Cyclotomic quiver Schur algebras of type A

Andrew Mathas

University of Sydney

Joint work with Jun Hu

Cyclotomic quiver Schur algebras

Cyclotomic Hecke algebras of type $G(\ell, 1, n)$

Fix a ring *R* and parameters $\xi \in R^{\times}$ and $Q_1, \ldots, Q_{\ell} \in R$. The cyclotomic Hecke algebra $\mathcal{H}_n = \mathcal{H}_n(\xi; Q_1, \ldots, Q_{\ell}\kappa)$ is the unital

associative algebra generated by $T_1, \dots, T_{n-1}, L_1, \dots, L_n$ with relations $\prod_{l=1}^{\ell} (L_1 - Q_l[\kappa_l]) = 0, \qquad (T_r + 1)(T_r - \xi) = 0,$ $L_1 T_1 L_1 T_1 = T_1 L_1 T_1 L_1, \qquad T_s T_{s+1} T_s = T_{s+1} T_s T_{s+1}$ $L_r L_t = L_t L_r, \qquad T_r L_r + 1 = L_{r+1} T_r - (\xi - 1)L_{r+1} T_r L_r + 1 =$ $L_{r+1} T_r - (\xi - 1)L_{r+1}, \qquad \text{if } t \neq r, r+1,$ $T_r L_s = T_s T_r, \qquad \text{if } t \neq r, r+1,$

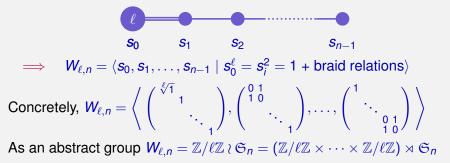
Remark $L'_r = (\xi - 1)L_r + 1$ gives the usual representation when $\xi \neq 1$.

The integral case: fix a multicharge $\kappa = (\kappa_1, \ldots, \kappa_\ell) \in \mathbb{Z}^\ell$ and set $Q_l = [\kappa_l]$, where for $k \in \mathbb{Z}$ we define

$$[k] = \begin{cases} 1 + \xi + \dots + \xi^{k-1}, & \text{if } k \ge 0, \\ -(\xi^k + \xi^{k+1} + \dots + \xi^{-1}), & \text{if } k < 0. \end{cases}$$

Complex reflection groups of type $G(\ell, 1, n)$

The complex reflection group $W_{\ell,n}$ of type $G(\ell, 1, n)$ is the group with presentation encoded by the Coxeter diagram



 \implies the ordinary irreducible representations of $W_{\ell,n}$ are labelled by ℓ -tuples of partitions $\lambda = (\lambda^{(1)}| \dots |\lambda^{(\ell)})$ such that $|\lambda^{(1)}| + \dots + |\lambda^{(\ell)}| = n$.

Let \mathcal{P}_n^{Λ} be the set of multipartitions of *n*.

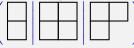
Cyclotomic quiver Schur algebras

2/20

Tableaux combinatorics...by example

Let $\lambda = (1^2 | 2^2 | 2, 1)$, a multipartition of 9 with $\ell = 3$.

The diagram of λ is the following collection of boxes in the plane:



A λ -tableau is a filling of its diagram with the numbers 1, ..., *n*:

$\lambda =$	$\left(\right)$	1	3	4	7	8	
		2	5	6	9)

A tableau is standard if its entries increase from left to right in each row and from top to bottom in each column.

If t is a λ -tableau we let $d(t) \in \mathfrak{S}_n$ be the *unique* permutation such that $t = t^{\lambda} \cdot d(t)$.

So
$$t = \begin{pmatrix} 3 \\ 7 \\ 2 \\ 8 \\ 9 \end{pmatrix} \implies d(t) = (1,3)(2,7,4,5)(6,8).$$

Let $Std(\lambda)$ be the set of standard λ -tableaux.

