λ ≤ N .



First specific example.
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Claim: l.dell Λ = 3.

Why? The simples Si in Λ-mod with dellSi = 0 are S3, S4, S5.

Moreover S1 is the only simple with delooping level 1: The delooping level
is at least 1 because S1 is not contained in the left socle of Λ; it is at most
1, because Ω1(S1) is projective.

The sequence of successive syzygies of S2 is

Ω1(S2) = S3, Ω
2(S2) = S4, Ω

3(S2) = Je4 = Je5, Ω
4(S2) = S5, Ω

5(S2) = Ω3(S2).

Hence dellS2 ≤ 3.

In general, bounding delooping levels from below is the tough part, but
here it’s easy. Note:

• Ω1(Λ-mod) consists of modules of Loewy length ≤ 2 with tops in
add(S3 ⊕ S4 ⊕ S5);

• Ω2(Λ-mod) consists of modules of Loewy length ≤ 2 with tops in
add(S4 ⊕ S5);

• Ω3(Λ-mod) consists of modules of Loewy length ≤ 2 with tops in
add(S5).

Thus Ω2(S2) = S4 is not a third syzygy, and hence dellS2 ≥ 3, which yields
the claim.



2. Inequalities for finite dimensional algebras (artinian rings)

Theorem. [Gelinas] l.depth Λ ≤ r.findimΛ ≤ r.FindimΛ ≤ l.dell Λ.

Remarks. 1. The “depth” is carried over from commutative algebra:
l.depth Λ = sup{gradeSi | 1 ≤ i ≤ n}, where gradeM = inf{i ∈ N0 |

ExtiΛ(M,Λ) 6= 0}. In fact, Gelinas considers the delooping level for arbi-
trary semiperfect notherian rings and shows that in this far more general
scenario, the inequalities l.depth ≤ r.findimΛ ≤ l.dell Λ still hold.

2. Whenever we can show that, for a certain class of algebras Λ, the
delooping levels are finite, this confirms the strong version of the second
finitistic dimension conjecture, namely that the big finitistic dimensions
attained by the algebras in this class are finite.

3. [Gelinas /Angeleri-Huegel-Herbera-Trlifaj] If Λ is Gorenstein, then the
left and right delooping levels of Λ are finite and coincide; in this case the
delooping levels also coincide with all the finitistic dimensions of Λ.

4. Next to Gorenstein and monomial algebras, Gelinas exhibited some fur-
ther classes of algebras for which the delooping levels are finite; in essence,
these are algebras with somewhat weaker forms of repetitiveness occurring
in the syzygy categories. For all of these classes, the big finitistic dimensions
are already known to be finite. But, also in these cases, the theorem is very
useful. It helps in bounding or computing the homological dimensions.

At the end of today’s talk, I’ll present one class (of modest size) for which
finiteness of the big finitistic dimension is so far only confirmed by way of
Gelinas’s theorem.

Brief return to the example we just computed and more com-
mentary. It is straightforward that r.FindimΛ ≥ 3 for this algebra Λ.
Thus the inequality l.dell Λ ≤ 3 which we just proved in a fashion that is
not readily replicable in more complex examples could have been obtained
from Gelinas’s theorem.

More generally: In determining big finitistic dimensions, it is typically
much easier to obtain lower bounds than upper bounds, since every module



of finite projective dimension obviously provides a lower bound. Even in
cases in which the finitistic dimensions are known to be finite, finding tight
upper bounds for specific examples, let alone precise values, remains prob-
lematic. The obvious reason: a priori one does not know on which finite
sets of modules to focus to ensure the occurrence of maximal finite values
of p dimM .

This difficulty is mirrored by that of finding lower bounds for dell Λ: In
testing delooping levels, one does not have a convenient test class of modules
to check whether a given m-th syzygy of a simple module actually occurs
as a higher syzygy of a different object.

To spell out the obvious: In case a specific upper bound for l.dell Λ
coincides with a specific lower bound for r.FindimΛ, Gelinas’s Theorem
provides us with the desired bounds in the reverse direction; in that case,
we conclude that l.dell Λ = r.FindimΛ is equal to the mentioned bounds.



3. Comparing l.dell Λ with r.FindimΛ

In his paper, Gelinas raised the following question:

l.dell Λ = r.FindimΛ for all finite dimensional algebras Λ?

