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From Lidia

Homological Methods 7→ a homological notion I have learnt from
Lidia.

[L. Angeleri Hügel and J. Sánchez, Tilting modules arising from
ring epimorphisms, Algebr. Represent. Theory 14 (2011), 217–246]

“We will mainly deal with injective ring epimorphisms which in
addition satisfy the following homological property studied by
Geigle and Lenzing in 1991:

Let R, S be two rings and λ : R → S a ring epimorphism.
Then λ is a homological ring epimorphism if TorRi (S , S) = 0 for
all i > 0.

We will see that in our context it is enough to require that
TorR1 (S ,S) = 0.”
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From Lidia

On 14 July 2016 Fuchs gave a conference in Padova,
“When weak-injective modules admit canonical decompositions.”

[Fuchs and Salce, Almost perfect commutative rings, J. Pure Appl.
Algebra 222(12) (2018), 4223–4238].

Equivalence of nine homological conditions.
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From Lidia

Do it in for non-commutative rings! (July 2016)

At the beginning of Spring 2017 Zahra Nazemian and I began to
work on it.

In June 2017 we discovered that Lidia and Javier’s injective ring
epimorphisms R → S + TorR1 (S , S) = 0 was the right class of
“ring extensions” to consider, they yield the correct setting to
make a lot of things work. In Erice (July 2017), we adapted the
paper to that setting. Under some further hypotheses, we also
proved the existence a category equivalence similar to Matlis’ one.

On 20 September 2017 we submitted our paper:
[Facchini and Nazemian, Equivalence of some homological
conditions for ring epimorphism, J. Pure Appl. Algebra 223 (2019),
no. 4, 1440–1455.]
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From Lidia

That condition ”injective ring epimorphisms +TorR1 (S ,S) = 0”
was later weakened by Leonid and Silvana to ”ring epimorphisms
+TorR1 (S , S) = 0” in their wonderful paper [Bazzoni and
Positselski, Matlis category equivalences for a ring epimorphism, J.
Pure Appl. Algebra 224 (2020), 106398], submitted in March
2020, using Lidia’s idea, which we had developed.

This is a fruitful line of ideas originated in Lidia’s work.
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Now, for this talk, a different topic: multiplicative lattices

A multiplicative lattice is a complete lattice L equipped with a
further binary operation · : L× L→ L (multiplication) satisfying
x · y ≤ x ∧ y for all x , y ∈ L.

(No associativity, commutativity, identities, distributivity required.)
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Two natural examples

Groups, rings 7→ the lattice of all normal subgroups, the lattice of
all two-sided ideals.

But these lattices are not sufficient to describe and explain several
situations. A product is necessary: the commutator [N,M] of two
normal subgroups, the product IJ of two ideals of a ring.

Hence we need a lattice + a multiplication.
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A non-associative multiplication!

Unlucky the multiplication is often not even associative (for normal
subgroups [M, [N,P]] can be different from [[M,N],P].

For instance, S3 is solvable but not nilpotent. Calculations are
easy, because S3 has only three normal subgroups: S3, A3 and 1.
S3 is solvable because [S3,S3] = A3

∼= Z/3Z, but is not nilpotent
because [S3,A3] = A3. Hence

[A3, [S3, S3]] = [A3,A3] = 1,

but
[[A3, S3],S3] = A3.
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Multiplicative lattices

Multiplicative lattices are an algebraic structure to which little
attention has been devoted, but which already appears in Krull
(1924!), and has been studied by M. Ward (1937), Ward and
R.P. Dilworth (1937), D.D. Anderson (1974), E.W. Johnson and
J.A. Johnson (1970), Hofmann and Keimel (1978), quantales,
frames, locales, . . .

In all these papers, further axioms are required: associativity or
commutativity of multiplication, distributivity with ∨, identity,
compatibility of multiplication and partial order, the multiplication
is the meet, . . .
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Spectra of rings, of distributive lattices,. . .