Cyclotomic quiver Schur algebras

The Murphy basis of \mathcal{H}_n^{\wedge}

For $(s,t) \in \text{Std}^2(\lambda)$ let $m_{st} = T_{d(s)^{-1}}m_{\lambda}T_{d(t)}$, where $m_{\lambda} = u_{\lambda}x_{\lambda}$ and

$$u_{\lambda} = \prod_{1 \le k < l \le \ell} \prod_{(k,r,c) \in \lambda} \xi^{-\kappa_l} (L_k - [\kappa_l]) \text{ and } x_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda}} T_w.$$

Set $\operatorname{Std}^2(\mathcal{P}_n^{\Lambda}) = \bigsqcup_{\lambda} \operatorname{Std}^2(\lambda)$.

Theorem (Dipper-James-M.)

The basis { $m_{st} : (s,t) \in Std^2(\mathcal{P}_n^{\Lambda})$ } is a cellular basis of \mathcal{H}_n^{Λ} .

The whole point of constructing a cellular basis is that it gives, for free, a collection of Specht modules, or cell modules. Using these we quickly obtain a complete set of simple \mathcal{H}_n^{Λ} -modules.

Cyclotomic quiver Schur algebras

5/20

Specht modules

The Specht module \underline{S}^{λ} is the free *R*-module with basis { $m_{t} : t \in Std(\lambda)$ } and with $\mathcal{H}_{n}^{\Lambda}$ -action: $m_{t}h = \sum_{v \in Std(\lambda)} r_{tv}^{h}m_{v}$. Compare with: $m_{st}h \equiv \sum_{v} r_{tv}^{h}m_{sv}$ (mod higher terms) Importantly, \underline{S}^{λ} has a natural bilinear form \langle , \rangle . To define \langle , \rangle it is enough to specify $\langle m_{t}, m_{u} \rangle$: Consider: $m_{st}m_{uv} = \langle m_{t}, m_{u} \rangle m_{sv}$

$$\implies \operatorname{rad} \underline{S}^{\lambda} = \{ x \in \underline{S}^{\lambda} : \langle x, y \rangle = 0 \text{ for all } y \in \underline{S}^{\lambda} \}$$

is an $\mathcal{H}_{n}^{\Lambda}$ -submodule of \underline{S}^{λ} as $\langle xh, y \rangle = \langle x, yh^{*} \rangle$

Define $\underline{D}^{\lambda} = \underline{S}^{\lambda} / \operatorname{rad} \underline{S}^{\lambda}$

Theorem (Graham-Lehrer)

Over a field, the non-zero \underline{D}^{λ} give a complete set of pairwise non-isomorphic irreducible $\mathfrak{H}_{n}^{\Lambda}$ -modules.

Cellular algebras

(Graham–Lehrer)

Cellular bases can be thought of as approximations to the Wedderburn basis which are defined over rings where the algebra is not semisimple.

(C1) The map $*: m_{st} \mapsto m_{ts}$ is an anti–isomorphism.

(C2) Given t and $h \in \mathcal{H}_n^{\Lambda}$ there exist $r_{tv}^h \in R$ such that

$$m_{\rm st}h \equiv \sum_{\rm v\in Std(\lambda)} r^h_{\rm tv} m_{\rm sv} \pmod{\rm higher terms}$$

Importantly, the scalar r_{tv}^h is independent of s !

(C1) and (C2) combined imply:

(C2)'
$$hm_{st} \equiv \sum_{v \in Std(\lambda)} r_{sv}^h m_{vt} \pmod{higher terms}$$

Cyclotomic quiver Schur algebras

Cyclotomic Schur algebras

The algebra $\mathfrak{H}_{n}^{\wedge}$ has a quasi-hereditary cover $S_{n}^{\mathsf{DJM}} = \mathsf{End}_{\mathfrak{H}_{n}^{\wedge}}(\bigoplus_{\mu} M^{\mu}), \quad \text{where } M^{\mu} = m_{t^{\mu}t^{\mu}}\mathfrak{H}_{n}^{\wedge},$ called the cyclotomic Schur algebra.