We’ll answer it in the negative.

Note that an example where l.dell Λ − r.FindimΛ = 1 suffices to show
that such differences may be arbitrarily large. This is due the following
observation of Rickard: On tensor products, Λ1⊗K Λ2, the finitistic dimen-
sions and the delooping levels behave additively.

So far, delooping levels are still poorly understood. In order to build or
refute expectations, I suggest to start by exploring delooping levels in depth
for particularly well-behaved algebras.

In this spirit, I will in the following focus on algebras for which the de-
looping levels and finitistic dimensions are reasonably accessible. Left serial
algebras and special biserial algebras are among the best understood: For
left serial algebras, I’ll outline a very simple algorithm for computing de-
looping levels (one knows them to be finite in this case). For special biserial
algebras, such an algorithm has been implemented by Joe Allen, a student
of Rickard’s; to be effective, it presupposes finiteness of the delooping levels,
however.

A. Left serial algebras (all indecomposable projectives in Λ-mod
are uniserial)

Suppose that Λ is left serial. Then Λ is homologically quite distinguished, in
that the left and right P<∞-categories – i.e., P<∞(Λ-mod) and P<∞(mod-Λ)
– are contravariantly finite in the ambient categories of finitely generated
modules. (The lefthand part of this statement is due to Burgess-HZ, the
analogue for right modules was recently derived by Saoŕın, Nazemian and
myself.) In particular, due to results of Auslander-Reiten, and Smalø-HZ,
l.findimΛ = l.FindimΛ is the max of the projective dimensions of the min-
imal P<∞(Λ-mod)-approximations of the simples Si; analogously on the
right. Apparently, this is not enough to guarantee equality of l.dell Λ and
r.FindimΛ however. On the other hand:



Theorem. [Ringel] If Λ is also right serial, i.e., if Λ is a Nakayama algebra,
then

l.FindimΛ = r.FindimΛ = l.dell Λ = r.dell Λ.

This result collapses as one moves from Nakayama algebras to one-sided
serial algebras. So even contravariant finiteness of the P<∞-categories of
left and right modules does not quite take us to homological utopia.

On the other hand, Gelinas pointed out to me that Ringel’s result is

based on a strengthened form of contravariant finiteness of P<∞(Λ-mod)
and P<∞(mod-Λ), which is satisfied by Nakayama algebras: If the left
and right P<∞-categories of Λ are contravariantly finite, there exist strong
tilting modules ΛT and T ′

Λ. If both of these are also strong tilting mod-
ules over their respective endomorphism rings, one obtains l.FindimΛ =
r.FindimΛ = l.dell Λ = r.dell Λ. (On the side: This strong contravari-
ant finiteness condition is also responsible for the equally good behavior of
Gorenstein algebras which I cited earlier.)

Example. [Barei, Goodearl, HZ] For each n ≥ 3, there exists a left serial
algebra Λ with

r.FindimΛ = n− 1 and l.dell Λ = n.

I’ll give detail for the case n = 3. Consider the algebra Λ = KQ/〈αγβα, βαγδ〉,
where Q is the quiver
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The graphs of the indecomposable projectives in mod-Λ are as follows:



Indecomp. proj. in mod-Λ
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Claim 1. r.FindimΛ = 2.
The techniques of my 1991 paper “Predicting syzygies ...” allow to com-

pute this. Another way to go is to use contravariant finiteness of P<∞(mod-Λ)
in mod-Λ and compute the minimal P<∞(mod-Λ)-approximations of the
simples in mod-Λ; then one obtains the big right finitistic dimension of Λ
as the supremum of the projective dimensions of these approximations.

Next we move to a computation of the left delooping level of Λ. For that
part, there are no existing procedures waiting to be used.



Indecomp. proj. in Λ-mod
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Claim 2. l.dell Λ = 3.

On my pad, I’ll show l.dell Λ ≤ 3. The argument for the reverse inequal-
ity is based on the following lemma for left serial Λ:

Lemma. [HZ] Let N ∈ Λ-Mod, and suppose that N ⊆
⊕

i∈I
Ui, where all

Ui are uniserial. Then N is in turn a direct sum of uniserials and, in fact,
N =

⊕
l∈L

Vl, where each Vl is a submodule of some Ui.