R any commutative ring with identity 7→ Spec(R).

This is a spectral topological space ( = sober, compact, the
intersection of two compact open sets is compact, and the
compact opens form a basis for the topology).

Any bounded distributive lattice L 7→ Spec(L). This is also a
spectral topological space (Stone spectrum of the distributive
lattice).

Commutative semiring with identity 7→ spectral space.

Commutative C ∗-algebra 7→ spectral space (Gelfand
spectrum).

Commutative monoids, abelian `-groups, prime spectrum of an
MV-algebra, Hofmann-Lawson spectrum of a continuous lattice,
Zariski-Riemann spaces,. . .
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On the ubiquity of spectral spaces

Always these strange, particular spaces,...

Sometimes a little less:

Commutative rings without identity 7→ an open subset of a
spectral space [Acosta-Rubio].

Noncommutative rings with identity 7→ “almost a spectral space”
(it is compact and sober, but the intersection of two compact open
sets is not necessarily compact, and the “open sets U(f )” are not
always compact.)

Why are spectra and spectral spaces so frequent in Algebra? Any
deep reason? Motivation?

The answer is in multiplicative lattices.
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In all the previous examples, there is a multiplicative lattice around:
For commutative rings: the lattice of its ideal with multiplication
of ideals.
For noncommutative rings: the lattice of its two-sided ideal with
multiplication of ideals, or IJ + JI as a product, if you prefer.
For groups: the modular lattice of its normal subgroups with
commutator of two normal subgroups.
For lattices: the lattice itself with multiplication xy := x ∧ y , or
the lattice of its ideals.



A second motivation

If you take any standard text of Lie algebras, for instance the one
by Bourbaki, you find these contents:



Lie Groups and Lie Algebras, Chapter 1, Bourbaki



Why is the beginning of a course of Lie algebras so similar to the
beginning of a course of groups?

The beginning of a course of
elementary ring theory is completely different! The motivation is
that we study rings with identity. Rngs (rings without identity) are
much more similar to groups and Lie algebras. This is also
explained well using multiplicative lattices.
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A third motivation

The center of a group is a normal subgroup, and the center of a
ring is a subring, not an ideal. This is very strange, in some sense
it is not congruent.

The answer again is in multiplicative lattices.
(They tell you simply that the names given are wrong. The (left)
center of the ring R should have been defined as
{ r ∈ R | rs = 0 for every s ∈ R }, which is a two-sided ideal of R.)
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A fourth motivation

The notions of solvable object (algebraic structure), nilpotent
object, abelian object, idempotent objects, hyperabelian objects,
find all their natural setting in multiplicative lattices.

(And
sometimes show that the names given are wrong.)
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A multiplicative lattice L

For the rest of the talk, L will always be a complete multiplicative
lattice, with 0 and 1.

An element p 6= 1 is said to be prime if it satisfies the implication

xy ≤ p ⇒ (x ≤ p or y ≤ p).

Let Spec(L) be the set of all prime elements of L.
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The mapping V

We have a mapping

V : L→ P(Spec(L))
V : x 7→ V (x) := { p ∈ Spec(L) | x ≤ p }.

The mapping V : L→ P(Spec(L)) has the following properties:
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The mapping V
(1) V transforms the multiplication in L into the union in
P(Spec(L)), that is, V is a magma morphism of the magma (L, ·)
into the magma (the commutative monoid) (P(Spec(L)),∪):

V (xy) = V (x) ∪ V (y) for every x , y ∈ L.

(2) V transforms the ∨ in L into the intersection in P(Spec(L))
(more is true: it transforms an arbitrary

∨
in L into an arbitrary

intersection in P(Spec(L)), even in the infinite case):

V (
∨
i∈I

xi ) =
⋂
i∈I

V (xi ) for every subset { xi | i ∈ I } ⊆ L.