The algebra S_n^{DJM} is the Dipper-James *q*-Schur algebra when $\Lambda = \Lambda_0$. It is the classical Schur algebra when $\Lambda = \Lambda_0$ and $\xi = 1$.

The algebra S_n^{DJM} is cellular, in the sense of Graham-Lehrer, with

- Weyl modules $\underline{\Delta}^{\lambda}$, for λ a multipartition
- Simple modules $\underline{L}^{\mu} = \underline{\Delta}^{\mu} / \operatorname{rad} \underline{\Delta}^{\mu} \neq 0$

There is an exact Schur functor $F_n : S_n^{DJM} - Mod \longrightarrow \mathcal{H}_n^{\Lambda} - Mod$ such that

- $\mathsf{F}_n(\underline{\Delta}^{\lambda}) = \underline{S}^{\lambda}$
- $F_n(\underline{L}^{\mu}) = \underline{D}^{\mu}$, which is 0 is μ is not restricted

Therefore, $[\underline{\Delta}^{\lambda} : \underline{L}^{\mu}] = [\underline{S}^{\lambda} : \underline{D}^{\mu}]$ if $\underline{D}^{\mu} \neq 0$.

Brundan-Kleshchev's graded isomorphism theorem

Theorem (Brundan and Kleshchev)

Suppose that K is a field. Then $\mathfrak{H}_n^{\Lambda} \cong \mathfrak{R}_n^{\Lambda}$ is a \mathbb{Z} -graded algebra.

This is proved by giving a new homogeneous set of generators and relations for \mathcal{H}_n^{Λ} . The degree function on \mathcal{H}_n^{Λ} is determined by the Cartan matrix of quiver of $\mathbb{Z}/e\mathbb{Z}$ and Λ is a dominant for the corresponding Kac-Moody algebra.

We want to put a grading on the Schur algebra S_n^{Λ} .

By Brundan-Kleshchev-Wang there is a graded lift S^{λ} of the ungraded Specht module \underline{S}^{λ} . Is there a graded lift of M^{λ} ?

Theorem (Ariki, Brundan-Stroppel, Hu-M., Stroppel-Webster)

There is a \mathbb{Z} -grading on \mathbb{S}_n^{\wedge} which is compatible with the grading on \mathcal{H}_n^{\wedge} .

Cyclotomic quiver Schur algebras

9/20

A graded cellular basis of \mathcal{H}_n^{\wedge}

The KLR generators of \mathcal{H}_n^{Λ} , which induce its grading, are $\psi_1, \ldots, \psi_{n-1}, \quad y_1, \ldots, y_n, \quad e(\mathbf{i}), \quad \text{ for } \mathbf{i} \in I^n = (\mathbb{Z}/e\mathbb{Z})^n.$

Theorem (Hu-M.)

Suppose that *K* is a field, Then \mathfrak{H}_n^{Λ} is a graded cellular algebra with graded cellular basis { $\psi_{st} : s, t \in Std(\lambda)$ and $\lambda \in \mathcal{P}_n^{\Lambda}$ }.

Example Take
$$e = 3$$
, $\Lambda = 2\Lambda_0 + \Lambda_2$ and $\lambda = (4, 2|1|1^2)$.
The initial tableau t ^{λ} and the residues in λ are:

$$t^{\lambda} = \left(\begin{array}{c|c} 1 & 2 & 3 & 4 \\ \hline 5 & 6 \\ \hline \end{array} \right) \left[\begin{array}{c|c} 7 \\ \hline 9 \\ \hline \end{array} \right] \text{ and } \left(\begin{array}{c|c} 0 & 1 & 2 & 0 \\ \hline 2 & 0 \\ \hline \end{array} \right) \left[\begin{array}{c|c} 0 \\ \hline 1 \\ \hline \end{array} \right] \left[\begin{array}{c|c} 2 \\ \hline 1 \\ \hline \end{array} \right]$$

Then $\psi_{t^{\lambda}t^{\lambda}} = e(\mathbf{i}^{\lambda})y^{\lambda}$, where $\mathbf{i}^{\lambda} = \operatorname{res}(t^{\lambda}) = (0, 1, 2, 0, 2, 0, 0, 2, 1)$ The element y_{λ} is defined by "reading" along t^{λ} :

$$y_{\lambda} = y_1 y_3^2 y_4 y_5 y_4$$

In general, $\psi_{st} = \psi_{d(s)^{-1}} e(\mathbf{i}^{\lambda}) y^{\lambda} \psi_{d(t)}$, where $s = t^{\lambda} d(s)$ and $t = t^{\lambda} d(t)$.