Since, for any M ∈ Λ-Mod, we have Ω1(M) ⊆
⊕

i∈I
Je(i) for suitable

primitive idempotents e(i), we find that Ω1(M) ∼=
⊕

l∈L
Vl, where each Vl

is a submodule of some Je(i). In particular, Vl = Ω1(Λe(i)/Vl) is a syzygy.

Corollary. For each M ∈ Λ-Mod and k ≥ 1,

Ωk(M) =
⊕

i∈I

Ωk(Vi), where each Vi is uniserial.

Next, I’ll briefly describe the resulting algorithm for obtaining l.dell Λ
when Λ is left serial. In light of the Corollary, all delooping levels of in-
decomposable left Λ-modules arise as delooping levels of uniserial modules;



keep in mind that syzygies of uniserials are again uniserial. Clearly, Λ has
only finitely many isomorphism classes of uniserials. List all of those which
do not arise as submodules of the left regular module ΛΛ (those in ΛΛ are
either projective or submodules of ΛJ and hence have delooping level 0 by
an early remark): Say these are U1, . . . Um. Then all nonzero delooping
levels attained in Λ-mod can be gleaned from the following tableau:

U1 Ω1(U1) Ω2(U1) Ω3(U1) . . .

U2 Ω1(U2) Ω2(U2) Ω3(U2) . . .

. . . .

. . . .

Um Ω1(Um) Ω2(Um) Ω3(Um) . . .

All of the above rows turn periodic after a certain number of steps. Any row
may be terminated when the first repeat occurs; this termination point, in
the row with index i say, only provides an upper bound for dellUi however.
To determine the delooping level of Ui, one needs to check for the first
column index j in the i-th row such that the entry in position (i, j) occurs
in some column with an index k > j. Then dellUi = j.

Concluding questions re the left serial case: Can differences

l.dell Λ− r.FindimΛ > 1

be realized for left serial Λ? Are there “structural criteria” which indicate
equality l.dell Λ = r.FindimΛ?



B. Special biserial algebras

The next example shows that not even representation-theoretically trans-
parent string algebras Λ satisfy l.dell Λ = r.FindimΛ in general. The ex-
ample I’ll exhibit has finite representation type and vanishing radical cube.
This negative outcome contrasts the following positive result of Gelinas:

Theorem. [Gelinas] If J2 = 0, then l.dell Λ = r.FindimΛ.

Example. [Goodearl-HZ] Consider the following special biserial algebra:
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Clearly Λ is special biserial and monomial (i.e. a string algebra) with J3 =
0. Since the alphabet of Λ does not allow for a primitive word, Λ has finite
representation type. In particular, P<∞(Λ-mod) and P<∞(mod-Λ) are
contravariantly finite. However, l.dell Λ = r.dell Λ = 2, while l.FindimΛ =
r.FindimΛ = 1.

To see that l.dell Λ = 2, note that dellS2 = dellS3 = 0. The sequence
of successive syzygies of S1 is

Ω1(S1) = Je1, Ω
2(S1) = S2, Ω

3(S1) = S2 ⊕ S3, . . . ,

and hence dellS1 ≤ 2,

For the reverse inequality, observe that every object in Ω1(Λ-mod) has
Loewy length ≤ 2 and a projective cover in add(Λe2⊕Λe3). Since these pro-
jectives have Loewy length 2, all second syzygies of Λ-modules are semisim-
ple. In particular Ω1(S1) is not a direct summand of a second syzygy.

Again the question arises: Is the set of differences l.dell Λ− r.FindimΛ for
string algebras Λ uniformly bounded, and if so, what is the max attained?



4. Are the delooping levels of special
biserial algebras always finite?

I venture the conjecture that the answer is YES.

If that were confirmed, it would show that also the big finitistic dimen-
sions of special biserial algebras are finite. So far, this is known only for the
little finitistic dimensions, due to Erdmann-Holm-Iyama-Schröer.

Here is a first positive result pointing in the “right” direction.

Theorem. [Goodearl-HZ] If Λ is special biserial with J3 = 0, then the
delooping levels of Λ are finite.

Our proof (probably overcomplicated so far) is based on a study of “anti-
syzygies”: Suppose M ∈ Λ-mod is contained in the radical of a projective
module. Call a Λ-module N an anti-syzygy of M if Ω1(N) ∼= M and N has
no projective direct summands. In general, modules over special biserial
algebras may have infinitely many anti-syzygies.