(3) The image V (L) of the mapping V satisfies the axioms for the
closed sets of a topology on Spec(L).

Spec(L) with this topology is called the Zariski spectrum of L.
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Always a sober space

Lemma
Spec(L) is a sober space.



The category MCL of multiplicative lattices
Objects: our multiplicative lattices. Morphisms?

Our multiplicative lattices are complete lattices, but it is better not
to consider them complete lattices, but complete join-semilattices.
What is the difference between complete lattices and complete
join-semilattices? None: a partially ordered set is a complete
lattice if and only if it is a complete join-semilattice. They are
exactly the same thing. But morphisms are different: if L and M
are complete lattices, their morphisms as lattices are the mappings
f : L→ M such that f (x ∨ x ′) = f (x) ∨ f (x ′) and
f (x ∧ x ′) = f (x) ∧ f (x ′) for every x , x ′ ∈ L, and morphisms as
complete join-semilattices are the mappings f : L→ M such that
f (
∨
X ) =

∨
f (X ) for every subset X ⊆ L.

In the category MCL of multiplicative lattices, whose objects are
our complete multiplicative lattices (L, ·), morphisms L→ M are
morphisms in the category of complete join-semilattices such that
f (x)f (x ′) ≤ f (xx ′) for every x , x ′ ∈ L and f (1L) = 1M .)
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The category of multiplicative lattices

Proposition

There is a contravariant functor Spec : MCL→ Top.

(For every morphism (f , u) : L→ M, one proves that
u(Spec(M)) ⊆ Spec(L), and the restriction of u : M → L to
Spec(M)→ Spec(L) is continuous.)

Proposition

There is a covariant functor CommRings→ MCL that associates
to every commutative ring R with identity the multiplicative lattice
L(R) of its ideals.

Clearly, the composite functor of the two functors

CommRings→ MCL and Spec : MCL→ Top

is the usual contravariant functor Spec from the category of
commutative rings with identity to the category Top of topological
spaces.
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Spec is a right adjoint

The functor Spec : MCLop → { sober spaces } is a right adjoint of
the functor { sober spaces } → MCLop, that maps any sober space
X to the complete lattice Ω(X ) of its open subsets, with
multiplication the intersection: xy = x ∧ y for every x , y ∈ Ω(X ).



An example: the case of groups

Let G be a group.

We can consider the multiplicative lattice N (G )
of all normal subgroups of G . The multiplication in this lattice is
given by the commutator operation, i.e., the product of two normal
subgroups A and B of G is the normal subgroup [A,B].

The points of the Zariski spectrum Spec(G ) of G are the prime
subgroups of G , i.e. the prime elements of the multiplicative lattice
N (G ). Similarly, a normal subgroup of G is called semiprime if it
is a semiprime element of N (G ), that is, the meet (=the
intersection) of a set of prime subgroups of G .
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Prime subgroups, semiprime subgroups

Lemma
A subgroup N of G is a semiprime subgroup of G if and only if N
is a normal subgroup of G and the factor group G/N has no
abelian nontrivial normal subgroups.

Lemma
Let N be a normal subgroup of a group G . Then N is prime in G
if and only if N is semiprime in G and the factor group G/N is
uniform (that is, the interval [N,G ] of the lattice N (G ) is a
uniform lattice).

The spectrum of a group G is endowed with the Zariski topology,
in which the closed subsets are the sets
V (N) = {P ∈ Spec(G ) : N ≤ P}, N ∈ N (G ). In such a way,
Spec(G ) becomes a sober topological space, which is not compact
in general.
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The first extreme case: “almost all” normal subgroups are
prime.

Theorem
Let G be a group. Then all proper normal subgroups of G are
prime if and only if the lattice N (G ) is a chain and H = H ′ for
every normal subgroup H of G .

Moreover, in this case:

(a) The topological space Spec(G ) is sober, the intersection of
two compact open sets is compact and the compact opens
form a basis for the topology.