Cyclotomic quiver Schur algebras

As \mathcal{H}_n^{Λ} is graded one can show directly that $M = \bigoplus_{\mu} M^{\mu}$ is graded.

By definition, $M^{\mu} = m_{t^{\mu}t^{\mu}} \mathcal{H}_{n}^{\Lambda}$

Write $m_{t^{\mu}t^{\mu}} = \sum_{k \in \mathbb{Z}} m_k^{\mu}$, with m_k^{μ} homogeneous of degree k

Theorem (Hu-M.)

Suppose that $\mu \in \mathcal{P}_n^{\Lambda}$ and let $d_{\mu} = 2 \operatorname{deg} t^{\mu}$. Then:

- $m_k^{\mu} \neq 0$ only if $k \geq d_{\mu}$.
- $m_{d_{\mu}}^{\mu} \equiv m^{\mu} \mod (\mathfrak{H}_{n}^{\Lambda})^{\triangleright \mu}$ and if $k > d_{\mu}$ then $m_{k}^{\mu} \in (\mathfrak{H}_{n}^{\Lambda})^{\triangleright \mu}$.
- $e_{\beta}M^{\mu} = e_{\beta}m^{\mu}_{d_{\mu}}\mathcal{H}^{\Lambda}_{n}$, for a known central idempotent e_{β} .

The main point is that $e_{\beta}M^{\mu}$ is generated by the homogeneous component of $e_{\beta}m^{\mu}$ which is of minimal degree.

Corollary

The cyclotomic Schur algebra $\mathbb{S}_n^{DJM} = \operatorname{End}_{\mathcal{H}_n^{\Lambda}}(M)$ inherits a \mathbb{Z} -grading from \mathcal{H}_n^{Λ} . Consequently, \mathbb{S}_n^{DJM} is a graded cellular algebra.

yclotomic quiver Schur algebras

10/20

Cyclotomic quiver Schur algebras when e = 0 or $e \ge n$

If e = 0 or $e \ge n$ then $e(\beta)m^{\mu}$ has a particularly nice form: $e(\beta)m^{\mu} = c\psi_{t^{\mu}t^{\mu}} + \text{ terms of strictly higher degree}$ Define the graded permutation module $G^{\mu} = \psi_{t^{\mu}t^{\mu}} \mathcal{H}_{n}^{\Lambda} \langle - \deg t^{\mu} \rangle$. $\implies G^{\mu}$ is a graded $\mathcal{H}_{n}^{\Lambda}$ -module with basis $\{\psi_{st} : s \in \text{Std}^{\mu}(\lambda) \text{ and } t \in \text{Std}(\lambda)\},\$ where $\text{Std}^{\mu}(\lambda) = \{s \in \text{Std}(\lambda) : s \trianglerighteq t^{\mu} \text{ and res}(s) = \text{res}(t^{\mu})\}.$ $\implies \text{ If } s \in \text{Std}^{\mu}(\lambda) \text{ and } t \in \text{Std}^{\nu}(\lambda) \text{ then } \Psi_{st}^{\mu\nu} \in \text{Hom}_{\mathcal{H}_{n}^{\Lambda}}(G^{\nu}, G^{\mu}),\$ where $\Psi_{st}^{\mu\nu}(\psi_{t^{\nu}t^{\nu}}h) = \psi_{st}h$, for $h \in \mathcal{H}_{n}^{\Lambda}$.

Theorem (Hu-M.)