(b) The topological space Spec(G ) is spectral if and only if it is
compact, if and only if G has a maximal normal subgroup.
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The other extreme case: no prime subgroups.

Recall that a hyperabelian group is a group which possesses an
ascending (possibly transfinite) normal series where all the
successive quotients are abelian.

Theorem
A group G is hyperabelian if and only if Spec(G ) = ∅.

The only ring with identity with empty spectrum is the zero ring.
But for rings without identity there are several examples with
empty spectrum, for instance all nil rings.
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Direct product decomposition

For a commutative ring R there is a correspondence between ring
direct product decompositions R = R1 × R2, clopen subsets of
Spec(R), and idempotents of the ring R. For instance,
Spec(R1 × R2) is homeomorphic to the disjoint union
Spec(R1) ∪̇ Spec(R2) of the two topological spaces Spec(R1) and
Spec(R2).

The corresponding result for spectra of groups is:

Theorem
If G1 and G2 are groups, then the topological spaces
Spec(G1 × G2) and Spec(G1) ∪̇ Spec(G2) are homeomorphic.
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⇒ there is
a notion of m-systems for groups.
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Some further terminology in multiplicative lattices

Keeping in mind the example of the multiplicative lattice N (G ) of
all normal subgroups of a group G , with the commutator of normal
subgroups as multiplication, the following terminology turns out to
be very natural.

Let x be an element of a multiplicative lattice L. The element x is
abelian if x · x = 0, and is idempotent if x · x = x .
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Some further terminology in multiplicative lattices

The lower left central series (or descending left central series) of x
is the descending series

x = x1 ≥ x2 ≥ x3 ≥ . . . ,

where xn+1 := xn · x for every n ≥ 1. If xn = 0 for some n ≥ 1,
then x is left nilpotent. The element x is idempotent if x2 = x .
Similarly, the element x is right nilpotent if nx = 0 for some n,
where now in the descending series the elements nx are defined
recursively by n+1x := x · nx . If the multiplication in the
multiplicative lattice L is associative or commutative, then left
nilpotency coincides with right nilpotency.



Some further terminology in multiplicative lattices

The derived series of x is the descending series

x := x (0) ≥ x (1) ≥ x (2) ≥ . . . ,

where x (n+1) := x (n) · x (n) for every n ≥ 0.

The term
x ′ := x2 = x · x = x (1) is the derived element of x . The element x
of L is solvable x (n) = 0 for some integer n ≥ 0.

If the operation on the lattice is associative, then left nilpotent ⇔
right nilpotenct ⇔ solvable.
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Some further terminology in multiplicative lattices

For the multiplicative lattice N (G ) of a group G with operation
the commutator of two normal subgroups (which is commutative,
but not associative),

the element 1 = G of N (G ) is left (=right)
nilpotent as an element of the multiplicative lattice in the sense
just defined if and only if the group G is nilpotent, is a solvable
element if and only if G is a solvable group, and is an idempotent
element if and only if the group G is perfect.

For the multiplicative lattice L(R) of a ring R with operation the
product of two ideals (which is associative, but not commutative in
general), the element 1 = G of N (G ) is left nilpotent (=right
nilpotent=solvable) as an element of the multiplicative lattice if
and only if the ring R is nilpotent.
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From groups to multiplicative lattices

Theorem
Let L be a multiplicative lattice that satisfies the monotonicity
condition x ≤ y and x ′ ≤ y ′ implies xx ≤ yy ′ for every
x , y , x ′, y ′ ∈ L. Then all Spec(L) = L \ {1} if and only if L is
linearly ordered and every element of L is idempotent.



Now suppose that (L,∨, ·) is a multiplicative lattice, which is
algebraic (every element of L is the join of compact elements) and
satisfies the monotonicity condition.

Let C (L) denote the set of all
compact elements of L.

Lemma
An element p 6= 1 in L is prime if and only if

xy 6 p ⇒ (x 6 p or y 6 p)

for every x , y ∈ C (L).

An m-system in L is a nonempty subset S of C (L) such that for
every x , y ∈ S there exists z ∈ S such that z ≤ xy .

Lemma
An element p ∈ L is prime if and only if Sp := { c ∈ C (L) | c 
 p }
is an m-system in L.



Now suppose that (L,∨, ·) is a multiplicative lattice, which is
algebraic (every element of L is the join of compact elements) and
satisfies the monotonicity condition. Let C (L) denote the set of all
compact elements of L.

Lemma
An element p 6= 1 in L is prime if and only if

xy 6 p ⇒ (x 6 p or y 6 p)

for every x , y ∈ C (L).

An m-system in L is a nonempty subset S of C (L) such that for
every x , y ∈ S there exists z ∈ S such that z ≤ xy .

Lemma
An element p ∈ L is prime if and only if Sp := { c ∈ C (L) | c 
 p }
is an m-system in L.



Now suppose that (L,∨, ·) is a multiplicative lattice, which is
algebraic (every element of L is the join of compact elements) and
satisfies the monotonicity condition. Let C (L) denote the set of all
compact elements of L.

Lemma
An element p 6= 1 in L is prime if and only if

xy 6 p ⇒ (x 6 p or y 6 p)

for every x , y ∈ C (L).

An m-system in L is a nonempty subset S of C (L) such that for
every x , y ∈ S there exists z ∈ S such that z ≤ xy .

Lemma
An element p ∈ L is prime if and only if Sp := { c ∈ C (L) | c 
 p }
is an m-system in L.



Now suppose that (L,∨, ·) is a multiplicative lattice, which is
algebraic (every element of L is the join of compact elements) and
satisfies the monotonicity condition. Let C (L) denote the set of all
compact elements of L.

Lemma
An element p 6= 1 in L is prime if and only if

xy 6 p ⇒ (x 6 p or y 6 p)

for every x , y ∈ C (L).

An m-system in L is a nonempty subset S of C (L) such that for
every x , y ∈ S there exists z ∈ S such that z ≤ xy .

Lemma
An element p ∈ L is prime if and only if Sp := { c ∈ C (L) | c 
 p }
is an m-system in L.



Now suppose that (L,∨, ·) is a multiplicative lattice, which is
algebraic (every element of L is the join of compact elements) and
satisfies the monotonicity condition. Let C (L) denote the set of all
compact elements of L.

Lemma
An element p 6= 1 in L is prime if and only if

xy 6 p ⇒ (x 6 p or y 6 p)

for every x , y ∈ C (L).

An m-system in L is a nonempty subset S of C (L) such that for
every x , y ∈ S there exists z ∈ S such that z ≤ xy .

Lemma
An element p ∈ L is prime if and only if Sp := { c ∈ C (L) | c 
 p }
is an m-system in L.



Hyperabealian multiplicative lattices

Theorem
Let (L,∨, ·) be an algebraic multiplicative lattice in which
m-distributivity holds.The following conditions are equivalent:
(a) 1 is the unique semiprime element of L.
(b) For every x ∈ L, x 6= 1, there exists y ∈ L such that y > x and
y2 ≤ x .
(c) There exists a strictly ascending chain

0 := x0 ≤ x1 ≤ x2 ≤ · · · ≤ xω ≤ xω+1 ≤ · · · ≤ xα := 1

in L indexed in the ordinal numbers less or equal to α for some
ordinal α, such that x2β+1 ≤ xβ for every ordinal β < α and
xγ =

∨
β<γ xβ for every limit ordinal γ ≤ α.

(d) The lattice L has no prime elements, that is, Spec(L) = ∅.
(e) The semiprime radical of L is 1.
(f) Every m-system of L contains 0.