Suppose that e = 0 or $e \ge n$. Then the algebra $\mathbb{S}_n^{\Lambda} = \operatorname{End}_{\mathcal{H}_n^{\Lambda}}(\bigoplus_{\mu} G^{\mu})$ is a quasi-hereditary graded cellular algebra with graded cellular basis $\{\Psi_{st}^{\mu\nu} : s \in \operatorname{Std}^{\mu}(\lambda) \text{ and } t \in \operatorname{Std}^{\nu}(\lambda)\}$ with deg $\Psi_{st}^{\mu\nu} = (\deg s - \deg t^{\mu}) + (\deg t - \deg t^{\nu})$.

Weyl modules, blocks and a graded Schur functor

The algebras S_n^{Λ} are in many respects nicer than the cyclotomic *q*-Schur algebras. For example, $\mathbb{S}_{\alpha}^{\Lambda} = \bigoplus_{\beta} \mathbb{S}_{\beta}^{\Lambda}$ with each block $\mathbb{S}_{\beta}^{\Lambda}$ being a quasi-hereditary graded cellular algebra.

There are graded Weyl modules Δ^{λ} , graded simple modules $L^{\mu} = \Delta^{\mu} / \operatorname{rad} \Delta^{\mu}$, and graded decomposition numbers

$$[\Delta^{oldsymbol{\lambda}}\colon L^{oldsymbol{\mu}}]_{oldsymbol{q}} = \sum_{k\in\mathbb{Z}} [\Delta^{oldsymbol{\lambda}}\colon L^{oldsymbol{\mu}}oldsymbol{\langle k
angle}] \, q^k\in\mathbb{N}[q,q^{-1}].$$

We obtain a graded Schur-Weyl duality and a graded Schur functor F_n^{Λ} : S_n^{Λ} -GrMod $\longrightarrow \mathcal{H}_n^{\Lambda}$ -GrMod. Hence, we have that $[\Delta^{\lambda}: L^{\mu}]_{a} = [S^{\mu}: D^{\mu}]_{a}$, whenever $D^{\mu} \neq 0$.

A slightly harder fact is that G^{μ} is a direct summand of M^{μ}

 \implies S_n^{Λ} is a (graded) subalgebra of S_n^{DJM}

 \implies S_n^{Λ} -Mod and S_n^{DJM} -Mod are (graded) Morita equivalent

vclotomic quiver Schur algebras

13/20

15/20

Sketch of the proof

We first show that the gradings on $\mathcal{H}_{n}^{\Lambda}$ induced by $\mathcal{R}_{n}^{\Lambda}$ and by parabolic category 0 are the "same" = graded Morita equivalent.

• As category 0 is Koszul, the PIM P^{μ}_{0} is rigid whenever $D^{\mu} \neq 0$: that is, the socle, radical and grading filtrations of P^{μ}_{0} coincide.

• The polynomials $[\Delta_{\Omega}^{\lambda} : L_{\Omega}^{\mu}]_{q} = [S^{\lambda} : D^{\mu}]_{q}$ describe these filtrations and these polynomials agree for the two gradings on \mathcal{H}_n^{Λ} by BK.

• By Higher Schur-Weyl duality, there is an isomorphism $\underline{S}^{\Lambda}_{\beta} \cong \underline{S}^{0}_{\beta}$ of ungraded algebras. Fix an ungraded isomorphism $\Xi : \mathbb{S}^{\wedge}_{\beta} \to \mathbb{S}^{\circ}_{\beta}$. \implies \equiv (rad^s P^{μ}_{0}) \cong rad^s P^{μ} , for s > 0

We manufacture a positive grading on P^{μ} by defining, for $f \ge 0$,

 $P^{\mu}(f) = \sum_{\theta: P^{\nu} \to P^{\mu}} \operatorname{im} \theta$, where in the sum deg $\theta \ge f$.