Another application: left skew braces

Following Drinfeld (1992), a set-theoretic solution of the
Yang-Baxter equation is a pair (X , r), where X is a set and
r : X × X → X × X is a bijection, such that

(r × id)(id× r)(r × id) = (id× r)(r × id)(id× r).

Braces were defined by Wolfgang Rump in 2007 (J. Algebra), and
were generalized in 2017 to skew braces by L. Guarnieri and
L. Vendramin.
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What is a brace

“Braces” has a lot of meanings in English:

tutori ortopedici, parentesi graffe, tiracche (bretelle), apparecchi
per i denti, pilastri in edilizia, coppia di fagiani, trapano a mano,
. . .
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What is a brace

A (left) skew brace is a triple (A, ◦, ∗), where (A, ◦) and (A, ∗) are
groups (not necessarily abelian) such that

a ◦ (b ∗ c) = (a ◦ b) ∗ a−1 ∗ (a ◦ c) (1)

for every a, b, c ∈ A. Here a−1 denotes the inverse of a in the
group (A, ∗).

The inverse of a in the group (A, ◦) will be denoted
by a′.

The simplest examples of left skew braces are:

(1) For any associative ring (R,+·), the Jacobson radical
(J(R), ◦,+), where ◦ is the operation on J(R) defined by
x ◦ y = xy + x + y for every x , y ∈ J(R).

(2) For any group (G , ∗), the left skew brace (G , ∗, ∗).
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Left skew brace morphisms

Clearly, left skew braces also form an algebraic variety, whose
morphisms A→ A′ are the mappings f : A→ A′ such that
f (a ◦ b) = f (a) ◦ f (b) and f (a ∗ b) = f (a) ∗ f (b) for every a, b ∈ A.

In particular, we have a category Bra of all left skew braces.

For every skew brace (A, ◦, ∗), the mapping

r : A×A→ A×A, r(x , y) = (x−1 ∗ (x ◦y), (x−1 ∗ (x ◦y))′ ◦x ◦y),

is a set-theoretic solution of the Yang-Baxter equation
(Guarnieri-Vendramin, 2017).
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Ideals in skew braces

The zero object of the category Bra is the left skew brace with one
element.

The product of two left skew braces is the cartesian
product with the component-wise operations. The category of
braces is a semi-abelian category.

Lemma
[Bachiller, J. Pure Appl. Algebra, 2018] Let A be a skew brace.
Then λ : (A, ◦)→ Aut(A, ∗), given by λ : a 7→ λa, where
λa(b) = a−1 ∗ (a ◦ b), is a well-defined group homomorphism.
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The action λ : (A, ◦)→ Aut(A, ∗) for a brace

In other words, for any skew brace (A, ◦, ∗), we have that (A, ∗) is
an (A, ◦)-group with respect to the action λ : (A, ◦)→ Aut(A, ∗)
described in the statement of the previous Lemma.

Conversely, suppose that a set A has two group structures (A, ◦)
and (A, ∗) and that (A, ∗) is an (A, ◦)-group with respect to the
action λ : (A, ◦)→ Aut(A, ∗), defined by λ : a 7→ λa, where
λa(b) = a−1 ∗ (a ◦ b). Then the fact that each λa is an
automorphism yields that λa(b ∗ c) = λa(b) ∗ λa(c), i.e.,
a−1 ∗ (a ◦ (b ∗ c)) = a−1 ∗ (a ◦ b) ∗ a−1 ∗ (a ◦ c), from which
a ◦ (b ∗ c) = (a ◦ b) ∗ a−1 ∗ (a ◦ c). Hence braces are exactly those
particular G -groups (H, λ) for which G = H as sets, and the action
λ is defined by λa(b) = a−1 ∗ (a ◦ b).
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The group morphism λ : (A, ◦)→ Aut(A, ∗) for a brace

The semidirect product corresponding to such a group morphism
λ : (A, ◦)→ Aut(A, ∗) is the group P := (A, ∗)n (A, ◦), i.e., the
cartesian product P := A× A with group operation defined by

(a1, a2) · (b1, b2) = (a1 ∗ a−12 ∗ (a2 ◦ b1), a2 ◦ b2). (2)

Conversely, given two group structures (A, ◦) and (A, ∗) on the
same set A such that P := A× A with the operation as in (2) is a
group, then (A, ◦, ∗) is a left skew brace.