- $[P^{\mu}(f): L^{\nu}\langle s \rangle] \neq 0$ only if s > f, whenever $D^{\mu}, D^{\nu} \neq 0$
- \implies [rad^s $P^{\mu}: L^{\nu}]_{q} = [rad^{s} P^{\mu}_{0}: L^{\nu}_{0}]_{q}$, if $s \geq 0$ and $D^{\mu}, D^{\nu} \neq 0$

 \implies the two gradings on $\mathcal{H}_{p}^{\Lambda}$ are graded Morita equivalent

 \implies By looking at Young modules, the algebras S^0_{β} and S^{Λ}_{β} are

graded Morita equivalent $\implies S_n^{\Lambda}$ is positively graded and Koszul.

Graded higher Schur-Weyl duality

Brundan and Kleshchev have shown that each block S_{β}^{DJM} of S_{n}^{DJM} is Morita equivalent to a block $\mathbb{O}^{\Lambda}_{\beta}$ of parabolic category \mathbb{O} for \mathfrak{gl}_{N} .

Theorem (Hu-M.)

Suppose e = 0 and $K = \mathbb{C}$. Then there is graded equivalence of categories $E_n^{\Lambda}: \mathcal{O}_{\beta}^{\Lambda} \longrightarrow \mathcal{S}_{\beta}^{\Lambda}$ -Mod such that the diagram

$$\begin{array}{c} \overset{ \boldsymbol{\sqsubset}_{\beta}}{\longrightarrow} S^{\boldsymbol{\wedge}}_{\beta} - Mod \\ & & \downarrow \boldsymbol{\mathsf{F}}^{\boldsymbol{\wedge}}_{\beta} \\ & & & \downarrow \boldsymbol{\mathsf{F}}^{\boldsymbol{\wedge}}_{\beta} \\ & & & \mathcal{H}^{\boldsymbol{\wedge}}_{\beta} - Mod \end{array}$$

commutes. Consequently, S_n^{Λ} -Mod = $\bigoplus_{\beta} S_{\beta}^{\Lambda}$ -Mod is Koszul.

In particular, the following hold:

 $(\Delta^{\lambda} : L^{\mu}]_{q} = [\Delta^{\lambda}_{0} : L^{\mu}_{0}]_{q} \text{ are polynomials in } \mathbb{N}[q].$

0^

Provide the second s of Δ^{λ} and S^{λ} — which coincide with the radical filtrations for S_{n}^{Λ} .

yclotomic quiver Schur algebras

Distinguished bases of Fock spaces and dualities

Let $\mathfrak{F}^{\Lambda} = \bigoplus_{n \geq 0} \operatorname{Rep}(\mathbb{S}^{\Lambda}_n)$, the direct sum of Grothendieck groups. We consider $\overline{\mathfrak{F}}^{\Lambda}$ as a $\mathbb{Z}[q, q^{-1}]$ -module by setting $[M\langle 1 \rangle] = q[M]$.

The Fock space \mathfrak{F}^{Λ} has many natural bases including:

- Irreducible modules

- $\{ [L^{\mu}] : \mu \in \mathcal{P}^{\Lambda} \}.$
- Standard modules $\{ [\Delta^{\mu}] : \mu \in \mathcal{P}^{\Lambda} \}$. Projective indecomposable modules $\{ [P^{\mu}] : \mu \in \mathcal{P}^{\Lambda} \}$. Twisted tilting modules $\{ [T_{\mu}] : \mu \in \mathcal{P}^{\Lambda} \}$.

The Fock space \mathfrak{F}^{Λ} comes equipped with two dualities:

Easy lemma

Define involutions by $[M]^{\circledast} := [M^{\circledast}]$ and $[M]^{\#} := [Hom_{S^{\wedge}_{n}}(M, S^{\wedge}_{n})]$. Then $[\Delta^{\lambda}]^{\circledast} = [\Delta^{\lambda}] + \sum_{\lambda arphi \mu} f_{\lambda \mu}(q) [\Delta^{\mu}],$ $[\Delta^{\lambda}]^{\#} = [\Delta^{\lambda}] + \sum_{\mu arphi \lambda} g_{\lambda \mu}(q) [\Delta^{\mu}],$

for some Laurent polynomials $f_{\lambda\mu}(q), g_{\lambda\mu}(q) \in \mathbb{Z}[q, q^{-1}]$.