This proves that left skew braces are particular groups, in the sense
that there is a faithful functor Bra→ Group,
A 7→ P = (A, ∗)n (A, ◦), f 7→ f × f , because every brace
morphism f : A→ A′ induces a corresponding group morphism
f × f : P = An A→ P ′ = A′ n A′, (f × f )(a, b) = (f (a), f (b)).
This functor allows us to consider braces as “particular groups with
less morphisms”.
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Kernel of a left skew brace morphism f : A→ A′

It is well known and very easy to prove that, in a left skew brace
(A, ◦, ∗), the two groups (A, ◦) and (A, ∗) have the same identity.

From this, it follows in particular that the group morphisms
f : (A, ◦)→ (A, ◦) and f : (A, ∗)→ (A, ∗) have the same kernel I ,
which is a normal subgroup both in (A, ◦) and in (A, ∗).

The kernel of f × f : P = An A→ P ′ = A′ n A′ is I × I .
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Kernel of a left skew brace morphism f : A→ A′

The assignments (A, ◦, ∗) 7→ P := (A, ∗)n (A, ◦) and f 7→ f × f
define a faithful functor of the category of left skew braces into the
category of groups.

This allows us to view left skew braces as groups and suggests us
the definition of kernel of a left skew brace morphism f : A→ A′

and of factor skew brace, getting a left skew brace isomorphism
(A/I , ∗)n (A/I , ◦)→ (f × f )(P), as follows. The kernel of a left
skew brace morphism f : A→ A′ is the inverse image f −1(1A) of
the identity 1A of (A, ◦), (which coincides with the identity of
(A, ∗)).
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The kernel of a left
skew brace morphism f : A→ A′ is the inverse image f −1(1A) of
the identity 1A of (A, ◦), (which coincides with the identity of
(A, ∗)).
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Ideals of a left skew brace

An ideal of a skew brace A is a normal subgroup I both of (A, ◦)
and (A, ∗) such that I ◦ a = I ∗ a for every a ∈ I .

Notice that this
exactly means that the factor groups of (A, ◦) and (A, ∗) modulo I
coincide as sets.

Also notice that I ◦ a = I ∗ a for every a ∈ A if and only if, for
every a, b ∈ A, one has a ∗ b−1 ∈ I ⇔ a ◦ b′ ∈ I . Equivalently, if
and only if λa(I ) ⊆ I for every x ∈ I and every a ∈ A, that is, I is
an (A, ◦)-subgroup of the left (A, ◦)-group (A, ∗).

The semidirect product corresponding to the quotient left skew
brace A/I is (A/I , ∗)n (A/I , ◦).
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Ideals of a left skew brace

Proposition

Let (A, ◦, ∗) be a left skew brace.
(1) If ∼ is an equivalence relation on the set A compatible with
both the operations ◦ and ∗ of A, then the equivalence class [1A]∼
of the identity of A is an ideal of the skew brace A.

(2) Conversely, if I is an ideal of A, the relation ∼I on A defined,
for every a, b ∈ A, by a ∼I b if a ∗ b−1 ∈ I , is an equivalence
relation on A compatible with both ◦ and ∗.
(3) The two assignments in (1) and (2) determine a one-to-one
correspondence between the set of all ideals of A and the set of all
the equivalence relations on A compatible with both the operations
◦ and ∗.
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Ideal generated by a subset of a brace

Any intersection of ideals is an ideal, so that we get a complete
lattice I(A) of ideals for any skew brace A. In particular, every
subset X of A generates an ideal, the intersection of the ideals that
contain X .

It can be “constructively” described as follows. Given a
subset X of a skew brace A, consider the increasing sequence Xn,
n ≥ 0, of subsets of A where X0 := X , Xn+1 is the normal closure
of Xn in (A, ∗) if n ≡ 0 (mod 3), Xn+1 is the normal closure of Xn

in (A, ◦) if n ≡ 1 (mod 3, Xn+1 :=
⋃

a∈A λa(Xn) if n ≡ 2 (mod 3).
The ideal of A generated by X is

⋃
n≥0 Xn.



Ideal generated by a subset of a brace

Any intersection of ideals is an ideal, so that we get a complete
lattice I(A) of ideals for any skew brace A. In particular, every
subset X of A generates an ideal, the intersection of the ideals that
contain X . It can be “constructively” described as follows. Given a
subset X of a skew brace A, consider the increasing sequence Xn,
n ≥ 0, of subsets of A where X0 := X , Xn+1 is the normal closure
of Xn in (A, ∗) if n ≡ 0 (mod 3), Xn+1 is the normal closure of Xn

in (A, ◦) if n ≡ 1 (mod 3, Xn+1 :=
⋃

a∈A λa(Xn) if n ≡ 2 (mod 3).
The ideal of A generated by X is

⋃
n≥0 Xn.



The multiplicative lattice of ideals

If I and J are ideals of a skew brace A, then I ∩ J is an ideal of A.
The sum I + J of I and J is defined as the additive subgroup of A
generated by all the elements of the form u + v , where u ∈ I and
v ∈ J. It is an ideal of A (A. Konovalov, A. Smoktunowicz and
L. Vendramin, Exp. Math., 2021).

More generally, any intersection of ideals is an ideal, so that we get
a complete lattice I(A) of ideals for any skew brace A. In
particular, every subset X of A generates an ideal, the intersection
of the ideals that contain X .

A ring is abelian if has zero multiplication. Abelian rings are
radical rings. Adjoining them an identity (Dorroh), one gets a
trivial extension ZαA, A an abelian group. Correspondingly, in
abelian braces A we have that (A,+) is an abelian group, the
operations + and ◦ coincide, and · is the zero multiplication.
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Commutators

Huq commutator [Huq, 1968].

The category of braces is semiabelian category with a zero object.
If I , J are ideals of a left skew brace A, the Huq commutator
[I , J]H is the smallest ideal X of A such that there is a left skew
brace morphism ϕ : I × J → A/X such that the diagram

I
(1I ,0I )
//� _

��

I × J

ϕ

��

J
(0J ,1J)
oo � _

��

A // // A/X Aoooo

commute.
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Maltsev

[Maltsev, 1954]. The following conditions are equivalent for any
variety of algebras V:
(a) V is congruence-permutable.
(b) There is a ternary term q such that

V |= q(x , y , y) ≈ x ≈ q(y , y , x).

Such a term is called a Maltsev term and congruence-permutable
varieties are called Maltsev varieties. Any variety that contains a
group operation is congruence-permutable, and the Maltsev term is
xy−1z .
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Smith commutator

For an algebra X in a Maltsev variety V with Maltsev term
q(x , y , z) and two congruences α and β on X , the Smith
commutator [α, β]S is the smallest congruence θ on X for which
the mapping

p : { (x , y , z) | (x , y) ∈ α and (y , z) ∈ β } → X/θ

that sends (x , y , z) to the θ-class of p(x , y , z) is a morphism.



The notions of prime ideal, solvable, nilpotent, etc., skew braces
are now natural, and depend on the commutator chosen. This
must be compared with previous notions by Rump (J. Algebra
2007), Rowen (2017), Bachiller-Cedó-Jespers-Okniński (Commun.
Contemp. Math. 2019), and Smoktunowicz (Appendix to the
paper On skew braces and their ideals, available in arXiv.)