Canonical bases and decomposition numbers

Lusztig's Lemma, and the positivity property $d_{\lambda\mu}(q) \in \mathbb{N}[q]$, now imply:

Theorem (Hu-M.)

Suppose that e = 0 and $K = \mathbb{C}$. Then the three bases $\{ [P^{\mu}] : \mu \in \mathcal{P}^{\Lambda} \}, \{ [L^{\mu}] : \mu \in \mathcal{P}^{\Lambda} \}$ and $\{ [T_{\mu}] : \mu \in \mathcal{P}^{\Lambda} \}$ are "canonical bases" of \mathfrak{F}^{Λ} which are uniquely determined by: $(P^{\mu})^{\#} = [P^{\mu}]$ and $[P^{\mu}] \equiv [\Delta^{\mu}] \pmod{q\mathfrak{F}^{\Lambda}_{+}}$ $(L^{\mu})^{\circledast} = [L^{\mu}]$ and $[L^{\mu}] \equiv [\Delta^{\mu}] \pmod{q\mathfrak{F}^{\Lambda}_{+}}$ $(T_{\mu})^{\circledast} = [T_{\mu}]$ and $[T_{\mu}] \equiv [\Delta^{\mu}] \pmod{q\mathfrak{F}^{\Lambda}_{-}},$ where $\mathfrak{F}^{\Lambda}_{\pm}$ is the $\mathbb{Z}[q^{\pm 1}]$ -lattice spanned by $\{ [\Delta^{\mu}] : \mu \in \mathcal{P}^{\Lambda} \}.$

In cases 1 and 3 the transition matrix is the graded decomposition matrix and in case 2 it is the inverse graded decomposition matrix.

This result is a purely formal consequence of the fact that the $[\Delta^{\lambda}: L^{\mu}]_q$ are polynomials, rather than Laurent polynomials.

In fact, this result holds if and only if $[\Delta^{\lambda} : L^{\mu}]_q \in \mathbb{N}[q]$, for all $\lambda, \mu \in \mathcal{P}^{\Lambda}$.

The cyclotomic LLT algorithm – two examples

Example (Level 2) $\Lambda = \Lambda_i + \Lambda_j$ and e = 0 or $e \ge n$. In this case, $|\operatorname{Std}^{\mu}(\lambda)| \le 1 \implies [\Delta^{\lambda} : L^{\mu}]_q = q^k$ for k > 0 if $\lambda \ne \mu$ $\implies Y^{\mu} = G^{\mu}$ and $P^{\mu} = Z^{\mu}$ and we have explicit bases for both In this case, S_n^{Λ} is a positively graded basic Koszul algebra. Example Suppose that $\Lambda = 3\Lambda_0$ and $\mu = (1|2, 1|2^2)$. $\implies [Z^{\mu}] = [1|2, 1|2^2] + v[1|2^2|2, 1] + v[1^2|2|2^2] + (v^2 + 1)[1^2|2^2|2]$ $+ v[2|1^2|2^2] + (v^2 + 1)[2|2^2|1^2] + v^2[2, 1|1|2^2] + v^2[2^2|1|2, 1]$ $+ (v^3 + 3v + v^{-1})[2, 1|2^2|1] + (v^3 + v)[2^2|2^2|2]$ $+ (v^4 + 3v^2 + 1)[2^2|2, 1|1] + (v^3 + v)[2^2|2^2|0]$ $= (v + v^{-1})[P(2, 1|2^2|1)] + [1|2, 1|2^2] + v[1|2^2|2, 1] + v[1^2|2|2^2]$ $+ (v^2 + 1)[1^2|2^2|2] + v[2|1^2|2^2] + (v^2 + 1)[2|2^2|1^2] + v^2[2, 1|1|2^2]$ $+ (v^3 + v)[2, 1|2^2|1] + v^2[2^2|1|2, 1] + (v^3 + v)[2^2|1^2|2]$ $+ (v^3 + v)[2^2|2|1^2] + (v^4 + 2v^2)[2^2|2, 1|1]$ $= (v + v^{-1})[P(2, 1|2^2|1)] + [P(1^2|2^2|2)] + [P(2|2^2|1^2)]$

This implies that, as an \mathbb{S}_{n}^{Λ} -module, we have the decomposition $Z^{\mu} = (v + v^{-1})P(2, 1|2^{2}|1) \oplus P(1^{2}|2^{2}|2) \oplus P(2|2^{2}|1^{2}) \oplus P(1|2, 1|2^{2})$

Let $\iota^{\mu}: G^{\mu} \longrightarrow G^{\mu}$ be the identity map on G^{μ} $\implies \iota^{\mu}$ is an idempotent in S_{ρ}^{Λ} \implies $Z^{\mu} = \iota^{\mu} S^{\Lambda}_{n}$ is a projective S^{Λ}_{n} -module $\implies Z^{\mu} = \mathcal{P}^{\mu} \oplus \bigoplus_{\lambda \rhd \mu} p_{\lambda \mu}(q) \mathcal{P}^{\lambda}, \text{ for } p_{\lambda \mu}(q) \in \mathbb{N}[q, q^{-1}]$ Since Z^{μ} is a direct summand of \mathbb{S}_{n}^{Λ} , $(Z^{\mu})^{\#} = Z^{\mu}$ $\implies p_{\lambda\mu}(q) = \overline{p_{\lambda\mu}(q)} = p_{\lambda\mu}(q^{-1})$ Using the cellular basis of S_{n}^{Λ} , $[Z^{\mu}] = [\Delta^{\mu}] + \sum_{\nu \rhd \mu} \sum_{\mathsf{s} \in \mathsf{Std}^{\mu}(\nu)} q^{\deg \mathsf{s} - \deg \mathsf{t}^{\mu}} [\Delta^{\nu}]$ $=\sum_{\nu} z_{
u\mu}(q,q^{-1})[\Delta^{
u}]$ Now find λ such that $z_{\lambda\mu} = a_{-k}q^{-k} + a_{1-k}q^{1-k} + \dots$ with *k* maximal such that $a_{-k} \neq 0$ \implies $Z^{\mu} = Z' \oplus a_{-k}(P^{\lambda}\langle -k \rangle \oplus P^{\lambda}\langle k \rangle)$, for Z' projective \implies Continuing in this way we can compute P^{μ} and hence the graded decomposition numbers $[\Delta^{\lambda}: L^{\mu}]_{q}$, for all λ, μ Cyclotomic quiver Schur algebras 18/20

A graded decomposition matrix

Cyclotomic quiver Schur algebras

Example Suppose that e = 0, $\beta = \alpha_{-1} + 3\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3$ and $\Lambda = 3\Lambda_0$. The graded decomposition matrix of S^{Λ}_{β} is:

(0 1 4,2)	1	4								-					
$(0 4,2 1) \ (1 0 4,2)$			1												
(1 1 4,1) (1 1 ² 4)	q ²	•	9	1 9	1										
(1 4 1 ²)				q q^2		1	4								
(1 4,1 1) (1 4,2 0)	q^2 q^3	q q²	q q²		q	q	q	1							
$(1^2 1 4) (1^2 4 1)$	•	•	q q²	q^2 q^3	q q²	q²	q	:	1 9	1					
(4 1 1 ²)		•	q q^2	q^2 q^3		, q q ²	•	•		•	1	4			
(4, 1 1 1)	q^2	q	$q^{3}+q$ q^{2}	q^4	q ² q ³	q^3	q q²		q ²	q	q q²	q	1		
$\begin{array}{c cccc} (4,2 & 0 & 1) \\ (4,2 & 1 & 0) \end{array}$	q^3 q^4	q^2 q^3	q^2 q^3	•	•	•	q ²	q	:	q	:	q	q q²	1 9	1
		-					-	÷.							